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Abstract 
DNA microarray technology is an extremely effective technique for studying 
gene expression patterns in cells, and the main challenge currently faced by 
this technology is how to analyze the large amount of gene expression data 
generated. To address this, this paper employs a mixed-effects model to ana-
lyze gene expression data. In terms of data selection, 1176 genes from the white 
mouse gene expression dataset under two experimental conditions were cho-
sen, setting up two conditions: pneumococcal infection and no infection, and 
constructing a mixed-effects model. After preprocessing the gene chip infor-
mation, the data were imported into the model, preliminary results were cal-
culated, and permutation tests were performed to biologically validate the pre-
liminary results using GSEA. The final dataset consists of 20 groups of gene 
expression data from pneumococcal infection, which categorizes functionally 
related genes based on the similarity of their expression profiles, facilitating 
the study of genes with unknown functions. 
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1. Introduction 

Gene expression data analysis, as an indispensable component of modern biolog-
ical research, plays a pivotal role in unraveling the mysteries of life and driving 
medical advancements. This field of research delves deeply into the interior of 
cells, aiming to gain insights into regulatory mechanisms and functional charac-
teristics of life by examining gene expression patterns under diverse conditions, 
such as disease states, environmental shifts, or drug treatments. Thanks to the 
rapid evolution of high-throughput sequencing technologies, including RNA-Seq 
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and single-cell sequencing, we can now obtain gene expression data with unprec-
edented depth and scope. However, the characteristics of these data—high dimen-
sionality (thousands of genes), small sample sizes (constrained by experimental 
conditions and costs), and intricate association networks (interactions among 
genes, between genes and the environment)—pose unprecedented challenges for 
analysis [1].  

Confronted with these challenges, statisticians and biologists are continually 
exploring novel analytical methodologies and tools to extract valuable information 
from vast datasets. Among them, the Mixed Effects Model has emerged as a ver-
satile and potent statistical framework in gene expression data analysis, demon-
strating its unique strengths and extensive application potential. 

The essence of the mixed effects model resides in its capacity to consider both 
fixed effects and random effects simultaneously, thus capturing the sources of var-
iation in the data more comprehensively. In the context of gene expression data 
analysis, fixed effects may embody known biological factors, such as gene func-
tional categories, regulatory pathways, or specific experimental conditions. Ran-
dom effects, on the other hand, might encompass genetic variations among indi-
viduals, experimental errors, or unknown environmental factors. By amalgamat-
ing these two effects within a single model, the mixed effects model can more pre-
cisely estimate gene expression levels and unveil underlying biological principles 
[2]. 

At the methodological level, gene expression data analysis utilizing mixed ef-
fects models encompasses a spectrum of approaches, ranging from linear models 
to nonlinear models, and from straightforward to intricate methodologies. The 
linear mixed effects model stands as one of the most fundamental and widely em-
ployed methods, presuming a linear relationship between gene expression levels 
and both fixed and random effects, with model parameters estimated through op-
timization algorithms like least squares. With the progression of machine learning 
technology, nonlinear mixed effects models have gradually been incorporated into 
gene expression data analysis, such as models grounded in neural networks, sup-
port vector machines, and other algorithms, which can more flexibly capture the 
nonlinear trends in gene expression levels [3]. 

At the application level, gene expression data analysis leveraging mixed effects 
models has found widespread use in various domains, including the identification 
of differentially expressed genes, the construction of gene regulatory networks, 
disease classification, and prognosis prediction. For instance, in screening for dif-
ferentially expressed genes, the mixed effects model can simultaneously account 
for the impacts of multiple experimental conditions and individual differences on 
gene expression levels, thereby more accurately selecting genes with significant 
alterations in expression under diverse conditions [4] [5]. In constructing gene 
regulatory networks, mixed effects models can reveal interactions between genes 
and provide crucial clues for understanding the regulatory mechanisms of biolog-
ical processes. In disease classification and prognosis prediction, mixed effects 
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models can harness information from gene expression data to enhance the accu-
racy and robustness of classification and prediction [6]. 

