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Abstract 

This paper mainly talks about the relationship between an optimal design of 
accelerated degradation tests and the degradation performance. When there 
is a linear relationship between the parameter of distribution and the critical 
values, a special pattern of accelerated degradation tests is presented by taking 
the critical values as accelerated variable. And the optimal test plan is ob-
tained by minimizing the asymptotic variance of the MLE of the parameter of 
distribution. Finally, a numerical example is presented to illustrate the pro-
cedures of the test plan. 
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1. Introduction 

With the development of technology, more and more products have higher re-
liability and longer service life. In many cases, accelerated degradation testing is 
superior to accelerated life testing in assessing product life. As time goes on, ac-
celerated degradation test has been widely used in reliability evaluation of vari-
ous products. 

There are many factors involved in accelerated degradation test. One of the 
important aspects is the optimal arrangement or design of the test. In recent 
years, in the research of experimental optimal design, Boulanger, Escobar [1] 
and Yu, Tseng [2] gave the cost function of the experiment for the general case. 
Park and Yum [3] used precision limits for general degradation tests to optimize 
the tests. Tseng and Yu [4] proposed a method to optimize the distribution of 
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degradation test duration. Yang [5] and Wu, Chang [6] obtained the optimal test 
design by minimizing the asymptotic variance of quantile life estimation under 
the restriction of service cost for the constant stress accelerated degradation test. 
Assuming that the degradation rate obeys the inverse Weibull distribution, Yu 
and Tseng [7] designed a constant stress degradation test. Park and Yum [8] de-
signed a step-by-step stress degradation test in which destructive degradation 
detection was used. Wang, Xu [9] and Ye, Chen [10] systematically introduced 
the degradation model of inverse Gaussian process and compared it with gamma 
process model. Sung and Yum [11] studied the optimal design of accelerated 
degradation test based on the Wiener process. 

In this paper, our main purpose is to find a method based on degradation 
performance to plan the accelerated degradation tests. We discuss the relation-
ship between the optimal design of a kind of accelerated degradation test and the 
selection of its degradation of critical value. On condition that there is a linear 
relationship between the parameter µ  of distribution and the critical values C. 
A special pattern of accelerated degradation tests is presented by taking the crit-
ical values as accelerated variable. And the optimal test plan is obtained by mi-
nimizing the asymptotic variance of the MLE of the parameter of distribution. 

The present paper is structured as follows. In Section 2, we will discuss the re-
lationship between the parameters of failure distribution and the critical value 
level. In Section 3, we will establish the optimization design model based on de-
gradation performance. Finally, a numerical example is presented to illustrate 
the procedures of the test plan in Section 4, and Section 5 concludes this paper. 

2. The Critical Values 

For some products with high reliability and long service life, when evaluating 
their reliability indexes, even if the environmental stress is increased, the failure 
cannot be or rarely can be observed in the normal time interval. At this time, we 
use degradation test. Select a performance attribute of the sample, which de-
grades slowly with time. When its index value exceeds (higher or lower than) a 
preset limit value, the sample is judged to be invalid. The preset limit is called 
the degradation threshold. According to reference [12], more failure data can be 
obtained by selecting the critical value level, and the test time can be shortened.  

In this way, a key problem is how to evaluate the failure law of products with 
the failure data obtained at different critical value levels. This means that the re-
lationship between the parameters of failure distribution and the critical value 
level should be found. According to literature [13] [14], for some products, the 
degradation path has a linear form: 

( ) ( )1 2 3ik k k k i ikD t t S tα α α ε= + + +  

where, ( )ikD t  is the degradation value of the kth sample at the ith acceleration 
stress to time t. 

1 2 3, ,k k kα α α  are the coefficient of degradation, ( )ik tε  is the measurement 
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error. Now we take the critical value of degradation as jC , form ( )ik jD t C= , 
We can work out the failure time. Because of ( )1 2 3j k k k i ikC t S tα α α ε= + + + , we  

obtained 1 3

2

j k k i
ijk

k

C S
t

α α
α

− −
= . This represents the failure time of the kth sam-

ple at the ith stress level at the jth critical value. Thus, in case of the numbers of 
invalid samples are m, the average life of the sample at the jth critical value and 
the ith stress level shall be: 

1 3

1 1 2

1 3

1 1 12 1 1

1 1

1 1 1 1

m m
j k k i

ij ijk
k k k

m m m
k k

i j
k k kk k k

C S
t

m m

S C
m m m

α α
µ

α

α α
α α α

= =

= = =

− −
= =

= − − +

∑ ∑

∑ ∑ ∑
 

Set 1

1 2

1 m
k

k km
α

α
α=

= − ∑ , 3

1 1

1 m
k

k km
α

β
α=

= − ∑ , 
1 1

1 1m

k km
γ

α=

= ∑ . 

