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ABSTRACT 
The purpose of this paper is threefold. One is to revisit the Hermitian form model (HFM) 
with Hermitian symmetry proposed by Chino and Shiraiwa (1993), which uncovers the la-
tent Hilbert space structure or the indefinite metric space structure, given the asymmetric 
similarity matrix (ASM) among objects, and another is to explain how to interpret the con-
figuration of objects embedded in these spaces. The final goal of this paper is to show what 
kinds of information are obtained by applying HFM to empirical and hypothetical ASMs. 
Results of applications of HFM to two empirical ASMs suggest that some possible asymme-
tric structures among objects exist, which might not have been found empirically. The result 
of application of the HFM to a hypothetical ASM uncovers interesting latent space struc-
tures among objects. 

 

1. INTRODUCTION 
Increasing attention has been paid to mutual interactions among objects, especially in the medical 

and biological literature recently (e.g., [1-6]). Interactions among objects in the literature are generally 
asymmetric in contrast to those in the physical world. For example, Imai and Guarente report biosynthetic 
pathways of nicotinamide adenine dinucleotide (NAD+) [1]. As can be seen in a subsequent section, such a 
pathway can be converted into an asymmetric matrix, elements of which are binary, since it can be ex-
pressed as a certain directed graph (digraph) in graph theory (e.g., [7, 8]). In quorum sensing, some bacte-
ria secrete a signaling molecule called autoinducer to their host environment and detect their number, and 
if it reaches a threshold they respond again to the environment by secreting some special substance (e.g., 
[2, 5]). Reference [4] studies the midbrain dopamine system, in which dopamine neurons in the ventral 
tegmental area (VTA) are thought to compute reward prediction error (RPE) (e.g., [9]). They demonstrate 
that even simple arithmetic computations such as RPE are not localized in specific brain areas but, rather, 
are distributed across multiple nodes in a global brain network. Such a network might also be described by 
a complicated digraph whose corresponding weight matrix is generally asymmetric. 
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Asymmetry can be observed in the other literature such as in the social and behavioral sciences (e.g., 
[10]). Reference [11] summarizes various asymmetric phenomena in the various disciplines of science and 
discusses the meaning of asymmetry. Reference [12] analyzes the trade imbalance between 10 nations and 
depicts their asymmetric relations graphically using one of the asymmetric multidimensional scaling (asym-
metric MDS) methods in psychometrics developed by the author. 

Asymmetry is sometimes not observed but is hypothesized in some literature. For example, Sato, 
Akiyama, and Farmer assume a hypothetical asymmetric matrix in investigating the problem of learning 
to play the game of rock-paper-scissors based on the theory of games and the notion of evolutionally stable 
strategy (ESS) [3], which was introduced by [13]. 

In contrast, three of the four fundamental forces in the natural world, i.e., gravitation, electromagnet-
ism, and strong interaction are all symmetric. One of the reasons why interactions among these objects in 
the medical and biological sciences as well as the social and behavioral sciences are generally asymmetric 
might be that living organisms have intelligence to some degree in the sense of [14], even if they have no 
neurons (e.g., [6]), and as a result they exert a force on their environment. Wechsler defines the intelli-
gence as the aggregate or global capacity of the individual to act purposefully, to think rationally and to 
deal effectively with his or her environment. 

Generally, it will be natural and appropriate to discuss two aspects if we consider mutual interactions 
among objects. One is the space in which objects interact with one another, and the other the dynamics by 
which objects interact. From the dynamical system point of view, the former is the state space, and the lat-
ter the equation of motion of objects in that space. 

