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Abstract 
This work deals with determining the optimum thickness of the lamella wafer 
of silicon solar cell. The (p) base region makes up the bulk of the thickness of 
the wafer. This thickness has always been a factor limiting the performance of 
the solar cell, as it produces the maximum amount of electrical charges, con-
tributing to the photocurrent. Determining the thickness of the wafer cannot 
be only mechanical. It takes into account the internal physical mechanisms of 
generation-diffusion-recombination of excess minority carriers. They are also 
influenced by external factors such as temperature and magnetic field. Under 
these conditions, magneto transport equation is required to be applied on 
excess minority carrier in lamella base silicon solar cell. It yields maximum 
diffusion coefficient which result on Lorentz law and Umklapp process. Then 
from photocurrent, back surface recombination velocity expressions are de-
rived, both maximum diffusion coefficient and thickness dependent. The plot 
of the back surface recombination calibration curves as function of lamella 
width, leads to its maximum values, trough intercept points. Lamella opti-
mum width is then obtained, both temperature and magnetic field dependent 
and expressed in relationships to show the required base thickness in the ela-
boration process. 
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1. Introduction 

The manufacturing architecture silicon solar cells evolves to improve photovol-
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taic conversion efficiency, at lower cost [1] [2] [3] [4]. 
Many architectures have been achieved, such as, monofacial solar cells (front 

or rear illumination), bifacial (simultaneous illumination both sides), vertical 
junction (series or parallel), in order to absorb maximum incident flow and gen-
erate excess minority carriers allowing to be collected, before undergoing re-
combination (in the bulk or on surfaces) [5] [6]. 

Lifetime (τ) [7] [8] [9], diffusion coefficient (D) [10], diffusion length (L) [11] 
[12] [13] [14] [15] and surface recombination velocity [16] [17] [18] [19] [20], at 
junction (Sf) [21]-[26], on back (Sb) [27] [28] [29] [30], at grain boundaries (Sg) 
[31] are intrinsic parameters in development of silicon material and of solar cells 
manufacturing [32]. 

Quality control of manufacturing solar cell is done by measuring these para-
meters, under light optical excitation [33], or electric [34]. The solar cell can be 
placed under different regimes, i.e. static [35] [36], transient dynamics [37] [38] 
[39] [40] [41] or frequency [42] [43] [44]. The operating points can be short 
circuit or open circuit, or any other point of the illuminated (or dark) cur-
rent-voltage characteristic [45] [46]. 

However solar cell base thickness (H) is a geometric parameter to consider, 
compared to minority carriers diffusion length, to ensure a high probability col-
lection of photocreated carriers [47] [48] [49] [50] [51]. 

The vertical multi-junction silicon solar cells (VMJ) [52] [53] [54] [55], use 
materials having charge carriers with short diffusion length, but its architecture 
gives the advantage of excess minority carriers to be collected, without traveling 
great distances. Indeed the low thickness base can be combined with two emitter 
allowing the collection of minority carrier (PVMJ) [56] [57], or by existence a rear 
field (junction p/p+) who drives them back, thus reducing the distance to be cov-
ered (SVMJ) [58]. This rear field induces a recombination velocity minority charge 
carriers (Sb) that characterize the back surface of solar cell (BSF or ohmic contact) 
and then gives the rate of charge carrier loss [27] [28] [29] [30] [48] [49]. 

Our study is interested in the lamella thickness determination, through the 
new expression of recombination velocity at the back side. This allows extending 
the life of minority charge carriers in lamella and promotes the solar cell per-
formance, under the effect of both external magnetic field and temperature. 

2. Theory 

Figure 1 shows the structure of vertical multi-junction silicon solar cells con-
nected in series [52] [53] [58]. It is composed a succession of junctions (n+-p-p+) 
joined together with metallic (Al) contacts. Incidental illumination occurs paral-
lel to junctions i.e. space charge region plane (SCR) [59] [60]. The elaboration of 
junction (p-p+) produces the back field effect, that induces excess minority car-
riers back surface recombination velocity (Sb), that straugths back them towards 
the junction (SCR) and thus avoids their recombination [28].  

Figure 2 shows a section of vertical junction silicon solar cell unit, with the dif-
ferent regions (emitter, junction, base, rear field area). The axis (Ox), to origin 
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Figure 1. Vertical multi junction solar cells connected in series. 