Thus, we have .ij i jS Cµ α β γ= + ⋅ + ⋅  
Therefore, the average life is related to stress and critical value as follows: 

S Cµ α β γ= + ⋅ + ⋅                       (1) 

In this way, as mentioned above, more failure data can be obtained by select-
ing the critical value level, and the test time can be shortened, so as to accelerate 
the test.  

3. A special Optimization Design 

3.1. Test Description and Assumption 

Test description 
The number of test samples is n. All samples are subjected to constant stress 

accelerated degradation test at q different but constant stress levels. The accele-
ration stress level (or its deformation) is 1 2, , , qS S S  ( 0 1 2 qS S S S< < < < , 

0S  is the normal stress level， qS  is the highest stress level). The ratio of sam-
ples is iπ  to the stress level iS . So the Sample number is i in n π= ⋅  at the 
stress level iS . The test adopts timing truncation. The closing time is iτ . D 
represents the degradation amount of sample performance characteristics. We 
take m critical values for the degradation. Respectively 1 2, , , mC C C , where 

mC  is an extreme threshold, 0C  represents the critical value of degradation 
under normal stress. 

For discussion purposes, we first standardize the stress levels as follows: Set 

0

, 0,1, 2, ,i q
i

q

S S
X i q

S S
−

= =
−

 , thus, we obtain 0 11 0qX X X= > > > = . The  

advantage is that the range of stress change is limited to the interval [ ]0,1 . The 
level of the threshold is then standardized as follows: 

0

, 1, 2, ,j m
j

m

C C
Y j m

C C
−

= =
−

 , then 0 1Y = , 0mY = . And all jY  are between 0 

and 1. 
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Test assumption 
1) Failure time follows lognormal distribution ( )2,LN µ σ ; 
2) Parameter µ  is a linear function of test stress and degradation critical 

value (from Equation (1)), hence: 

( ),i j i jX Y X Yµ µ α β γ= = + +                  (2) 

3) The parameters σ  do not change with the change of test stress and de-
gradation critical value. 

3.2. Optimization Design Model 

In the above case, we hope to arrange the experiment based on some standards, 
so that the experiment can be optimized to a certain extent. Here, the experi-
ment is arranged by minimizing the estimated asymptotic variance 

( )( )ˆ 1,1AVar µ  of the parameters µ  in the normal environment (the stress 
level is taken 0 1X = , while the degradation critical value is taken 0 1Y = ). 

Maximum likelihood estimation of model parameters: 
According to the experimental description and assumption, at a sample ob-

servation value, its log likelihood function is 

( ) ( ) ( )( )2
, , , , , , , , ,

1 1ln 2 ln 1 ln 1
2 2i j k i j k i j k i j k i jL I z Iσ η = − π − − + − −Φ 

 
 

where , , , ,i j k i j k i jz t X Yα β γ= − − − , ,i j i i jX Yη τ α β γ= − − − . 
When , ,i j k it τ≤ , , , 1i j kI = ; otherwise , , 0i j kI = . ( )Φ ⋅  is the distribution 

function of standard normal distribution. According to the description of the 
test, each sample has m degradation critical value to judge whether it is invalid. 
Therefore, m n⋅  observations will be obtained for n samples. From their inde-
pendence, the log likelihood function of all observations is: 

, ,
1 1 1

inq m

i j k
i j k

L L
= = =

= ∑∑∑  

The maximum likelihood estimation ˆˆ ˆ ˆ, , ,α β γ σ  of parameters , , ,α β γ σ  
can be obtained by maximizing L. At this time, the analytical expression cannot 
be obtained. The numerical results can be obtained by using the nonlinear pro-
gramming method in reference [15]. 