In this paper, we shall restrict our attention to the former and discuss the space in which objects are 
embedded. For example, in the special relativity theory a special quadratic form, 2

, d dd ij i ji j g x xs =∑ , 
holds for definite differentials, 1 2 3 4d ,d ,d ,dx x x x , of the four-dimensional space-time coordinates of any 
chosen system of reference, where 1 2 3, ,x x x  are the spatial coordinates and 4x  is the corresponding time- 
coordinate measured by some suitable measuring clock (e.g., [15]). Moreover, the matrix ( )ij ijg =  g  is a 
special diagonal matrix whose diagonal elements are (−1, −1, −1, +1), which is called a metric tensor. The 
state space described by this tensor has a Minkowski metric. In the general relativity theory, this tensor is 
no longer constant, but a function of space and time. In this case, the state space is a Riemannian space 
with a Riemannian metric which is symmetric. In quantum mechanics, the Born rule is one of the key 
principles, and it states that if an observable corresponding to a Hermitian operator (or sometimes called a 
self-adjoint operator), say, Ô , with discrete spectrum is measured in a system with normalized wave 
function, the kets ψ , in a Hilbert space [16], then the measured result is one of the eigenvalues ρ  of 
Ô , where ⋅  is the ket vector. Ô  is called the density matrix operator [17], and if we choose the kets 

kψ  to be the eigenvectors (or eigenkets) of Ô  with eigenvalues kλ , we can write ˆ
k k kk ρ=∑O ψ ψ , 

where ⋅  is the bra vector. 
Then, what is an appropriate mathematical space in which objects are embedded with asymmetric re-

lationships among them? According to [18], this space is nothing but a Hilbert space with discrete spec-
trums. The organization of this paper is as follows: In Section 2, we shall revisit briefly the Hermitian 
Form Model (abbreviated as HFM), which was proposed by Chino and Shiraiwa [18]. In this section, we 
see that our HFM has a property of Hermitian symmetry. In Section 3, we shall discuss briefly the similari-
ties and differences in Hilbert space used in quantum mechanics and psychometrics, especially in HFM. In 
order to do so, we shall restrict our attention to finite-dimensional Hilbert space, although in general Hil-
bert space is defined to be infinite-dimensional in quantum mechanics. Finally, we shall apply the HFM to 
several asymmetric matrices among objects obtained in the medical and biological sciences as well as the 
social and behavioral sciences. 

2. REVISIT OF HFM 
2.1. Brief Derivation of HFM 

In this section we shall briefly revisit HFM according to [18] and [19]. The data matrix to which we 
apply is an N by N asymmetric similarity matrix (abbreviated hereafter as ASM), jks =  S , where jks  
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denotes the magnitude of similarity from object j to object k. The jks  must be measured at the ratio level 
in HFM. The ratio level means in psychometrics that jks  must be measured by some scale with equal ad-
jacent intervals and absolute zero. In HFM, we first decompose S into the symmetric part and the skew- 
symmetric part as 

,s sk= +S S S                                     (1) 

where 
2

jk kj
s

s s+ 
=  
 

S  and 
2

jk kj
sk

s s− 
=  
 

S . Then we construct a Hermitian matrix as follows: 

,s ski= +H S S                                     (2) 

where 2 1i = − . We shall call the one-to-one correspondence between S in Equation (1) and H in Equation 
(2) the Chino-Shiraiwa rule. This rule means that we let any measured or hypothesized ASM correspond 
to a Hermitian matrix which cannot be observed. In this sense, our rule might be contrasted with the Born 
rule in quantum physics [16]. Moreover, the Chino-Shiraiwa rule enables us to deduce a holistic mathe-
matical space structure in which objects are embedded as will be shown below. 

In HFM we first solve the eigenvalue problem of H, that is 

, 1i i i i Nλ= ≤ ≤Hu u                                     (3) 

where iλ  is the ith eigenvalue of H, and iu  is the eigenvector associated with iλ . It is well known that 
all the eigenvalues of H are real, since H is Hermitian. It is also well known that all these eigenvectors are 
unitary, that is, mutually orthogonal in a complex space. Moreover, without loss of generality we can set 

( )0 1i i nλ ≠ ≤ ≤ , and 1 2 0n n Nλ λ λ+ += = = = . Then, let us define 

[ ] [ ]1 1 1 2, , , , , , ,n n N+= = U u u u u U U                           (4) 

where 1U  and 2U  are composed of n column vectors, 1, , nu u , and N n−  column vectors,  
1, ,n N+ u u , respectively. Moreover, let us define 

[ ]1 2, , , .ndiag λ λ λ= Λ                                 (5) 

Then, using 1U  and Λ , we get 
*

1 1 .=H U UΛ                                     (6) 

Here, *
1U  denotes the conjugate transpose of 1U . 