In conclusion, gene expression data analysis based on mixed effects models has 
emerged as a vital tool in modern biological research. It not only aids in gaining a 
deeper comprehension of life’s regulatory mechanisms but also offers fresh per-
spectives and methodologies for disease diagnosis and treatment. With the ongo-
ing advancement of technology and the continuous refinement of methods, it is 
conceivable that mixed effects models will play an even more pivotal role in the 
realm of gene expression data analysis [7]. 

2. Literature Review 

A mixed effects model is a statistical model, either linear or nonlinear, that incor-
porates both fixed effects and random effects. In the analysis of gene expression 
data, mixed effects models can simultaneously account for fixed relationships 
among genes (such as gene function, regulatory networks, etc.) and random vari-
ations (like experimental errors, individual differences, etc.), thereby providing a 
more accurate depiction of changes in gene expression levels. Fixed effects typi-
cally pertain to factors that deterministically influence gene expression levels, such 
as gene sequences and mutation sites. Conversely, random effects pertain to fac-
tors that stochastically impact gene expression levels, such as experimental condi-
tions and individual differences among samples. By introducing random effects, 
the mixed effects model can better capture data heterogeneity, enhancing the 
model’s prediction accuracy and generalization capability [8] [9]. 

Currently, gene expression data can be analyzed at least at three progressively 
complex levels: firstly, analyzing the expression level of individual genes, focusing 
on whether the expression of each gene differs from the control under specific 
experimental conditions; secondly, categorizing genes into different classes and 
examining their shared functions, interactions, and collaborative regulation; and 
thirdly, attempting to infer potential regulatory regions and gene networks to elu-
cidate observed patterns at the mechanistic level. Presently, research on gene ex-
pression data predominantly focuses on the second level, while the third level rep-
resents a more advanced research objective [10]. 

Various models have been employed in the analysis of gene expression data, 
including cluster analysis, multivariate statistics, pattern recognition, and neural 
networks. Genes with functional relevance are often co-expressed, and detecting 
gene clusters with similar expression profiles is an effective approach for studying 
gene function. Consequently, gene chip technology, which can simultaneously ob-
tain numerous gene expression profiles, has been extensively utilized in biomedi-
cal fields such as disease diagnosis, genome sequencing, mutation and polymor-
phism detection, drug screening and development, novel gene discovery, and 
pathogen diagnosis. Mining the biological information contained within vast 
amounts of gene expression data is currently a focal topic in the field of biostatis-
tics [11]. 
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Gene Set Enrichment Analysis (GSEA) is a widely adopted method for analyz-
ing gene expression data based on prior pathways. GSEA examines a group of 
genes with similar biological effects as a collective entity and has demonstrated 
superiority over single gene analysis in terms of stability, sensitivity, and biological 
relevance. The mixed effects model was developed by R.A. Fisher. Over the past 
two decades, this mixed effects model has garnered increasing attention from stat-
isticians. In 2001, the mixed effects model was applied to analyze single gene ex-
pression data from lymphoma and yeast cells, yielding more accurate results than 
traditional methods. In 2003, we reanalyzed gene expression data from primates 
using a mixed effects model and identified novel differentially expressed genes 
across species. In 2008, we utilized the mixed effects model to reanalyze a previ-
ously analyzed gene expression dataset related to diabetes, revealing that the mixed 
effects model possessed superior testing ability compared to GSEA. In 2009, the 
mixed effects model was applied to the analysis of time-series gene expression 
data, demonstrating its advantages over other methods in terms of testing power, 
reduction of type I errors, and reliability. In 2013, the mixed effects model was 
employed in the study of heart disease-related genes, not only identifying known 
heart disease-related genes but also uncovering additional information. In con-
trast, there are no literature reports in China that analyze gene expression data 
using mixed effects models. Therefore, analyzing gene expression data based on 
mixed effects models is highly suitable for this study. As biology increasingly be-
comes a quantifiable discipline, future methods for analyzing gene expression data 
are poised to witness significant advancements. 