Taking 0i j= =  in the Equation (2), and let 0 1X = , 0 1Y = , we obtain 

( ) ( )0 0 0 01,1 ,X Y X Yµ µ α β γ α β γ= = + + = + +  

Thus, the estimate of µ  is 

( ) ˆˆ ˆˆ 1,1µ α β γ= + +                        (3) 

In order to obtain the progressive variance of ( )ˆ 1,1µ , we first find the Fisher 
information matrix of parameter maximum likelihood estimation. 

According to the above form of log likelihood function , ,i j kL , We can get the 
Fisher information matrix of an observation value as follows 
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where, 
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, 

( )φ ⋅  is the distribution function of standard normal distribution. 

Thus, the Fisher information matrix of all observations is ,
1

q m

i i j
i j

F n Fπ
= =

= ∑∑ . 

So, the covariance matrix of the MLE ˆˆ ˆ ˆ, , ,α β γ σ  of the parameter , , ,α β γ σ  
can be calculated as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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ˆˆ ˆ ˆ ˆ ˆ ˆ, , ,
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 ∑ = = 
 
 
  

 

According to the theory of maximum likelihood estimation and (3), we have 

( ) ( ) ( ) ( ) ( )T ˆ ˆ ˆ ˆ1,1 1,1 1,1 1,1
, , , 1,1,1,0h

µ µ µ µ
α β γ σ

∂ ∂ ∂ ∂ 
= = 

∂ ∂ ∂ ∂ 
 

Thus, we obtain 

( )( ) ( ) ( )TTˆ 1,1 1,1,1,0 1,1,1,0AVar h hµ = ⋅Σ ⋅ = ⋅Σ ⋅           (4) 

In general, before the test, the maximum stress that the sample can withstand 
and the extreme critical value of degradation have been determined. Therefore, 
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when the sample size n is determined, we can select the value of iX , jY , iπ  to 
minimize the above-mentioned progressive variance  

( )( ) ( ) ( )Tˆ 1,1 1,1,1,0 1,1,1,0AVar µ = ⋅Σ ⋅ . So the optimal model can be described as 
follows 

( )( ) ( ) ( )TˆMin : 1,1 1,1,1,0 1,1,1,0AVar µ = ⋅Σ ⋅          (5) 

where, the decision variables are: iX , jY , iπ , 1,2, , 1i q= − ;  
1,2, , 1j m= − , and 0 , , 1i j iX Y π≤ ≤ . 

3.3. A Special Case of Optimization Model 

As a special case of optimization model, we set 2, 2q m= =  to calculate 
( )( )ˆ 1,1AVar µ .  

In this case, the Fisher information matrix is 
2 2

, 02
1

i i j
i j

nF n F Fπ
σ= =

= =∑∑ , 

( )0 , 4 4i jF f
×

=  is a fourth-order matrix, where: 

2 2

1,1 ,
1 1

i i j
i j

f Aπ
= =

= ∑∑ , 
2 2

2
2,2 ,

1 1
i i i j

i j
f X Aπ

= =

= ∑∑ , 
2 2

2
3,3 ,

1 1
j i i j

i j
f Y Aπ

= =

= ∑∑ ,  

2 2

4,4 ,
1 1

i i j
i j

f Cπ
= =

= ∑∑ , 
2 2

1,2 2,1 ,
1 1

i i i j
i j

f f X Aπ
= =

= = ∑∑ , 
2 2

1,3 3,1 ,
1 1

j i i j
i j

f f Y Aπ
= =

= = ∑∑ ,  

2 2

1,4 4,1 ,
1 1

i i j
i j
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= =

= = ∑∑ , 
2 2

2,3 3,2 ,
1 1

i j i i j
i j

f f X Y Aπ
= =

= = ∑∑ , 

2 2

2,4 4,2 ,
1 1

i i i j
i j

f f X Bπ
= =

= = ∑∑ , 
2 2

3,4 4,3 ,
1 1

j i i j
i j

f f Y Bπ
= =

= = ∑∑ , 

Substituting the above results into (5), we obtain  

( )( ) ( ) ( ) ( ) ( )T T1
0 2

ˆ 1,1 1,1,1,0 1,1,1,0 1,1,1,0 1,1,1,0 nAVar F Vµ
σ

−= ⋅Σ ⋅ = ⋅ ⋅ =  

where, 
( )1 2 3 4 5 6

0

2E E E E E E
V

F
+ + + + +

= , 0F  is the determinant of matrix 

0F . 
2 2 2

1 2,2 3,3 4,4 2,3 3,4 4,2 2,4 3,3 3,4 2,2 2,3 4,42E f f f f f f f f f f f f= + − − −  
2 2

