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Abstract

This paper presents a new nonholonomy criteria and reveals the physical interpretation of holonomoic and
nonholonomic constraints acting on a free-flying space robot with or without interaction with a free Fly-
ing/Floating target object. The analysis in this paper interprets the physical interpretation behind such con-
straints, and clarifies geometric and kinematic conditions that generate such constraints. Moreover, a new
criterion of finding the holonomy/nonholonomy of constraints impose on a free-flying space robot with or
without interaction with a floating object is presented as well. The proposed criteria are applicable in case of
zero or non-zero initial momentum conditions. Such nonholonomy criteria are proposed by utilizing the
concept of orthogonal projection matrices and singular value decomposition (SVD). Using this methodology
will also enable us to verify online whether the constraints are violated in case of real-time applications and
to take a correction action or switch the controllers. This criterion is still yet valid even the interaction with
floating object is lost. Applications of the proposed criteria can be dedicated to in-orbit servicing robotic sat-
ellite to capture malfunctioned spacecrafts and satellites, docking space of NASA and Russian shuttles with
International Space Station (ISA), building in-orbit stations, space rescue missions and asteroids dust sam-
pling. Finally, simulation results are presented to demonstrate the effectiveness of the proposed criterion.

Keywords: Honlonomic and Nonholonomic Constraints, Nonholonomy, Free-Flying Space Robot, Target

Satellite

1. Introduction

The most complex space application of robotics is in-
orbit servicing. The scientific and commercial motive for
robotic spacecraft and their future central role in space
activities is comparatively new, particularly for general
earth orbit operations which are presently dominated by
manned missions. Particularly, the purpose of a dedi-
cated robotic satellite for in-orbit servicing is to capture
malfunctioned spacecrafts and satellites and perform
maintenance and services to effectively increase the
overall reliability of all accessible space systems. Ser-
vicing satellite equipped with robot arms can be em-
ployed for recovering the attitude, charging the exhaust-
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ing batteries, attaching new thrusters, and replacing the
failed parts like gyros, solar panels or antennas of an-
other satellite. There is no doubt that robotic and
autonomous systems in space will contribute considera-
bly to the future commercialization of space industry,
saving billions of commercial space missions, extending
their servicing age and making the space less polluted.
Many techniques of kinematics and dynamic modeling
of space robots have been developed in [1-5,10,11].
Kinematics and dynamics motion of a space robot sys-
tem are developed based on the concept of a Virtual Ma-
nipulator (VM) [2,3]. Another modeling of kinematics of
a free-flying space robot is proposed by deriving the total
momenta without the need of a pre-selected body [4].
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While in [5] the kinematics of a free-flying multi-body
system is investigated by introducing the conservation of
momentum and deriving a new Jacobian matrix called
the Generalized Jacobian. In research [6], the kinematics
and dynamics of free-floating coordinated space robotic
system with closed kinematic constraints are developed.
An approach to position and force control of free-float-
ing coordinated space robots with closed kinematic con-
straints is proposed for the first time. Unlike previous
coordinated space robot control methods which are for
open kinematic chains, the method presented here ad-
dresses the main difficult problem of control of closed
kinematic chains. The controller consists of two parts,
position controller and internal force controller, which
regulate, respectively, the object position and internal
forces between the object and end-effectors. A planar
FFSR with a 2 DOFs manipulator is selected to test the
algorithm and simulation results illustrate that the path
following is realized precisely. The genetic algorithm
with wavelet approximation is applied to nonholonomic
motion planning in [7]. The problem of nonholonomic
motion planning is formulated as an optimal control
problem for a drift.

When a robot end-effecter interacts with a stationary
environment or moving object, it imposes a geometric
holonomic (integrable) constraint [2,9,11]. The conser-
vation of momentum exerts kinematic-like constraints on
a space robot in the absence of external forces. The linear
momentum is considered as holonomic but the angular
momentum as nonholonomic (non-integrable) [11]. Con-
trol of nonholonomic system received a great attention of
the research developed in [8,11-13,14]. Research [15]
addresses modeling, simulation and controls of a robotic
servicing system for the hubble space telescope servicing
missions. The simulation models of the robotic system
include flexible body dynamics, control systems and
geometric models of the contacting bodies. These models
are incorporated into MDA’s simulation facilities, the
multibody dynamics simulator “space station portable
operations training simulator (SPOTS)”. In [16], the
kinematics of the FFSR is introduced firstly. Then the
null space approach is used to reparameterize the path:
the direction and magnitude are decoupled and no direc-
tion error is introduced. And the Newton iterative me-
thod is adopted to find the optimal magnitude of the joint
velocity. The inverse kinematic control based on mutual
mapping neural network of free-floating dual-arm space
robot system without the basepsilas control is discussed
in [17]. With the geometrical relation and the linear, an-
gular momentum conservation of the system, the gener-
alized Jacobian matrix is obtained.

To solve the challenge of nonintegrability of principle
of conservation of angular momentum many researchers
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have proposed different schemes. A nonholonomic path
planning of space robots is proposed in [8] via bi-direc-
tional approach. The spacecraft orientation can be con-
trolled in addition to the joint variables of the manipula-
tor, by actuating only the joint variables, if the trajectory
is carefully planned. A major characteristic of a space
robot is clearly the distinction from ground-based robot
is the lack of a fixed base in space environment [5].
Since the conservation of momentum exerts kinematic-
like constraints on a space robotic system in the absence
of external forces, one may raise the question: what is the
physical interpretation of such a behavior? Some re-
searchers have looked at this problem from trajectory
planning point of view, From trajectory planning point of
view, not all trajectories and displacements (velocities)
are allowed due to the conservation of momentum and
geometric constraints [8,11]. The physical meaning be-
hind these constraints is that they restrict the kinemati-
cally possible displacements (possible values of the ve-
locities) of the individual parts of the system.