3. Experimental Methods 
3.1. Raw Data and Model Construction 

1) Original experimental data 
Pneumococcal infection is a very common pediatric disease to understand the 

pathogenesis of this disease identify the genes that cause pneumococcal infection 
and study their role in the disease is important research. The radiolabeled DNA 
microarray technology was applied to 1176 genes in mice infected with pneumo-
coccal infection. The data contained 8 DNA microarray experimental samples 2 
samples were obtained under experimental conditions without pneumococcal in-
fection while the other 6 were obtained under conditions with infection. There 
were 90 genes whose expression levels changed significantly under the two exper-
imental conditions among which 12 genes have been medically proven to be path-
ogenic (see Table 1). 

2) Establish a mixed effect model 
Our goal is to identify genes whose average expression levels change under the 

two experimental conditions, the basic idea is to first assume that the average 
expression levels of all genes do not change under the two experimental condi-
tions, then test this assumption based on experimental data, it is clear that this 
can be reduced to a classic hypothesis testing problem. The mixed effects model  
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Table 1. Gene analysis list. 

GenBank 
Accession No. 

Gene/Protein Name Function 

M63122 
Tumor necrosis factor 

receptor 1 
Inflammatory reaction 

X91810 
Stat3, signal transducer and activator of 

transcription 3 
Acute phase response factor 

Z17223 Gax, growth-arrest-specific protein 
Transcription factor, growth 

arrest 

D10864 Id3, DNA-binding protein inhibitor Cell cycle progression, growth 

X74806 Von ebners gland protein Middle ear gland protein 

D30041 
rac-beta serine/threonine kinase (rac-

PK-beta); AKT2 
Mitogenic signaling 

D30040 
rac-beta serine/threonine kinase  
(rac-PK-beta); protein kinase B 

Mitogenic signaling 

M86389 Heat shock 27-kDa protein (HSP27) Celluar protection 

Z27118 Heat shock 70-kDa protein (HSP70) Celluar protection 

D17695 water channel aquaporin 3 (AQP 3) Water transportation 

M63837 
Platelet-derived growth factor alpha 

receptor (PDGFRa) 
Proliferation 

U03491 
transforming growth factor beta 3 

(TGF-beta3) 
Anti-proliferation 

 
of gene expression data may seem like a sample comparison problem in classical 
statistics, but microarray data have their own particularities, we can make the fol-
lowing assumption: for each gene i,i = 1, 2, ..., N, we have m samples of gene ex-
pression levels X obtained under the first experimental condition 1......Xm, and 
the expression levels of n samples obtained under the second experimental condi-
tion Y1......Y From the experimental data it can be seen that the number of genes 
N is very large (>1000) while the sample sizes m and n for microarray data are 
very small (typically <30). Therefore, traditional statistical tests such as t-tests and 
rank-based hypothesis tests are not applicable in this context. However, we can 
use gene expression levels X1......Xm and Y1......Y The test statistic Z is constructed 
as follows 1. In this way, the large number of genes N can be fully utilized. As 
shown in Figure 1, the mixed effect model analysis process is shown [12]. 

3.2. Genetic Data Processing and Basic Tasks 

1) Information preprocessing of gene chips 
To implement information mining on high-density gene chips, it is first neces-

sary to read the chip data into a computer and form special format computer data 
files. This stage mainly involves using image processing techniques to read infor-
mation from the chip based on the characteristics of the gene chip. This phase of 
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work can be referred to as pre-processing of gene chip information. The quality of 
pre-processing directly affects subsequent information mining. Therefore, re-
searchers place great emphasis on pre-processing, designing various effective pre-
processing methods tailored to the characteristics of high-density chips. The main 
task at this stage is to use specialized scanners to scan the gene chip, generating 
computer image files, determining hybridization site ranges (Segmentation) 
through grid division (Gridding), and obtaining the base sequence through steps 
such as signal intensity extraction [13]. 

a) The overlap of samples may affect the adjacent samples (Figure 2) due to the  
 

 
Figure 1. Analysis process of mixed effects model. 

 

 
Figure 2. Overlap of sample points. 
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overlap of high intensity samples; 
b) Due to the different types of experiments, different sample shapes may be 

produced (Figure 3); 
c) Noise interference caused by contamination during the experimental pro-

cess. In order to effectively solve the above main problems, information prepro-
cessing is required for gene chips. Information preprocessing generally includes 
the following four steps. 