2 1,4 2,4 3,3 1,2 3,4 1,3 2,3 4,4 1,2 3,3 4,4 1,4 2,3 3,4 1,3 2,4 3,4E f f f f f f f f f f f f f f f f f= + + − − −  
2

3 1,2 2,3 4,4 1,4 2,2 3,4 1,3 2,4 1,4 2,3 2,4 1,2 2,4 3,4 1,3 2,2 4,4E f f f f f f f f f f f f f f f f f= + + − − −  

2 2 2
4 1,1 3,3 4,4 1,3 1,4 3,4 1,4 3,3 1,1 3,4 1,3 4,42E f f f f f f f f f f f f= + − − −  

2
5 1,4 2,3 1,1 2,4 3,4 1,2 1,3 4,4 1,1 2,3 4,4 1,2 1,4 3,4 1,4 1,3 2,4E f f f f f f f f f f f f f f f f f= + + − − −  

2 2 2
6 1,1 2,2 4,4 1,2 1,4 2,4 1,4 2,2 1,1 2,4 1,2 4,42E f f f f f f f f f f f f= + − − −  

Because the total number n of samples and 2σ  are constant, the optimiza-
tion model is: 

( )1 2 3 4 5 6

0

2
Min :

E E E E E E
V

F
+ + + + +

=               (6) 
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where, the decision variables are: 1X , 1Y , 1π , and 1 1 10 , , 1X Y π≤ ≤ . 
This nonlinear programming problem can be solved by the method of refer-

ence [15]. 

4. Numerical Example 

In order to illustrate the above optimization process, we take 50 LEDs for acce-
lerated degradation test. The degraded performance attribute is taken as its lu-
minous intensity. The acceleration variable of the test is taken as voltage. Under 
normal working conditions, the working current of the sample is 40 mA. Ac-
cording to previous experience, the maximum allowable working current is 330 
mA (without changing its failure mechanism). Here we consider accelerated de-
gradation tests at two stress levels. The voltage level is 1 2,S S . 140 330S< < , 

2 330S = . When the sample is working under normal conditions, if its luminous 
intensity is lower than 50% of its initial intensity, it will be judged as invalid. If 
the initial luminous intensity is set to 1, the critical value under normal condi-
tions is 0 0.5C = . Now, we accelerate the degradation threshold at the same 
time. Set the extreme critical value as 2 0.1C = . We optimize the experimental 
arrangement according to the above model. 

The estimation of parameters in the model can be based on previous expe-
rience or similar data. Here, we set its estimate as ˆ 5.5α = , ˆ 6β = , ˆ 3γ = , 
ˆ 1σ = . We take the cut-off time of the test at two stress levels as 1 2 8τ τ= = . Put 

the above data into the optimization model (6), using the nonlinear program-
ming method, we obtain 1 0.412X = , 1 0.646Y = , 1 0.557π =  

Thus, we have 1 1 50 0.557 28n n π= ⋅ = × ≈ , 2 1 22n n n= − = . 

And 1 2
1

0 2

S SX
S S
−

=
−

, 1 210.5S = ; and 1 2
1

0 2

C CY
C C

−
=

−
, 1 0.24C = . 

Therefore, the optimal design of the test is: Take 28 samples and put them in-
to 210.5 mA for accelerated degradation test. When the luminous intensity of 
the test sample—led is lower than 24% of the initial value, we determine that the 
sample is invalid once. When the luminous intensity of the test sample is lower 
than 50% of the initial value, we decide that it will fail again. The closing time of 
the test is 8t = . In addition, 22 samples are placed at 330 mA for accelerated 
degradation test. When the luminous intensity of the test sample is lower than 
24% of the initial value, we determine that the sample is invalid once. When the 
luminous intensity of the test sample is lower than 50% of the initial value, we 
decide that it will fail again. The closing time of the test is 8t = . 

5. Results and Conclusion 

In this work we established an optimization design model based on degradation 
performance for accelerated degradation test. The model shows that the test can 
be accelerated by selecting the critical value level. For ease of application, we 
simplified the model, and presented a numerical example to illustrate the pro-
cedures of the test plan. 
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