The physical characteristics of the nonholonomic con-
straints are exhibited by the fact that even if the manipu-
lator joints return to their initial configuration after a
sequence of motion, the vehicle orientation may not be
the same as the initial value [8]. If a space robot is oper-
ated in a certain task, position and attitude of the base
satellite are disturbed by reaction forces and moments
due to the robot motion, so it cannot accomplish a task
without provision for this disturbance. No space ma-
nipulator can avoid the reaction disturbance. Physical
interpretation of such behavior will give us more idea
about the nature of holonomic and nonholonomic con-
straints and geometric conditions that generate those
constraints. Verifying the intergrability of holonomic and
nonholnomic constrained systems has attracted the atten-
tion of several studies [8-18]. Frobenius theorem is a well-
known approach to answer the question of integrability
of such systems under concern. Conditions of the inte-
grability of nonholonomic systems are reported using Lie
algebra techniques in [8]. A necessary and sufficient
condition is reported by using what is called bilinear co-
variants in [12,13-18]. Nonholomic behavior of a free-
flying space robot is investigated in the absence of ex-
ternal forces by Lie algebra techniques [8]. Differen-
tial-form-based integrability conditions for dynamic con-
straints using the Frobenius theorem are proposed in [19].
In the latter, the conditions can be used for the classifica-
tion of holonomic and nonholonomic constraints. Unfor-
tunately, using Lie algebra and bilinear covariant is cum-
bersome and time consuming in the case of complicated
space robotic systems.

This paper presents a new methodology to determine
holonomy/nonholonomy of constraints impose on a free-
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flying space robot with or without interaction with a
floating object. In this work a physical interpretation of
nonholnomic constraints is presented. It gives an insight
of nonholonomic constraints and provides more informa-
tion of a space robot behavior, especially in control
which is more difficult than conventional holonomic
systems. The holonomy criterion is proposed by utilizing
the concept of orthogonal projection matrices and singu-
lar value decomposition (SVD). This criteria is economic
(from computational view point) can easily be used to
verify the holonomy of a space robot exposed to different
types of constraints. Using this methodology will also
enable us to verify online whether the constraints or their
initial conditions are violated in case of real-time appli-
cations and to take a corrective action or switch the con-
trollers if needed. Such a physical interpretation will
provide us with a better understanding of a space robot
especially in contact task planning and control, which are
more difficult than conventional holonomic systems.

The paper is organized as follows: In Section 2, mod-
eling of kinematics, linear and angular momentum are
derived. In Section 3, a physical interpretation of non-
holnomic constraints is presented. In Section 4, non-
holonomy criteria in case of zero initial momentum con-
ditions, meanwhile in Section 5 a nonholonomy criteria
of non-zero initial momentum conditions space robotic
system is presented. Finally, simulation results and con-
clusions are presented respectively in Sections 6 and 7 to
demonstrate the analytical results.

2. Kinematics and Momentum Modeling
2.1. Nomenclature

All generalized coordinates are measured in the inertial
frame unless another frame is mentioned as follows:

m; : the mass of the ith body;

I, € R’ : the inertia of the ith body;

g € R": the robot joint variable vector q(qy, 0, -, 0n) s

R, € R’ : the position vector of the centroid of the base;

R, € R’ : the position vector of the target satellite;

I e R*: the position vector of the ith joint;

Rrjee € R’: the position vector of the target satellite
centroid with respect to the end-effecter (EE);

V, € R* : the linear velocity of the base;

Q, € R’ : the base angular velocity vector;

U, :the 3x3 identity matrix.

2.2. Kinematics
The purpose of this part is to model the kinematics of a

free-flying space robotic manipulator in contact with a
captured satellite as a whole. In this model the contact
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between the space robot and the target satellite is as-
sumed established and not escaped.

Our combined system can be modeled as a multi-body
chain system composed of n+2 rigid bodies. While
the manipulator links are numbered from 1 to n, the
base satellite (body 0) is denoted by b, in particular,
and the (n+1)th body (the target satellite) by T .
Moreover, This multi-body system is connected by n+1
joints, which are given numbers from 1 to n+1. Where
the end-effecter is represented as the (n+1)th joint as
shown in Figure 1.

We assume that all system bodies are rigid, the contact
surfaces are frictionless and known. Also the effect of
gravity gradient, solar radiation and aerodynamic forces
are weak and neglected. It is assumed also that the base
satellite is reaction-wheel actuated.

Referring to Figure 1, the position vector of the ith
body centroid with respect to the inertial frame can be
expressed as [20-22]

R =R, + Ry (1
where the relative vector Ry, is the position of the ith
body centroid with respect to the base frame.

Upon differentiating both sides of (1) with respect to
time, the relationship between the ith body velocity

Target Satellite

Base Satellite

Figure 1. Multi-body diagram of a free-floating space robot
in contact with a target satellite.
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V, =V, +Q, xRy, +V, @)

where v, is the linear velocities of the ith body in base
coordinates. Now in the case of any ith body of the ma-
nipulator, the velocity V, can be expressed in terms of
the linear Jacobian matrix as

Vi =J.4 A3)
where
I, =[z,x(R=1),2,x(R =1,),-+, 2, x(R =1,),0,+-,0 ]
“4)
The end-effecter tip velocity is given by
Vee =V, +Qy xRegp +J,_ G 5)

Additionally, the velocity V; of the target satellite in
the reference frame can be obtained by deriving Equation
applying (1) as

Vi =Vy +Qy xRy + 3 G+ @ XRy e +Vp (6)

Since the target satellite is not stationary, (6) shows
the relative linear and angular velocities V;, @; be-
tween the end effecter and the target satellite and meas-
ured in the base frame.

Another relationship is needed between the ith body
angular velocity €, and joint angular velocity

Q=0+ @)
where @, is the angular velocities of the ith body in

base coordinates and @, in case of the manipulator is
given by

@, =J,4 @®)
where the angular Jacobian
Iy =[2,2,,-+,7;,0,-,0] )

While in the case of the target satellite, the absolute
angular velocity of can be expressed as

Q; =Q,+J, _q+o; (10)

2.3. Linear and Angular Momentum

The linear and angular momentum of a multi-body sys-
tem is a key part in understanding the motion of the sys-
tem when it is not subjected to external forces. They may
impose kinematic-like constraints when the system is
free of any external force.