 

 
Figure 3. Different shapes of sample points. 

 
a) Grid Division. To understand the number of samples in each row and col-

umn of the microarray image input into the computer, as well as the distance be-
tween adjacent samples, it is necessary to know the distances between samples. 
However, due to different chip designs and experimental conditions, it is impos-
sible to have exact data. Therefore, the image needs to be divided into grids to 
understand this information [14]. 

b) Determination of sample point range. Identify the sample point area from 
the grid, each sample point is approximately circular due to the way the robot 
places cDNA on the slide and the method used to process the slide. Currently, 
there are many methods for fixed shape that can be used to segment microarray 
images, such as the fixed perimeter method and variable perimeter method. The 
better method is the variable shape segmentation method, mainly including 
Mann-Whitney test and SRG method. 

c) Signal Strength Extraction. This step includes background intensity estima-
tion saturation compensation and extraction of signal strength values. Due to the 
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issues of saturation and overlapping interference at high-value sample points it is 
not possible to simply use the intensity value of the current sample point as the 
signal strength. An accurate sample point theoretical model needs to be estab-
lished and on this basis saturation compensation and interference correction 
should be performed to achieve precise signal strength extraction. 

d) Standardization Processing. Due to the differences in samples, the imbalance 
in fluorescence labeling efficiency and detection rate, it is necessary to balance and 
correct the original extracted signals before further analysis of experimental data. 
The standardization processing (Normalization) mentioned above is precisely 
carried out for this purpose [15]. 

2) EM algorithm for hybrid models 
For a given dataset D = {x(1) ..., x(n)}, when the potential model is a mixture 

model, there is usually no closed-form technique to directly maximize the likeli-
hood score function. Listing the log-likelihoods of the mixture model makes this 
point clear: we get a sum of terms in a log form, which is a nonlinear optimization 
problem (not having a closed-form solution like in multivariate mixture models. 
The EM algorithm often increases the likelihood significantly in the initial few 
iterations and then converges slowly to the final value. However, the likelihood 
function is not necessarily concave with respect to the number of iterations. For 
many datasets and models, we can often obtain acceptable solutions with only 5 
to 20 iterations. Of course, each solution provided by the EM algorithm is a func-
tion of the search starting point (since EM is a local search algorithm), so it is a 
good idea to restart the algorithm multiple times from a randomly selected start-
ing point to avoid getting a poor local maximum. Note that whether K or P (or 
both) increases, the numerical value of the likelihood local maximum will increase 
significantly with changes in the dimension of the parameter space. When using 
maximum likelihood methods to estimate mixture distributions, some special 
cases need attention. For example, in a Gaussian Mixture Model, if the mean of a 
component equals a sample point and its standard deviation tends towards zero, 
the likelihood will increase infinitely. However, in this case, the maximum likeli-
hood solution is likely to be finite. There are many methods to address this issue. 
The maximum finite value of the likelihood can be chosen to provide the esti-
mated parameter value. Additionally, if the standard deviation is restricted to be 
equal, this problem does not occur. A more general approach is to use Bayesian 
methods to handle this issue, taking a prior distribution over parameters and no 
longer maximizing the likelihood but maximizing the MAP score function. This 
prior provides a framework that keeps the score function (MAP score function) 
away from problematic regions in the parameter space. Note that it is easy to ex-
tend the EM algorithm from maximizing the likelihood to maximizing the MAP 
(for example, replacing step M with step MAP, and so on). Another possible issue 
arises due to the lack of identifiability in the mixture distribution. A family of 
mixture distributions is said to be identifiable if and only if two members of the 
family are equal, meaning c = c, and for all k there exists some j. If a family of 

https://doi.org/10.4236/jcc.2025.132014


Y. B. Dai 
 

 

DOI: 10.4236/jcc.2025.132014 231 Journal of Computer and Communications 
 

distributions is unidentifiable, it cannot distinguish between its two different 
members, leading to estimation problems. 