 

 
Figure 2. Unit (n+-p-p+) cell under illumination and under the effect of 
an external magnetic field. 

 
from the junction (front side of the base). The base is a thickness H lamella, seat 
of rear electric field (p-p+). The Oz axis, gives the illumination sense and depth 
z, place of creation of monority charge carriers in solar cell. The magnetic field 
which plays a deflecting role (Lorentz law) on minority charge carriers,is per-
pendicular to the plane (O, x, z), i.e., along Oy axis. 

2.1. Magneto Transport Equation 

Excess minority carrier’s density δ(x), generated on the abscissa x and at depth z, 
in the base of solar cell in steady regime, undergo the law magneto-transport, 
presented through the following continuity equation [61]:  

( ) ( )
( )

( )
( )

2

2 *2 *

, , , , , ,
0

, ,
x z B T x z B T G z

x L B T D B T
δ δ∂
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Diffusion length ( )* ,L B T  minority carriers in the base of solar cell under 
magnetic field B at temperature T is: 

( ) ( )* *, ,L B T D B Tτ= ⋅                     (2) 

( )* ,D B T  The diffusion coefficient of minority carriers in the base under in-
fluence of temperature T and the magnetic field B applied is given by the rela-
tion [21] [62]: 
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( )( )
0*

2
,

1

D T
D B T

T Bµ
=
 + ×  

                 (3) 

https://doi.org/10.4236/jemaa.2020.124005


D. Faye et al. 
 

 
DOI: 10.4236/jemaa.2020.124005 46 Journal of Electromagnetic Analysis and Applications 
 

where D0(T) is the diffusion coefficient versus temperature T, in the solar cell 
without magnetic field. It is given by the Einstein-Smoluchowski [63] [64]: 

( ) ( )0
bk TD T T
q

µ
×

= ×                     (4) 

With µ(T) is the minority carriers mobility temperature dependent in the base 
and expresses as [38]: 

( ) 9 2.42 2 1 11.43 10 cm V sT Tµ − − −= × ⋅ ⋅                (5) 

q is the electron elementary charge. 
kb is Boltzmann’s constant given as: kb = 1.38 × 10−23 m2∙kg∙s−2∙K−1. 
The generation rate of minority charge carriers generated at depth z in the 

base is modeled and expressed by the following relation [65]: 

( ) ( )3
1 expi iiG z a b z
=

= −∑                    (6) 

The coefficients ai and bi are obtained from the tabulated values of the radia-
tion. 

2.2. Solution 

The solution of magneto transport equation is given by the following expression 
of the minority charge carrier density as: 

( ) ( ) ( )
( ) ( )

1 2* *

3
1

, , , cosh sinh
, ,

, expi ii

x xx z B T A A
L B T L B T

K B T b z

δ

=

   
= +      

   

+ ⋅ −∑
        (7) 

With 

( ) ( )
( )

*2

*

,
,

,
i

i

a L B T
K B T

D B T
×

=                      (8) 

2.3. Boundary Conditions 

The previous relationship is fully defined, by determining the coefficients A1 and 
A2, using base boundary conditions, what are junction (SCR) and back side: 

1) At the junction (n+/p), x = 0, it is given by [66]  

( )
( ) ( )* 0

0
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2) At back surface (p/p+), x = H, it is given by [28] [67]: 

( )
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∂
= −
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          (10) 

Sf is excess minority carrier junction recombination velocity. It has two com-
ponents, one defines the operating point, thus, it is imposed by the external load 
resistor, and the other is the intrinsic recombination velocity, which is related to 
the solar cell shunt resistance in electric equivalent model [66] [68]. 
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Sb is back surface recombination velocity (x = H), where there is an electric 
field (p/p+), allowing repel the minority charge carriers towards junction (n+/p) 
and avoid their back side recombination [28]. Thus the collection rate of minor-
ity carries participating in the photocurrent increases. 

3. Results and Discussions 
3.1. Photocurrent Density 

The excess minority carriers collected through junction give photocurrent den-
sity Jph obtained from the following Fick relation: 

( ) ( )
0

, , , , ,
, , , , ,ph

x

Sf H z B T Sb
J Sf H z B T Sb q D

x
δ

=

∂
= ⋅ ⋅

∂
       (11) 

3.2. Back Surface Recombination Velocity 

Solving Equation (12), leads to two expressions of excess minority carrierback 
surface recombination velocity in the base as, Sb1 and Sb2:  
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The maximum values of diffusion coefficient as a function of optimum tem-
perature for different values of magnetic field were determined by comparisons 
of two different methods according to relationship [69]: 