The linear P momentum and angular momentum L
of the whole system is given by

P=3my, (11)
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n+1

L= (°1Q +mR xV,) (12)

By means of (1)-(10), linear and angular momentum in
(11)-(12) can then be represented in a compact form as

m My, Myq {vb }[vaq }q
= T
L M VpQp M Qp Qb M Qq

(13)
n Mwar MVbVT |:a)1':|
MQba)T MQbVT VT
where each block of the matrix is defined as follows
n+l1
va EU3Zmi e R (14)
i=0
n+1
MVbe =- Z m; |:Ri/b X] e R™ (15)
i=0,izb
n+l
vaq = 2 mJ, e R (16)
i=0,izb I
n+1
Mg, = . {L+mD(Ry)}+1, eR™ (17)
i=0,i#b

Mquziz {BIiJAi+mi[Ri/bx]JLi}eR3xn (18)

=0,i=b
Muy,or = =My [ Ryjee x] € R (19)
Moo =MD (R )+ 1, €R™ (20)
M, =U,m, eR™ (1)
Mg, =-M,, [R,, x]eR™ (22)

Note that the matrix function [R><] for a vector

L
R= [RX, R, RZ] is defined as
0 -R, R,
[Rx]=| R, 0 -R |eR™ (23)
-R, R0
and
D(R)=[R~] [R~]
2 2
R,+R; -RR, -RR, (24)
=| -R.R, R;+R’ -RR, |eR™
-RR, -R,R, R{+RS

and the sub-matrices of the Jacobian of the ith body rep-
resenting the linear and angular parts are defined before.
Note that as in (13) the system is subjected to a non-
holonomic (non-integrable) constraint because of con-
servation of angular momentum in the absence of exter-
nal forces. On the contrast, the linear momentum results
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in a holonomic (integrable) constraint.

3. Physical Interpretation of Nonholonomic
Constraints

3.1. Free-Flying Space Robot

In this section a physical explanation of the nonholo-
nomic constraint imposed on a free-flying space robot.
When no external forces are applied, and in the absence
of gravity and dissipation forces, the linear and angular
momentum of the multibody system are conserved.

Then by virtue of the principle of virtual work by
d’Almberts-Lagrange equation [12,18]

En;(miFéi— fi—F)oR =0 (25)
i=0

In which it implies no work as a result of the virtual
displacement JOR, measured in frame fixed at the center
of mass as shown in Figure 1. The position vector of the
ith body can be given as

R =R, +Ry, (26)
where R, is the position vector from the fixed center
C to the ith body, R, is the position vector form the
center of mass to the base satellite, and R, is the vec-

tor from the base to ith body.
Now taking the displacement of vector R;, we obtain

dR, =dR, +d¢xR;, +J,;dq, 27N
Similarly, the virtual displacement can be stated as

SR =6R, + xR, +3,,50; (28)

where ¢ is the angular virtual displacement by which
the base body rotates about the virtual axis of rotation
Z, 0q; is the virtual angular displacement of robot ith
body, and J; is the linear Jacobian defined as

gki ><(Ri _ri)'

n
Substituting > k;x(R, —r) for J in Equation (28)
leads i=o

5Ri:5Rb+5¢XRi/b+ikiX(Ri_ri)5qi (29)
i=0
Now substitute the virtual displacement (29) into
d’Almberts-Lagrange Equation (25) to have
MR, -6R, + MR, -69x R, + MR, gn;ki x(R =1, )5,
:fi.5Rb+fi.§¢xRi/b+fi-gn;kix(Ri—ri)dqi (30)

+F -8R, +F -8¢xR,, +F, -En;ki x(R T )5q,
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In Equation (30) the expressions on the right hand side
represent the virtual work of the internal forces f, and

the external forces F, which can be rewritten as

(f,+F)oR,+(M; +M¢)op+M,5q,

=(f,+F)6R, +(R,, x f, +R, xF )¢ 31
+ ” (Ri _ri)>< fikiog; +Zn:(Ri _ri)x Fk;oq;

By taking the work effect of all bodies, the total virtual
work can be then given as

oW, + oW, +W,,

:(fi+Fi)5Rb+<Mf+MF)5¢+Mm5q‘ >

Recalling that the linear momentum P =mR =myV,

then the first term in the left hand side of Equations (30)
can be expressed in term of linear momentum as
- dP
m,ROR, :d—t'éRb (33)

Introducing the angular momentum of the ith body
about the base

Ly = Ryp xmV, (34)

Using the latter expression (34) and Equation (26), the
middle and the last terms in the left hand side of Equa-
tion (30) can be rewritten respectively, as

MR, -6px Ry, = 5¢- R, x MR,

L, . (33)
:( dt/b_Ri/bxpjﬁqﬁ

n

mR 'Zki X(Ri _ﬁ)5qi :iki '(Ri _ri)xmiﬁi -0q,

=(d(|i_tm _(Ri —ﬁ)xPj&qi

(36)

where L, :(Ri —ri)><miVi .
After all, the virtual work of the whole system is pre-
sented as follows

dpP dby, o, s
E§Rb+[ R xP |op+| —(R —1)xP|&q

=(f+F)oR,+(M + M )dp+M,5q

37

Since the virtual variations O0R,, d¢ and oq are
independent we can reach the well known variation of
linear and angular momentum equations, respectively, as

dP

Zof+F 38
™ (38)
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(d;t R PJ (dst ~(Ri—1)~ PJ (39)

=M, +M.+M_

According to Equations (38) and (39), there are three
conditions that the moments of forces about the virtual
axis of rotation to vanish, that is

dP

—= 40
o (40)
dby ~Vpy xP =0 (41)
X

dt

dL .

m_(R —£)xP=0 42
o (R—1)x (42)

Note that Equation (40) is guaranteed automatically by
the law of conservation of linear momentum. To ensure
the validity of (41) there are two requirements must be
met, first

V,p X PSP =V, xV, -m5p =0 (43)
(R —r)xPsq=(R -

which requires that V,, and V, are parallel, (Ri - r,)
and V, are parallel, where V, is the velocity of center
of mass of the robotic system. The second requirement is
that M:6¢ =0, that is the projection of dL;, onto the

direction J¢ is conserved, then

i )%V, -ma&g =0 (44)

d't/”5¢— (Lyh)op =0 (45)

where ﬂ is a unit vector along the virtual axis of rota-
tion Z . From (45) it follows that

Lyl = const (46)

While the third condition can be guaranteed by
M, Jq , that is the projection

dL,

’“5q_d(LI)5q:0 (47)

Similarly, it follows from (47) that
LI, = const (48)

Theorem 1: A totally free-flying space robot defined
by d’Almberts-Lagrange dynamics (5) is said to be non-
holonmic system if conditions (23), (24), (26) and (28)
are satisfied.