Now, let us further define 

, ,s sk
−   

= =   
   

O O
O O
Λ Λ

Ω Ω
Λ Λ

                            (7) 

and 

[ ],r c=X U U ,                                   (8) 

where r jlr =  U  and c jlc =  U  are such that 1 r ci= +U U U . Here, rU  and cU  are, respectively, the 
real part and the imaginary part of the eigenvector matrix 1U  of Equation (6). Then, H  in Equation (6) 
can be rewritten as 

.t t
s ski= +H X X X XΩ Ω                                (9) 

Here, it should be noticed that the matrix X , sΩ , and skΩ  are all real. In scalar notation Equation 
(9) can be rewritten as 

( ) ( ){ }1   .n
jk l jl kl jl kl jl kl jl kllh r r c c i c r r cλ== + + −∑                         (10) 
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The jkh  can be simply written, using Euler’s formulas, as 

( )1 e ,ln i
jk l llh Gθλη== =∑ θ                              (11) 

where ( )1 2, , , nθ θ θ= θ . 
Then, it is easy to see that jkh  in Equation (11) has Hermitian symmetry, since the following equa-

tion holds: 

( )* *
jkh G= −θ ,                                  (12) 

and since *
jk kj jkhh h= = . 

From Equation (9) we have the following equation 
t t

s sk= +S X X X XΩ Ω ,                              (13) 

using Equations (1) and (2). It should be noticed that all the elements in Equation (13) are real matrices. 
Equation (13) can be rewritten, in scalar notation, as 

( ) ( ){ }1 .n
jk l jl kl jl kl jl kl jl klls r r c c c r r cλ== + + −∑                         (14) 

In any case, if we write the (j, k) element of H in Equation (6) as jkh , this equation can be rewritten 
in the form 

( ),jk j kh ψ= v v ,                                  (15) 

where ψ  is a Hermitian form, ( ),j k j kψ ∗=v v v vΛ , and the n-dimensional vectors, jv  and kv , are the 
j-th and k-th row vectors of 1U , respectively. This is the reason why we call our model the Hermitian 
form model (HFM) for the analysis of asymmetry. Reference [18] proved that a necessary and sufficient 
condition for this model to be expressible in terms of Hilbert space is the positive semi-definiteness of H. 
If we use the bra-ket notation in quantum physics, the ψ  defined above can be expressed as 

( ), .j k j kψ =v v v vΛ                                (16) 

In any case, if some of the eigenvalues of H is negative, we can embed objects in an indefinite metric 
space. However, if we restrict the dimension into one in the indefinite metric space, this space can be con-
sidered as a one-dimensional Hilbert space, and we can interpret the configuration of objects as if it were 
embedded in a Hilbert space even if the eigenvalue under consideration is negative. In this case, however, 
we must interpret the configuration of objects, noticing the sign of the eigenvalue. We shall show such an 
example in Section 3. 

Finally, we shall show an interesting identity in HFM. Let ( ),ψ ς τ  be a Hermitian form. Then, we 
have the following polar identity in the (complex) pre-Hilbert space [20], 

( ) ( ) ( )2 2 2 21 1, .
4 4

i i iψ ς ς= + − − + + − −ς τ τ τ ς τ ς τ                   (17) 

This equation also holds for the Hilbert space. Then, remembering (10), it is easy to show that 

( ) ( )2 2 2 22 21 1 .
2 2jk j k j k j k j kh i i= − − + − −+ +v v v v v v v v                (18) 

Remembering (2), we have finally, 

( )2 2 22 1 ,
2jk j k j k j ks i+= − − + −v v v v v v                      (19) 

where jks  is the (j, k) element of H. This equation directly maps the complex vectors jv  and kv  in the 
Hilbert space, which cannot be observed, onto the measured result, jks . In this sense, jv  and kv  can be 
said to be observables in terms of quantum mechanics. 
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2.2. Interpretation of the Configuration of Objects Obtained by HFM 