( ) ( ) 1.585
max 2.1 10 optD B T B

−
 = ×                    (15) 

Other authors, using the same approach, proposed in 3D study or in frequen-
cy modulation the following expressions: 
 Optimum temperature depending magnetic field [70] is given as: 

( )
29 24.85 2.56 1.43 10optT B B = ×                  (16) 

 Maximum diffusion coefficient as a function of cyclotronic frequency for 
different values magnetic field [71]  

( ) ( ) 2.0656
max , 1.717 10 ,optD B T Bω ω

−
 = ×                (17) 

These relationships show that the choice of values of parameters like the tem-
perature, the magnetic field and the frequency must obey certain conditions for 
obtaining solar cell good performance. 
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In Figure 3, we represent the profiles of two back surface recombination ve-
locity of excess minority carriers depending on thickness base solar cell for dif-
ferent diffusion coefficient maximum values as a function of optimum tempera-
ture and magnetic field.  

For each value of maximum diffusion coefficient, the optimum thickness Hop 
of base is determined by projection on abscissa-axis of the intercept point of Sb1 
and Sb2 curves. Thus the different values are presented in Table 1. 

Figure 4 shows the lamella optimum width (Hop) as function of maximum 
diffusion coefficient.  

We note that lamella optimum thickness increases linearly according to maxi-
mum diffusion coefficient. Considering the best fit, we can write the following 
relation: 

maxopH a D b= ⋅ +                       (18) 

The constants a and b are respectively the slope and the ordinate at origin of 
line. We get the following equation: 

max0.00012 0.01430opH D= +                 (19) 

Figure 5 shows the lamella optimum thickness (Hop) versus magnetic field. 
The best fit gives the following modeling equation for mean curve in the form:  

( ) 3 3 3 23.4 10 9.7 10 10 0.018opH B B B B= − × + × − +         (20) 

The base optimum thickness decreases depending on the applied magnetic 
field. Indeed, when the magnetic field increases, mobility and diffusion of mi-
nority carriers decrease with the increase in the intensity of Lorentz force slow-
ing down the movement of charge carriers [21]. There is thus a decrease in the 
diffusion coefficient resulting in the decrease of base optimum thickness. 

Figure 6 shows the lamella optimum thickness Hop as a function optimum 
temperature. 
 

 
Figure 3. Back surface recombination velocity of excess minority carries versus solar cell 
base thickness for different maximum diffusion coefficient values. 
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Figure 4. Profile lamella optimum thickness Hop versus maximum diffusion coefficient. 
 

 
Figure 5. Profile of lamella optimum thickness Hop versus magnetic field. 

 

 
Figure 6. Profile of lamella optimum thickness (Hop) versus optimum temperature. 

 
Table 1. Base optimum thickness (Hop) for different magnetic field B and optimum tem-
perature values. 

B (Tesla) 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 

Optimum 
temperature (Kelvin) 

254.7 286.6 313 336.5 361.4 381.9 401.0 418.8 

Dmax (cm2/s) 33.368 28.173 24.66 22.202 20.259 18.757 17.561 16.548 

Hop (cm) 0.0161 0.0156 0.0153 0.0149 0.0147 0.0146 0.01445 0.0143 
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The average curve modeling equation is in the form: 

( ) 11 3 8 2 53.2 10 7 10 4.5 10 0.024opH T T T T− − −= − × + × − × +     (21) 

The lamella optimum thickness Hop decreases according to optimum temper-
ature. Indeed, when the temperature is high, the phonons are excited and ma-
terial resistivity decreases with Umklapp processes [72] [73] which limit thermal 
conductivity. Thermal agitation reduces excess minority carrier’s mobility and 
obviously diffusion coefficient, that explains the decrease in lamella optimal 
thickness according to the modeling relation found. 

4. Conclusions 

This thickness optimization technique plays an important role in the case of ver-
tical solar cell junction, which uses low quality materials, whose minority carri-
ers have low diffusion lengths. It makes the back surface recombination velocity 
at (p-p+) more efficient by a judicious choice of lamella thickness. 

That’s why, the two expressions of back surface recombination of excess mi-
nority carriers are required to determine the lamella optimum thickness for dif-
ferent values of diffusion coefficient as a function of optimum temperature for 
different magnetic field values. So the different relationships found justify the 
choice of the lamella optimal thickness either as a function of temperature or 
magnetic field. Consequently these results can be used as a tool for selecting la-
mella elaboration process. 
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