According to the previous analysis, when external
forces exert no moment around the axis of rotation, the
conservation of momentum holds. From geometrical
view point, if the ith-body’s relative linear velocity with
respect to the base satellite is parallel to the linear veloc-
ity of the system center of mass, and if the relative linear
velocity between the ith-body’s centroid and its joint are
parallel to the linear velocity of the system center of
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mass, and if the projections of angular momentum is
along their corresponding angular displacements, then
the system poses a nonholonomic constraints. In other
words, any motion in base satellite or the manipulator or
both will cause the system to adjust its motion to keep
the direction of base linear velocity, and the projections
of the angular momentum parallel to the virtual axis of
rotation. It also embodies that the momentum is trans-
ferred from/to the manipulator to/from the base to main-
tain the momentum constant.

3.2. Free-Flying Space Robot Interacting with a
Target Satellite

We assume now that the space robot established a con-
tact with a target satellite. It is desired to find out the
conditions to keep the momentum conserved. A similar
analysis to part A above is followed.

Applying the principle of virtual work by d’ Almberts-

n+l

Y (mR —f,-F R =0 (49)

i=0
and from (6) the virtual displacement of the target is
given as

OR, =R, + ¢ x Ri/b +Zki X(Ri _ri)gqi
i=0 (50)
+ 0@ x RT/EE +on

Substituting (50) and (29) into (49) yields into
MR, - SR, + MR, -6px R, + MR, - >k x(R, -1, )5¢
+m.R; - ¢y x

Rrjee + MRy -1 = f-0R, + - 0px R,
+f,- Zk x(

+F -Zki X(Ri —n)ﬁqi + 1 on + o4 ><RTT/EE

+F 5r +F -0y x

—1)50, + F.6R, + F - 5px Ry,

T/EE

(51)
The last line in (51) can be expressed in terms of vir-
tual work as

Wi +Wer + Wy, = fr -0 + fr -0 xRy jee

(52)
+F 0 + K 60 xRy e
Rewriting the terms  my; R, -0 xRy e and
m. R, - 8¢, in (51), respectively, as
g.or =31 5 53
rTIT TYT dt T ( )
m; R'T O X RT/EE =O¢ 'RT/EE XMy R'T
L (54
= [d:i% Rr/ee X j5¢r
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where Ly e = Ryjge xm;Vr.

After all, the virtual work of the whole system is pre-
sented as follows

dpP b, L, (. .

Eé‘Rb +[T_Ri/b x Pj5¢+[ at +(Ri —I})xPJé‘q
dL .

+%§&+[;f—aﬁxa%¢

=(f+F)oR, +(M, +M )84+ M, 5q

+(fr +F )-8 + (Mg + M, )65

(35)

According to Equation (55), there are five conditions
that the moments of forces about the virtual axis of rota-
tion to vanish. Three of these conditions are similar to
the conditions (40)-(42), in addition to

P,
—=0 56
" (56)
dL .
(ﬁ_ Rrjee x P J =0 (57)

Condition (56) implies that
P, =const, that is

V; = const (58)
Meanwhile, conditions (57) implies
L, /EEIE = const (59)
And
Ry/ge X Pr = Vpjge xmV; (60)

Theorem 2: A combined free-flying space robot in-
teracting with a target satellite defined by d’Almberts-
Lagrange dynamics (3.29) is said to nonholonmic system
if conditions (3.23), (3.24), (3.26), (3.28) and (3.38)-
(3.40) are satisfied.

Then, in addition to the conditions concluded in the
case of free-flying space robot, it is concluded also that
to hold a constant momentum: 1) the target linear veloc-
ity should not change; 2) the linear relative velocity be-
tween the target and the end-effector should be in the
same direction; 3) and its relative angular momentum
projection should be kept constant. Figure 2 interprets
these conditions.

V, = CONST

VT/EE | ‘ VT

Figure 2. Nonholonomic conditions interpretation of a free-flying space robot interacting with a target satellite.
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4. Nonholonomy Criterion with Zero-Initial
Momentum Condition (Non-Drifted
System)

Holonomic kinematical conditions can be attacked in two
approaches. If there are m equations between n vari-
ables, we can eliminate m of these and reduce the
problemto N —m independent variables. However, this
elimination may be rather cumbersome. Moreover, the
conditions between the variables may be of a form that
makes distinction between dependent and independent
variables artificial. Another approach is to operate with
surplus number of variables and retain the given con-
straint relations as auxiliary conditions. Nonholonomic
conditions necessitate the second way of treatment. A
reduction in variables is not possible here because the
equations for eliminating some variables as dependent
variables do not exist. Thus, we have to operate with
more variables than degrees of freedom of the system
demand.

Establishing criteria that determine whether a me-
chanical system is holonomic or nonholonomic is so cru-
cial. In case of a mechanical system with linear kine-
matic kenimatic-like constraints, a necessary and suffi-
cient condition is needed.

Using Lie algebra and bilinear covariants is cumber-
some and time consuming in the case of complicated
systems. In [12-13], another alternative sufficient and
necessary condition is discussed by proposing a linear
transformation to verify the integrability of holonomic
systems. But in the latter approach, it is not clear how to
construct the augmented matrix which is necessary to
build the transformation matrix.