In this section, we explain briefly how to interpret the configuration of objects embedded in a Hilbert 
space, which is obtained by applying HFM to any empirical or theoretical ASM, according to [19]. As dis-
cussed in the previous section, objects are embedded in either the Hilbert space or the indefinite metric 
space depending on the eigenvalues of the Hermitian matrix H constructed from the ASM, S. Here, it 
should be noticed that the n-dimensional row vectors, jv  and kv , in Equation (15) are coordinates of 
objects, j and k, respectively, in the Hilbert space or the indefinite metric space. However, as also discussed 
in the previous section, both these spaces are considered as one-dimensional Hilbert spaces if we restrict 
the space to one-dimension. This means that we may think of the similarity, jks , in Equation (11) as 

( ) ( ){ },jk jl kl jl kl jl kl jl l klr r c c c r r cs λ= + + −                           (20) 

For the lth complex plane associated with the lth eigenvalue of 𝑯𝑯. Here, jlr  and jlc  are, respec-
tively, the real part and the imaginary part of the complex number, jv , corresponding to the location of 
object j (hereafter, abbreviate it as jO ), on the lth complex plane. Since the complex plane can be identi-
fied with the two-dimensional Euclidean plane, we can also consider jlr  and jlc , respectively, as the ab-
scissa and the ordinate of the position of jO , on the lth Euclidean plane. 

Then, let us rewrite jlr  and jlc  as 1jx  and 2jx , respectively. Moreover, let us define the position 
vectors, 1 2,j j jx x =  x  and [ ]1 2,k k kx x=x  of jO  and kO , respectively. Then, Equation (20) can be 
rewritten as follows, if we introduce trigonometric functions: 

( ) ( )( )cos sin ,jk j k jk jks λ θ θ= −x x                             (21) 

where jkθ  is the angle from jO  and kO . If we identify, respectively, real vectors, jx  and kx , with 
complex numbers, 1 2j j jv x ix= +  and 1 2k k kv x ix= + , jkθ  is the difference in the arguments jθ  and kθ  
of jv  and kv , respectively, in a complex plane. Here, the argument of the complex number z, defined for 

0z ≠ , is the angle which the vector originating from 0 to z makes with the positive real axis counterclock-
wise. Figure 1 illustrates jv  and kv  in a complex plane, assuming that jv  is on the real axis. In this 
case, the argument of jv  happens to be zero, and thus jkθ  is equal to the argument of kv . 

However, in interpreting the configuration of objects obtained by HFM, it should be noticed that the 
positive direction of the configuration of objects must be measured clockwise, considering Equations (20) 
and (21). This means that the similarity from kO  associated with kv  to jO  associated with jv  is rela-
tively greater than that from jO  to kO  in Figure 1. 

Remember here that the positive direction of the configuration of objects is counterclockwise in Chi-
no’s ASYMSCAL [21], which is one of the asymmetric MDSs. This model is a Euclidean space model and 
embeds objects in the two-dimensional Euclidean space. The original model is written as 

( ) ( )1 1 2 2 1 2 2 1jk j k j k j k j ks a x x x x b x x x x c= + + − + ,                     (22) 

where a, b, and c are real constants. 
If we identify real coordinate vector 1 2,j j jx x =  x  with the complex number 1 1j j jz r ic= +  and 
[ ]1 2,k k kx x=x  with the complex number 1 1k k kz r ic= + , Equation (22) can be rewritten as 

( ) ( )1 1 2 2 1 2 2 1jk j k j k j k j ks a r r r r b r c c r c= + + − + .                      (23) 

Now, let us set a b λ= = . Then, Equation (23) is written as 

( ) ( )1 1 2 2 1 2 2 1   jk j k j k j k j ks r r r r r c c r cλ λ= + + − + .                      (24) 

If we further rewrite Equation (21) as 

( ) ( )1 1 2 2 2 1 1 2   jk j k j k j k j ks r r r r c r r c cλ λ= + − − + ,                      (25) 

and compare it with Equation (20) of HFM, we see that the positive direction of the configuration of  
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Figure 1. Configuration of two objects, jO  and kO  in the complex plane, and the argument jkθ  
measured counterclockwise from jO . 
 
objects is opposite in the case of Chino’s ASYMSCAL. 

