Atmospheric and Climate Sciences

Volume 3, Issue 1 (January 2013)

ISSN Print: 2160-0414   ISSN Online: 2160-0422

Google-based Impact Factor: 1.09  Citations  h5-index & Ranking

Atmospheric Trajectory and Chemical Transport Modelling for Elevated Ozone Events in Denmark

Full-Text HTML  XML Download Download as PDF (Size: 2041KB)  PP. 87-99  

ABSTRACT

In this study, three Danish sites having the longest (1990-2004) time-series of ozone measurements were analysed on inter-annual, monthly and diurnal cycle variability as well as elevated and lowered ozone concentration events were identified. The atmospheric trajectory (HYSPLIT) and dispersion (HIRLAM + CAMx) models were employed to study dominating atmospheric transport patterns associated with elevated events and to evaluate spatio-temporal variability of ozone specific episode and typical seasonal patterns for Denmark. It was found that generally inter-annual variability has a positive trend, and events with low ozone concentration (≤10 μg/m3) continued to diminish. On a monthly scale, the highest and lowest mean concentrations are observed in May and November-December, respectively. The elevated concentrations (≥120 μg/m3) are observed during March-September. On a diurnal cycle, it is observed mostly during 13-16 of local time, and more frequent (ten-fold) compared with nighttime-early morning hours. For ozone elevated events, several sectors (or pathways of atmospheric transport) were identified depending on the sites’ positions, showing the largest (39%) number of such events associated with the north-western sector, and lowest (13% each)—southwestern and northern sectors. For each site, less than 60 events showed very high concentrations (≥180 μg/m3). Among 12 episodes, one longest elevated episode (19-21 Jun 2000) simultaneously registered at all sites and characterized by dominating transport from the south-southwestern sector, low wind speed, clear-sky, and multiple inversions was studied using modelling tools. For this episode, both measurements and modeling (trajectory and dispersion) results showed a relatively good agreement.

Cite this paper

A. Mahura, R. Nuterman, I. Petrova and B. Amstrup, "Atmospheric Trajectory and Chemical Transport Modelling for Elevated Ozone Events in Denmark," Atmospheric and Climate Sciences, Vol. 3 No. 1, 2013, pp. 87-99. doi: 10.4236/acs.2013.31011.

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.