In this work, a transformation matrix is proposed to
construct a linear transformation by using the concept of
orthogonal projection techniques. This matrix is suffi-
cient and necessary to verify the integrability of holo-
nomic and nonholonomic system. Let us first define a
system subjected to linear kinematic (or kienmatic-like)
constraints given in the form

AG=0 (61)

where the constriant matrix AeR™" and the general-
ized variables & e R". For a system to be holonomic, a
complete integrability of all m equations has to be ful-
filled. But it might not be possible to find out whether a
system of linear constraints are integrable because of
unavailability of integrablity techniques or time con-
suming.

Geometrically, the constraint (61) mean that a point of
an N-dimensional space R(6,,6,,--,6,) cannot be
displaced arbitrarily, but it must move a long a curve that
touches at each of its points a hyperplane "™ of di-

Copyright © 2011 SciRes.

ET AL.

mension N —m, which contains all displacement vec-
tors dé,,dé,,---,d6, satisfying the constraint Equation
(61). A system of Pfaffian equations is completely inte-
grable if all admissible curves emanating from any point
in the space lie on a surface of dimension N —m pass-
ing through that point. However, if the system is not in-
tegrable, any point in the configuration space can be
reached, although its possible displacement is restriced.

Theorem 3: For a system subjected to linear kine-
matic (kinematic-like) constraint defined in (61), these
constraint are said to be holonomic constraint if we can
construct a linear trasformation matrix T that maps all
vectors lying in T"™ to zero and maps all vectors or-
thogonal to the hapersurface LN™™ onto themselves.

Proof: A linear transformation matrix T is intro-
duced that is defined at each point of the space
R(6,,6,,---,6y). This transformation maps all vectors
lying in T"™ to zero and maps all vectors orthogonal
to the hapersurface L"™™ onto themselves.

In other words, this transformation T maps all dis-
placement vectors dé,,dé,,---,d6, satisfying the con-
straint (61) to the null vector as follows

r=Té0 (62)
where 'eR™ and T e R™V.

Hence from (62) and the definition of the transforma-
tion T,

Tq = YA (63)

where the matrix Y e R™"™ and undetermined yet.
Vectors orthogonal to L™, in particular, the m rows
A are mapped by the transformation T onto them-
selves as

YAA =TA = A, (64)

The condition (64) admits a unique solution of Y
and its elements should not vanish for a system to be
holonomic.

To find the elements of the matrix Y, we augment
the matrix A, which is assumed to have full rank m,
making it into a square matrix A in such a way such
that AeR™ its determinant does not vanish. The
elements y; of Y can then be found uniquely and are
the elements of first m rows and first m columns of the
inverse augmented matrix A. But as it can be seen in
[12], it is not clear how to augment the matrix A.

In this work, a holonomy scheme is proposed to con-
struct the augmented matrix A by using the orthogonal
projectors. This scheme can easily be used to verify the
holonomy of constrained systems. From the theory of
linear algebra [18], the constrained system defined in (61)
is equivalent to the following unconstrained but larger
linear system
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el e

where P, is an orthogonal projector on the space
R™" . The projector P, can be found easily by the
generalized Pseudoinverse and singular value decompo-
sition techniques.
Using the Moore-Penrose inverse, the solution of (61)
is
g=(1-A"A)y (66)

where | e R™™" s the identity matrix, the vector v is
an arbitrary vector, and ,IN is the Penrose inverse de-
fined as A" =A"(AAT) . Let D=(I-A"A}. Since
(61) is a constrained system, the solution should be

q=Pv (67)

where P, is of Nx(N-m) dimension. All the col-
umns of the matrix D are in the null space of A that
is AD=0. Then any n—m linearly independent col-
umns of D can be chosen to form P, . Now we use the
singular value decomposition for D to select the proper
columns of P, such that D=UXV'™, where U and
VT are unitary orthogonal matrices of size NxN and
the diagonal matrix ¥ with nonnegative diagonal ele-
ments in decreasing order as
T =diag{x,x,,**,Ky_p,0,--,0} . Since V' is an or-
thogonal matrix, and AD = A(U YA ) =0, the
AUZ =0. Looking at the structure of X it can be seen
that the first N—m columns of U are in the null
space of A. Then the first N—m columns of U can
be used as the orthogonal projector P, .

Now the extended augmented matrix A can be de-

fined as
A= A (68)
= P

which is of full rank. By finding the inverse of the aug-
mented matrix A, then the unique matrix Y is com-
posed of the elements of the first m rows and first M

columns of the inverse augmented matrix A as:

- |ALA)
A1=[f_z Jj} (69)

AZI A22
Y=A, eR™" (70)

By then, the transformation matrix T can be con-
structed as T = YA. By this end, a necessary and suffi-
cient condition is obtained to verify the integrability of
constrained system. If the transformation matrix T is
not rank deficient, then the system is integrable.

Note that as in (13) the system is subjected to a non-
holonomic (non-integrable) constraint because of con-
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servation of angular momentum in the absence of exter-
nal forces. The physical meaning behind these con-
straints is that they restrict the kinematically possible
displacements (possible values of the velocities) of the
individual parts of the system. On the contrast, the linear
momentum results in a holonomic (integrable) constraint.

Note that in the case of linear momentum, the con-
straint equation

Avnear = |:va vanb vaq vawT vavT ] (71)
while for the angular momentum is given as

A My, Maq Mg, MQMJ (72)

_ T
angular |:M Vb

5. Nonholonomy Criterion with Non-Zero
Initial Conditions (Drifted Systems)

Establishing criteria that determine whether a mechanical
system is holonomic or nonholonomic is so crucial. In
case of a mechanical system with linear kenimatic-like
constraints, a necessary and sufficient condition is
needed.

Using Lie algebra and bilinear covariants is cumber-
some and time consuming in the case of complicated
systems. In [11,12], another alternative sufficient and
necessary condition is discussed by proposing a linear
transformation to verify the integrability of holonomic
systems. But in the latter approach, it is not clear how to
construct the augmented matrix which is necessary to
build the transformation matrix.