In any case, jks  in Equation (21) of HFM depends on jkθ  discussed there. Figure 2 and Figure 3 
illustrate the details of jks  as a function of jkθ . In these figures, we set j kx x  in Equation (21) equal to 
1 for simplicity. Moreover, we set λ  equal to 1 and −1 for Figure 2 and Figure 3, respectively. These 
correspond to the cases when the eigenvalues of H are positive and negative, respectively. 

It is apparent from Figure 2 that kjs  is greater than jks  within the range, 0 jkθ< < π , while jks  is 
greater than kjs  within the range, 2jkθπ < < π . Moreover, signs of jks  and kjs  depend on jkθ . For 
more details, see elsewhere [19]. In contrast, it is apparent from Figure 3 that jks  is greater than kjs  
within the range, 0 jkθ< < π , while kjs  is greater than jks  within the range, 2jkθπ < < π . 

Finally, we shall consider a bit about the skewness between jks  and kjs . It is easy to show that from 
Equation (21) we have 

( )sinjk kj j k jks s λ θ− = − x x .                            (26) 

Therefore, if we set j kλ x x  equal to 1, we have 

( )sinjk kj jks s θ− = − ,                                (27) 

and 

( )sinjk kj jks s θ− = .                                (28) 

The green curve in Figure 4 is the very amount of the skewness between the similarities, jks  and 
kjs . 

From this figure, it is apparent that the skewness between them takes the maximum values when jkθ  

is 
2
π

 or 3
2
π

. 
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Figure 2. Values of jks  (blue curve) and kjs  (red curve) plotted against jkθ  when the eigenvalue of 
H is positive. 
 

 
Figure 3. Values of jks  (blue curve) and kjs  (red curve) plotted against jkθ  when the eigenvalue of 
H is negative. 
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Figure 4. Skewness curves (green) between jks  (black curve) and kjs  (red curve) plotted against 

jkθ . 

3. SIMILARITIES AND DIFFERENCES IN HILBERT SPACE USED IN QUANTUM MECHANICS 
AND PSYCHOMETRICS, ESPECIALLY IN HFM 

As discussed in the introduction, the density matrix operator Ô  of a wavefunction in quantum mechan-
ics has the property of the positive semi-definite (p.s.d.) Hermitian matrix. In contrast, the complex matrix 
H constructed from any real ASM between N objects in psychometrics, especially in HFM, is a Hermitian 
matrix. Moreover, in HFM, these objects can be embedded in the Hilbert space if and only if H is p.s.d. by 
the Chino and Shiraiwa theorem [18]. The similarities and differences of the Hermitian matrix in these 
two branches of sciences might be clearer, if we transform these two matrices, Ô  and H, in terms of 
usual matrix algebra. 

As for the Ô , it is defined as follows, using the bra-ket notation, 
ˆ

k k kk ρ=∑O ψ ψ ,                                (29) 

as discussed in the introduction section. Since kψ  is the kth eigenvector (called sometimes eigenkets in 
quantum mechanics) associated with the kth eigenvalue of Ô , Ô  is expressed, in terms of the usual ma-
trix algebra, as 

* *ˆ ,k k kk ρ= =∑O VDVψ ψ                                  (30) 

where [ ]1 2, , , M= V ψ ψ ψ , and [ ]1 2, , , Mdiag ρ ρ ρ= D , and *
kψ  and *V  are the conjugate transposes 

of kψ  and V, respectively. Equation (30) can be expressed, using the row vectors, 1 2, , , pϕ ϕ ϕ  com-
posed of the rows of V, as 

*ˆ ˆ .ij i jρ   = =   O Dϕ ϕ                                    (31) 

Since ˆijρ  is a Hermitian form, and since Ô  is p.s.d., ˆijρ  is the Hermitian inner product. 
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As regards the H, we have Equation (6), which is nothing but the direct result of the eigenvalue- 
eigenvector decomposition of H. This equation corresponds to Equation (30) in quantum mechanics. 