4. Experimental Results and Discussion 
4.1. Conventional Results 

We varied the number of Gaussian components in the model from 1 to 5 and 
performed model matching, listing the results of the model matching in Table 2. 
Using BIC as the selection criterion, we chose 8 = 2, meaning the Gaussian mix-
ture model has 2 Gaussian components. Table 3 lists some of the model parame-
ters when g = 2, with the model matching results being: 

 
Table 2. Gaussian mixture model matching results. 

G Lob Like AIC BIC 

1 1559.07 3122.15 3132.29 

2 I-1253.98 2517.96 2543.31 

3 I-1244.19 2504.37 2544.93 

4 I-1239.70 2501.40 2557.17 

5 I-1238.79 2505.59 2576.56 

 
Table 3. Model parameters. 

Number assigned to each component 79 1097 

Estimate of mixing proportion for each component 0.107 0.893 

Estimates of correct allocation rates for each component 0.560 0.992 

Estimate of overall correct allocation rate  0.946 

Estimated mean (asa row vector) for each component −0.64832 0.07121 

Estimated covariance matrix for component 1  5.09636 

Estimated covariance matrix for component 2  0.263301 

Criteria for this Clustering are AIC BIC 2517.96 2543.31 

 
1097 genes fall into the first Gaussian component with an almost zero mean, in-
dicating that for the vast majority of genes, their expression levels change little or 
not at all. Additionally, 79 genes fall into the Gaussian component with a mean of 
-0.64832, suggesting that these genes have undergone more significant changes in 
expression levels (experimental data has been standardized). The results show that 
the mixed effects model and gene set enrichment analysis (GSEA) methods jointly 
identified 12 differentially expressed pathways. Furthermore, 8 differentially ex-
pressed pathways were identified by the mixed effects model alone. Among these 
10 differentially expressed pathways, the Wnt signaling pathway (Wnt signaling 
pathway) plays a crucial role in pneumococcal cell self-renewal, which has been 
confirmed in final pneumococcal infection data. The Hedgehog signaling pathway 
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(Hedgehog signaling pathway) is important in maintaining pneumococcal char-
acteristics. During the expression process of pneumococcal infection, it reduces 
the self-renewal capability of pneumococci by interfering with the Hedgehog sig-
naling pathway. Therefore, the mixed effects model has precise and high sensitiv-
ity in detecting expression processes, making it more effective in analyzing differ-
entially expressed pathways compared to directly using GSEA. 

4.2. Replacement Test 

The hypothesis tests listed earlier are based on the assumption of drawing random 
samples from a certain distribution and the goal of the tests is to make a probabil-
istic statement about the parameters of the distribution. The ultimate goal is to 
draw inferences about the potential values of the underlying population based on 
the sample. Tests based on this principle are called permutation tests or random-
ization tests. Note that the above process does not provide any statistical inference 
from the sample to the entire population, but it does allow us to make conditional 
probability conclusions about treatment effects, with the condition being the ob-
served data. Here is a simple example illustrating a permutation test: there are two 
sets of numbers: 

 
Group1: 55 58 60 

Group2: 12 22 34 

 
In this example, the null hypothesis is that there is no difference between the 

two groups, and in the original data, the sum of Group1 is 173. In this case, if the 
null hypothesis is true, then no matter how the data are randomly assigned, the 
adjusted sum of Group1 will either be greater than or less than the original sum 
of Group1, but will not result in a significant skewness: the adjusted sum of 
Group1 will almost always be greater than or less than the original sum of Group1. 
If we regroup the data, we can derive 20 combinations and calculate the sum of 
Group1 for these 20 combinations: 

 
Order Group 1 Group 2 Sum 

1 55 58 60 12 22 34 173 

2 55 58 12 60 22 34 125 

3 55 58 22 12 60 34 135 

4 55 58 34 12 22 34 148 

5 55 12 60 58 22 34 127 

6 55 22 60 12 58 34 137 

7 55 34 60 12 22 58 149 

8 12 58 60 55 22 34 130 

9 22 58 60 12 55 34 140 
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Continued 

10 34 58 60 12 22 55 152 

11 12 22 60 55 58 34 94 

12 12 58 22 55 60 34 92 

13 55 12 22 12 55 58 89 

14 12 34 60 12 58 34 106 

15 12 58 34 55 22 60 104 

16 55 12 34 55 58 60 101 

17 22 34 60 55 58 34 116 

18 22 58 34 55 22 60 114 

19 55 22 34 12 58 60 111 

20 12 22 34 55 58 60 68 

 
We can find that the sum of the remaining 19 combinations of Group1 is 

smaller than the sum of the original data Group1, which is the very skewed situa-
tion we mentioned earlier, so we reject the null hypothesis. 