In this work, a transformation matrix is proposed to
construct a linear transformation by using the concept of
orthogonal projection techniques. This matrix is suffi-
cient and necessary to verify the integrability of holo-
nomic and nonholonomic system. Let us first define a
system subjected to linear kinematic (or kienmatic-like)
constraints given in the form

Ad=c (73)
where the constraint matrix A€ R™" represents linear
or angular momentum constraint matrix, and the gener-
alized velocities #eR" as
9=[VbT o q a)I vﬂ, and the vector C repre-
sents the vector of momentum initial conditions.

The constraint (73) can be modified in away such that

the time displacement is considered a long with other
generalized variables as follows:

AdO = cdt (74)
or
A —cl| %Yo 75
[A =] 4 1= (75)
ICA



276 M. SHIBLI

Let A=[A —]eR™™" be defined as the modi-
fied constraint matrix and the displacement vector

do
dg = { it } € R"*' . In case of linear momentum is defin-

ed as
Al = I:va MVbe vaq vawr vavT _C:| (76)
while in case of the angular momentum is given as
[T
A _[vagb MQb Mqu Mwar MQb"T _C:| (77

In case of a free-flying space robot or losing contact
with the target, the constraint matrix is, then, reduced to

A1:|:va MVbe vaq
and Alz[MJbe

—C] for linear momentum,
Mo, Mg, —C] for angular mo-

mentum where all terms related to the target satellite is
set to zero (see [4,9,22] for more details).

From linear algebra point of view, Equation (73)
represents a system of m linear equations with d¢
being the vector of unknowns. Since the number of equa-
tions is less than that of unknowns, it has infinitely many
solutions given by

dg="P,dz (78)

for an arbitrary z (g) function of the parameter ¢ and
the orthogonal projector P, isan (N+1)x(N+1-m)
dimensional full rank matrix whose column space is in
the null space of , i.e.,

AP =0 (79)

For a system to be holonomic, a complete integrability
of all m equations has to be fulfilled. But it might not
be possible to find out whether a system of linear con-
straints is integrable because of unavailability of inte-
grablity techniques or time consuming.

Geometrically, the constraint (73) mean that a point of
an (N +1) -dimensional space R(6,,6,,:-,6y.6y.,)
cannot be displaced arbitrarily, but it must move a long a
curve that touches at each of its points a hyperplane
LN of dimension N+1-m , which contains all
displacement vectors d6,,d6,,---,d6,,, satisfying the
constraint Equation (73) , where 6., represents the
variable time t. A system of Pfaffian equations is com-
pletely integrable if all admissible curves emanating
from any point in the space lie on a surface of dimension
N +1-m passing through that point. However, if the
system is not integrable, any point in the configuration
space can be reached, although its possible displacement
is restricted.

To construct a linear transformation by using the con-
cept of orthogonal projection techniques, a linear trans-
formation matrix T is defined at each point of the
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space R(6,,6,,--,6y,6y.,) , which should maps all
vectors lying in T"*'"™™ to zero and maps all vectors
orthogonal to the hypersurface L"*'™™ onto themselves.

For this purpose, the transformation T is decom-
posed in such a way that,
T=YA (80)

where the matrix Y e R™™ of full rank and will be
determined later. To obtain such a transformation, it is
required that the m rows A are mapped by the trans-
formation T onto themselves as

YAA =TA = A (81)
The condition (81) admits a unique solution of Y
and its elements should not vanish for a system to be
holonomic. To find the elements of the matrix Y, we
augment the matrix A into a square matrix
Ae RM M) in such a way that its determinant does
not vanish. The elements y; of Y are the elements of
first m rows and first m columns of the inverse aug-
mented matrix.

From the theory of linear algebra, the constrained sys-
tem defined in (73) is equivalent to the following uncon-
strained but larger linear system [23,24]:

A 0
el

where the augmented matrix A defined as
A{Ai (83)

and P, is defined in (78).

In order to obtain P, treating @ as the vector of
unknowns, (25) can be solved using the Moore-Penrose
inverse as

dg=(1-A"A)dv (84)

where | € RV i the identity matrix, the vector

dv is an arbitrary vector, and A" is the Moore-Pen-
rose inverse defined as

A =AT(AAT) (85)

Equation (84) is similar to (78), but not exactly the
same, as seen below.

Let D= (I - A1+A1) However, D in (84) is not yet
P, in (78) since they are of different dimensions. The
projector P, is (N +1)x(N+1-m), whereas D is
an (N+1)x(N+1) square matrix. P, is of full rank
but D is not. Notice that we used dz(g) in (78) in-
stead of dv(g) in (84). The rank of D is (N+3 - m).
All the columns of the matrix D are in the null space
of A, that is, AD=0. Then any N+1-m linearly
independent columns of D can be chosen to form P, .

ICA



M. SHIBLI

But it may create discontinuity in dv(¢) if different set
of linearly independent columns are chosen. To remedy
this problem, we compute the singular value decomposi-
tion of D to select the proper columns of P, such
that

D=UzV’ (86)

where U and V' are orthogonal matrices of size
(N+1)x(N+1), and the diagonal matrix X with non-
negative diagonal elements in a decreasing order as

Z:diag{Kl9’(29'"’KNJrl—m7()"”’()} (87)
Let u,,u,,---,Uy,; denote the column vectors of U

UN+1] (88)

Since AD = A(U EVT):0 and the matrix V' is
orthogonal, then, AUZX =0. Because the structure of X,
it follows that the first N +1—m columns of U arein
the null space of A, i.e.,

AU =0,i=12- N+l (89)

U=[u u,

Then the first N+1-m columns of U may be
chosen form the orthogonal projector P, as

PL = [ul u, uN+1—m] (90)
It is obvious that P, is of full rank because U is
orthogonal.