The Hermitian form derived from H is Equation (15). This equation corresponds to Equation (31) in 
Quantum mechanics. Both Hermitian forms, ( ) *,jk j k j kh ψ= =v v v vΛ  and *ˆij i jρ = Dϕ ϕ , are Hermi-

tian symmetric, i.e., jk jkh h= , and ˆ ˆij ijρ ρ= . The notion of Hermitian symmetry is an extension of that of 
usual symmetry to complex number. Under a mild condition, i.e., p.s.d.’s, of Ô  as well as H, guarantee 
that 1 2, ,ϕ ϕ  as well as 1 2, ,v v  are embedded in a Hilbert space. Therefore, Hermitian symmetry is a 
fundamental principle in the microscopic world, i.e., in quantum mechanics, as well as in the medium-size 
world in which real ASM’s are observed or hypothesized, examples of which are neural networks, biologi-
cal networks, social networks, and so on. 

4. APPLICATIONS OF HFM TO SOME ASYMMETRIC PHENOMENA 
In this section we shall apply HFM to some empirical ASMs and a hypothetical ASM. The first exam-

ple is concerned with the biosynthetic pathways of proteins in a budding yeast and mammals (e.g. [1]), 
which appears elsewhere [19]. We chose an example of which appears in Fig.2b of [1]. We reconstruct an 
ASM from this figure in such a way that the similarity is 1 if the directional arc exists from an element to 
another element of 11 substances, and otherwise it is 0. These substances are composed of tryptophan (an 
α-amino acid), NAD (nicotinamide adenine dinucleotide, a non-protein chemical compound), NIC (nico-
tinamide, an organic molecule), and so on. Table 1 shows this. Here, it should be noticed that in general 
such a pathway can be considered as a weighted digraph (directed graph) in graph theory. Since the 
weighted digraph accompanies a weight matrix, we say that in general a unique ASM is associated with 
any weighted digraph. 

Eigenvalues of the Hermitian matrix constructed from this ASM were 1.6302, −1.6302, −1.2534, 
1.2534, −0.8706, 0.8706, … These eigenvalues mean that this data has a holistic indefinite metric structure. 
Of course, each of the configurations of the biosynthetic pathways of proteins in mammals on the complex 
planes associated with these eigenvalues can be embedded in a one-dimensional Hilbert space, as discussed 
previously. 
 
Table 1. A biosynthetic pathway of proteins in mammals which was re-constructed from Figure 2 of 
[1]. 

 1 2 3 4 5 6 7 8 9 10 11 

1 0 1 0 0 0 0 0 0 0 0 0 

2 0 0 0 1 0 0 0 0 0 0 0 

3 0 0 0 1 0 0 0 0 0 0 0 

4 0 0 0 0 1 0 0 0 0 0 0 

5 0 0 0 0 0 1 0 0 0 0 0 

6 0 0 0 0 0 0 1 0 1 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 0 0 

10 0 0 0 0 0 1 0 0 0 0 1 

11 0 0 0 0 0 0 0 0 0 1 0 
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Figure 5 shows four configurations of the biosynthetic pathways composed of these one-dimensional 
Hilbert spaces. These four configurations are associated with the first four eigenvalues of the Hermitian 
matrix discussed above. 

Figure 5(a) is the configuration associated with the maximum eigenvalue of the Hermitian matrix. 
Although this configuration recovers the major pathways contained in the original data matrix, it does not 
include the important cyclic pathways, starting from O6 (NAD) to come back to it through O9 (NIC) and 
O10 (NMN). In contrast, Figure 5(b), which is the configuration corresponding to the maximum eigenva-
lue but with a negative sign, recovers almost all the pathways contained in the original matrix. Figure 6 is 
an enlarged configuration of Figure 5(b). In interpreting this configuration, it should be noticed that its 
positive direction is counterclockwise because the eigenvalue associated with it is negative. Noticing this 
point, we can find the following pathways in Figure 6 by following an object to another object counter-
clockwise within π radian, referring to Figure 2 of [1]: 

1) O1 (Tryptophan) → O2 (Quinolinic acid) → O4 (NaMN) → O5 (deamido-NAD) → O6 (NAD) → O9 
(NIC) → O10 (NMN) → O6 (NAD) 

2) O3 (NA) → O4 (NaMN) 
The first pathway includes a cycle starting from O6 and returning to itself. The second pathway runs 

into the first pathway at O4 (NaMN). The third pathway gets away from the first pathway at O9 (NIC). The 
fourth pathway also gets away from the first pathway at O6 (NAD). 