The permutation test requires that the data under the null hypothesis satisfy 
exchangeability. Specifically, in this article, the null hypothesis is that the gene 
expression levels have not changed significantly, allowing for the arbitrary per-
mutation of the order of 8 DNA microarray experimental samples. If the gene data 
truly satisfies the null hypothesis, the test statistic Z calculated from the permuted 
data should be relatively evenly distributed on both sides of the test statistic de-
rived from the original data (with roughly equal numbers of cases where it is 
greater or less than the original statistic), and will not exhibit significant skewness 
(almost all cases will be either much larger or much smaller than the original sta-
tistic). The purpose of using the permutation test here is to identify genes whose 
permutation data cause extreme skewness in the distribution of the test statistic 
Z, indicating that these genes expression levels may have changed significantly. 

Here we define “extreme skewness” by arbitrarily swapping 8 samples under 
two experimental conditions to obtain 28 combinations of C² = 28, thus allowing 
us to calculate 28 test statistics Z. Observing the 28 Zs corresponding to each gene, 
if we define “extreme skewness” more broadly, it can significantly increase the 
false-negative rate (even to 100%), but it will greatly reduce the true-positive rate. 
We need to strike a balance between the two. We define: if only two of the 20 Zs 
are less than or equal to the Z calculated from the original data (and Z is greater 
than a selected threshold), then this gene is considered to be the one causing ex-
treme skewness in the distribution of test statistics Z. 

In this way, we can add genes that do not meet the data interchangeability under 
the null hypothesis (i.e., no significant change in gene expression levels) to the 
initial experimental results, which is the first step of improvement. By processing 
this way, we further strengthen the experimental results by adding the results of 
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permutation tests to the previously single mixed model estimates, which clearly 
improves the recall rate. Of course, this sacrifices some accuracy (which should be 
higher), but ultimately yields more comprehensive experimental results. From the 
final experimental results, although the accuracy rate has not increased signifi-
cantly, the recall rate has markedly improved. 

The mixed effects model was used to analyze the same pneumococcal gene chip 
data Group 1 and Group 2 to observe the degree of expression pathways that con-
form to real biological effects. Among the 20 differentially expressed pathways 
detected by both the mixed effects model and GSEA, 19 of the differentially ex-
pressed signaling pathways in the mixed effects model have been proven to have 
a clear biological relationship with pneumococcus, while only 1 has been proven 
in GSEA. Therefore, using the mixed effects model to test for the biological vali-
dation of differentially expressed pathways is truly effective. 

5. Conclusions 

Based on an in-depth study of gene clustering processing methods, we propose a 
gene expression data method based on mixed-effect models and apply it to the 
gene expression data of 1176 genes in mice under two experimental conditions: 
with and without pneumococcal infection, achieving good results. This paper pre-
sents the following innovative viewpoints: 

1) The gene expression data method based on mixed effects model is applied to 
the gene expression problem, which has its own advantages over other classical 
analysis methods: it can determine the number of categories, clearly define each 
category with a specific distribution (here it is Gaussian distribution), etc. 

2) Gene expression data methods based on mixed-effect models, although in-
tuitive and simple, are not without their limitations: the recall and precision rates 
are not very high; although they provide posterior probabilities as quantitative 
criteria for gene classification, these criteria are somewhat subjective and can lead 
to misclassification; the method is overly simplistic, resulting in somewhat rough 
classification outcomes. In this paper, we introduce permutation testing to im-
prove this method, significantly enhancing both recall and precision rates, achiev-
ing excellent results. 
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