Back to he extended augmented matrix A defined in
(83). By finding its inverse, then the unique matrix Y
is composed of the elements of the first m rows and

first m columns of the inverse augmented matrix A

as:
i |ATA
= (91)
A {A{ A}
Y=A'eR™" (92)

By then, the transformation matrix T can be con-
structed as T = YA . By this end, a necessary and suffi-
cient condition is obtained to verify the integrability of
constrained system. If the transformation matrix Y is
not rank deficient, then the system is integrable. The
above can be summarized as follows.

Theorem 4: For a system subjected to linear kine-
matic (kinematic-like) constraint with nonzero initial
conditions (momentum with a drift) defined in (73),
these constraints are said to be holonomic constraint if
we can construct a linear transformation matrix T that
maps all vectors lying in T"*"'™ to zero and maps all
vectors orthogonal to the hypersurface L™ onto
themselves.

Copyright © 2011 SciRes.
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6. Simulation Results
6.1. Part 1 (Conservation of Momentum)

A 6 DOF free-flying space robot is tested to verify its
nonholonomic and holonomic behavior. The base satel-
lite mass is assumed as 300 kg, and eack of the 6 link
mass is taken as 10 kg. Simulation is run to plot the sys-
tem momentum response assuming zeros external forces
and zero initial conditions. The Figures 3 and 4 show
that linear and angular momentum of a free-flying space
robot is conserved and kept zero (range of 10e - 8). These
results comply with the concept that for a free-flying
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Figure 3. Angular momentum of a free-flying space robot.
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Figure 4. Linear momentum of a free-flying space robot.
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space robot its momentum is conserved in the absence of
any external forces. On the other hand, Figures 5 and 6
show respectively non-conservation of linear and angular
momentum of a free-flying space robot subjected to an
external force.

Another simulation is also implemented to check the
conservation of momentum of a free-flying space robot
interacting with a target satellite as a combined system
with nonzero initial linear velocity. The target satellite
mass is assumed 1500 kg. Figures 7 and 8 show that
linear and angular momentum of a free-flying space to-
gether with its target is conserved and but since the ini-
tial conditions are assumed 10 m/sec the momentum is
hold at values different than zero. Figures 9 and 10 show
non-conservation of momentum in case the target satel-
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Q
o
2 0.6/ _
g
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= L i
z 02
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Figure 5. Angular momentum of a free-floating space robot
in contact with a target satellite.
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Figure 6. Angular momentum of a free-flying space robot
subjected to an external force.
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Figure 7. Linear momentum of a free-flying space robot
subjected to an external force.
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Figure 8. Linear momentum of a free-floating space robot in
contact with a target satellite.

lite is changing and chosen for simulation as 1—cost in
the x-direction and this agrees with condition (58).
Meanwhile, Figures 11 and 12 demonstrates the case
when the end-effector moves in a direction not parallel to
that of the target chosen 20 m/esc in x and y-direction
and 20 m/sec for the base satellite in x-direction only and
because it violates condition (60).

6.2. Part 2 (Holonomy Matrix)

A 6 DOF free-flying space robot is tested to verify its
nonholonomic and holonomic behavior with zero initial
linear velocity. The mass of the base satellite is assumed
as 300 kg, and the mass of each of the 6 links is taken as
10 kg. The simulation results shows that and by using
this algorithm the rank of the transformation matrix T
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Figure 9. Angular momentum of a free-floating space robot
in contact with a target satellite (violation of condition (58)).
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Figure 10. Linear momentum of a free-floating space robot
in contact with a target satellite (violation of condition (58)).

is full (rank = 3) in the case of linear momentum while in
the case of angular momentum the rank of the transfor-
mation matrix T is not full rank (rank = 2) as shown in
Table 1. These results comply with the theoretical and
physical results. Another simulation was run assuming
external forces exposed to the space robot hand. It shows
that the transformation matrix T is of full rank (rank =
3) in both cases of linear and angular momentum.

A 6 DOF free-flying space robot is tested to verify its
nonholonomic and holonomic behavior with zero initial
linear velocity. The mass of the base satellite is assumed
as 300 kg, and the mass of each of the 6 links is taken as
10 kg. The initial momentum conditions are assumed as
[10 0 0] for both linear and angular monetum. The simu-
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Figure 11. Angular momentum of a free-floating space robot
in contact with a target satellite (violation of condition (60)).
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Figure 12. Linear momentum of a free-floating space robot
in contact with a target satellite (violation of condition (60)).

lation results shows that and by using this algorithm the
rank of the transformation matrix Y is full (rank = 3) in
the case of linear momentum while in the case of angular
momentum the rank of the transformation matrix Y is not
full rank (rank = 2) (see Table 2). These results comply
with the theoretical and physical results. Another simula-
tion was run assuming external forces exposed to the
space robot end-effector. It shows that the transformation
matrix Y is of full rank (rank = 3) in both cases of linear
and angular momentum.

This approach is also implemented to check the
holonomy of a space robot interacting with a target satel-
lite as a combined system with nonzero initial linear ve-
locity 20 m/sec for both the base satellite and the target
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Table 1. Rank of the transformation matrix Y (sample).

Case Y matrix Rank
A“g“lil‘;‘fg‘i’f}f‘ﬁ gtirf;:fﬂfégsg space [0.0000 0.0000 0.0000 0.0000 0.0011 0.0005 0.0000 —0.0025 —0.0011] 2
A“g‘:Lfof‘fvri?ﬁ“etft‘;‘n‘l’:lafgrr‘z‘;ﬂ(ylgliipace [~0.0001 0.0008 0.0003 —0.0002 0.0027 0.0012 0.0004 —0.0062 —0.0026] 3

Linear mom;‘i’tt}‘l";‘o";‘;ﬁr;; ff]gr‘:e’i space robot [0.0018 0.000 0.0000 0.000 0.0018 0.0000 0.000 0.0000 0.0018] 3
Linear m‘i"::f}‘:g‘;rt‘;r‘ﬁ ff(r)ice:;?l%gljﬁ’ace robot [0.0018 0.0000 0.0000 0.0000 0.0018 0.0000 0.0000 0.0000 0.0018] 3
A'r‘f]‘)‘(lirlI‘:t‘:r‘:j;‘;‘;”\;‘l’&a:::fgiys‘;‘tge lslﬁ‘;ce 1.0e—004* [0.0002 0.0002 0.0000 —0.0002 —0.0002 0.0000 0.3262 0.3268 0.0000] 2
linear momentum of'a free-flying space robot 35 102350 0.1770 ~0.0032 0.1770 0.1407 —0.0023 —0.0032 —0.0023 0.0049] 3
interacting with a target satellite
Table 2. Rank of the nonholonomy matrix Y (sample).

