Journal of Quantum Information Science

Volume 4, Issue 4 (December 2014)

ISSN Print: 2162-5751   ISSN Online: 2162-576X

Google-based Impact Factor: 1.2  Citations  h5-index & Ranking

Tailoring Quantum Correlations of a Coupled Central Two Qubits Soaked in a Finite Temperature Antiferromagnetic Environment with Frequency Gap

Full-Text HTML  XML Download Download as PDF (Size: 2984KB)  PP. 201-213  

ABSTRACT

We revisit the quantum features of an anti-ferromagnetic (AF) spin environment at finite temperature with gap in its frequency spectrum, on the dynamics quantum correlations of a coupled central two qubits system with Dzyaloshinskii-Moriya (DM) interaction, prepared in two entangled Bell states. Using entanglement and quantum discord as quantum meters of decoherence, the prepared entangled states are classified as robust or fragile relative to the degree of information leakage to the AF environment. By tailoring the size of the frequency gap, anisotropy field strength and induced field, due to system AF spin environment coupling, size of the AF environment and DM interaction parameter, a decoherence-free sub-space can be accessed for efficient execution of quantum protocols encoded in the entangled states.

Cite this paper

Fai, L. , Afuoti, N. , Fouokeng, G. , Kuetche, J. and Tchoffo, M. (2014) Tailoring Quantum Correlations of a Coupled Central Two Qubits Soaked in a Finite Temperature Antiferromagnetic Environment with Frequency Gap. Journal of Quantum Information Science, 4, 201-213. doi: 10.4236/jqis.2014.44019.

Cited by

No relevant information.

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.