Case Y matrix Rank
Anguli‘;&‘fx?ﬁn{: gitaeéiszﬂry;‘;sg space [0.0000 —0.0010 —0.0004 0.0000 0.0026 0.0014 0.0000 —0.0060 —0.0026] 2
A“?ﬁ)‘g{)g“;ﬁfgﬁ;ﬂ‘;{ ‘;Ofrr::f(lly(‘;(‘)gl\%’ace 1.0e—005* [0.0961 0.3956 —0.4895 —0.5410 0.0128 0.4714 0.5565 —0.3819 —0.1089] 3

Linear momentum of a free-flying space robot
e [0.0060 0.0000 —0.0000 0.0000 0.0062 —0.0000—0.0000 —0.0000 0.0061] 3
Lincar m&*ﬁﬁ“;igrﬁilafg:c‘zf(yfgg Is\gace robot [0.0022 0.0017 0.0016 0.0017 0.0033 0.0018 0.0016 0.0018 0.0025] 3
A‘rlfg‘(lfir‘::;’::fg;‘g‘;‘i’tfhaaftr:fg'gtys‘;ge lslﬁice 1.0e—004* [—0.0000 —0.0000 0.0000 0.0001 0.0001 —0.0001 0.1094 0.1104 —0.0001] 2
linear momentum of a free-flying space robot [0.7471 0.5827 —0.0090 0.5827 0.4621 —0.0070 —0.0090 —0.0070 0.0052] 3

interacting with a target satellite

satellite. The simulation shows that the holonomy matrix
Y has full rank in case of the linear momentum, but it is
rank-deficient in case of angular momentum. Which
agrees with the theoretical approach considered in this
approach that both linear and angular momentum are
conserved but the linear momentum is holonomic and the

angular momentum is nonholonomic.

7. Conclusions

along the axis of rotation is hold constant as well.

For a system subjected to linear kinematic (kine-
matic-like) constraints, these constraint are said to be
holonomic constraint the rank of the proposed linear
transformation matrix is full, otherwise, it is said to be
nonholonomic. This approach is useful to verify the
non-violation of constraints in real-time application and
to switch controllers or correct the situation.
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Appendix A

Derivation of the Linear Velocity of a Target
Satellite

Referring to Figure 1, the position vector of the ith body
with respect to the inertial frame can be readily ex-
pressed as

=0 +hp (A1)

Moreover, the relative vector R, can be expressed
in the form

lip =0 —h (A2)

Now the purpose is to derive the equation of that de-
scribes the linear velocity of the target satellite. From the
principles of dynamics and because the target satellite is
linked to the base satellite space servicing robot by the
robot end-effector there is a relative linear and angular
motion between the target satellite and the space robot.

The position of the contact point on the target satellite
with respect to the base can be described based on (A1)
as follows

=1+ 6, (A3)

Then the velocity of the contact point is determined by
taking the time derivative of (A3), which yields

The first three terms in the first parenthesis represent
the components of velocity of the contact point as meas-
ured by an observer attached to the moving base coordi-
nate system. This term will be denoted by v, . The other
three terms in the second parenthesis represent the insta-
nenous time rate of change of the unit vector I,] and
k and measured in the inertial frame and given as:

i do .
(1)

—=Z(1) =01 A6
at dt b (A6)

d deo, - .

—=—(-1)=-Qy A7

dt  dt (-)=-2, (&7
Viewing the axes in three dimension, and noting that

Q, = QbkA , we can express the derivative (A6) and (A7)
in terms of the cross product as

di N

— ==, :i A8
m b (A3)
dj R

2 =0 : A9
at b-J (A9)

Substituting these results into (AS) and using the dis-
tributive property of the vector cross product, one obtains

dry,

- v +Q, :(xtf+ytj)=vl+§2:rl/b (A10)

dr,, Since the target satellite is linked with the space robot
V, =V, + di (A4) via the end-effector joint and using the Jacobian trans-
formation, hence equation (A4) becomes
The last term in (4) is evaluated as follows: )
Ve =V +Qyxr +J_q+a <t _ +v,  (All)
Do L (i yi)
dt dt ' A dix B
LT SRV I T | (A5) PReni
t
dt e dt " Linear and Angular Jacobian Matrices for a
(PR B di dJ 6-DOF Based Satellite Space Robot Interacting
- V)t %= y[ . .
dt dt dt with a Target Satellite
3, =[kx(r-c),0,0,0,0,0,0]
I =[kx(r, x(1,-¢,),0,0,0,0,0]
L= Lkex(r=c).ky x(1—¢, ).k x (1, —c,),0,0,0,0]
I, = [kl x(r =)k, x (1 =, ) ks x (1, = €5 )k, x(r, 04)’0’0’0]
I, =[kox(r=¢)).ky x (1, =) ky x (1 =6 ). Kk, x (1, = ¢, ), ks x (1 = ¢5),0,0]
J, :[k,x( C).ky x (1, =€, ) Ky x (1, =€, ).k, x (1, = ¢, ) ks x (1, = €5 ), kg x (1, =€, ),0]
[k x o x (1 =¢,) Ky x (1 =y ),k x (1, —c, ), ks x (1, —¢5 ), kg x (K, CG),ktx(rt—Ct)]
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3, =[k0,0,0,0,0,0] 3, =[kiky ks Ky ks, 0,0]
3, =[k,k;,0,0,0,0,0] 3o = [KioKy koK ks g, 0]
‘]Aq :[k19k2’k3’0’0’0’0] ‘]At :[kl’kZ’k33k4’k5’k6’kt]

3o =[Kisks ks k,,0,0,0]
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