The second example is the international trade data among Japan, America, China, and Russia in 2015, 
which appeared in The Asahi News Paper in Japan, which is discussed elsewhere [19]. Table 2 shows this. 
According to convention, we administered a log transformation to each element of this ASM prior to the 
analysis via HFM. Eigenvalues of the Hermitian matrix constructed from the transformed ASM were 
29.9714, 61145, 4.4377, and 3.5309. This means that the trade data has a holistic Hilbert space structure. Of 
course, each of the configurations of nations on the complex planes associated with these eigenvalues is  
 

 
Figure 5. Four configurations of the biosynthetic pathways corresponding to one-dimensional Hil-
bert spaces, which constitute a part of the holistic 11-dimensional Hilbert space. 
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Figure 6. An enlarged configuration of Figure 4(b). 
 
Table 2. The international trade data among Japan, America, China, and Russia in 2015. 

 1. Japan 2. USA 3. China 4. Russia 

1. Japan 43,480 1382 1200 55 

2. USA 736 189,592 1161 71 

3. China 1764 4832 119,684 348 

4. Russia 173 164 333 13,755 

 
considered as embedded in a one-dimensional Hilbert space, as indicated in the previous section. Moreo-
ver, these configurations embedded in one-dimensional Hilbert spaces are mutually orthogonal (to be pre-
cise, unitary) in the whole space with the complex Hilbert space structure. 

Figure 7 shows four configurations of nations corresponding to these one-dimensional Hilbert spac-
es. Of course, these four configurations are associated with the four eigenvalues of the Hermitian matrix 
discussed above. 

Figure 7(a), which is the configuration associated with the maximum eigenvalue of the Hermitian 
matrix, suggests that this dimension looks like a size-factor in PCA because four nations are compressed in 
a narrow region. However, if we enlarge this region, we see that major asymmetric relationships among 
nations observed in the ASM are reproduced in the enlarged configuration. Here, in interpreting this con-
figuration, it should be noticed that the positive direction of this figure is clockwise because the eigenvalue 
is positive in this case. It should also be noticed that angles jkθ  between two nations all fall within π⁄3 (30 
degree), as is apparent from Figure 7(a). Then, looking at Figure 2, we see that kj jks s> . As a result, ap-
plying this relation to nations in Figure 8, the amount of export from C (China) to A (USA) is greater 
than that from A to C. Similar trade imbalances are indicated from C to J, and from J to A. Finally, it 
should be noticed that the magnitude of the skewness between jks  and kjs , which is defined by Equation  
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Figure 7. Four configurations of nations corresponding to the one-dimensional Hilbert space. In this 
figure, alphabets, A, C, J, and R, indicate USA, China, Japan, and Russia. 
 

 

Figure 8. The enlarged configuration of four nations. Here, the positive direction of this figure is 
clockwise because the eigenvalue is positive in this case. 
 
(25), increases as jkθ  increases within π⁄3, as shown in Figure 4. Since this magnitude is also proportion-
al to j kx x  in Equation (26), the magnitude of skewness between A and C might be the greatest of all 
the dyadic relations shown in Figure 8. 

The third example is the application of HFM to theoretical or hypothetical asymmetric relational data 
matrices [19]. Reference [23] investigated the problem of learning to play the game of rock-paper-scissors, 
using the following set of nonlinear differential equations. 

( )
( )

t
i ii

t
j j j

xx
y y

 − 
 = 
 −   





Ay x Ay

Bx y Ax
, 1, ,i n=  , 1, ,j m=  .                   (32) 

https://doi.org/10.4236/ns.2020.125020


 

 

https://doi.org/10.4236/ns.2020.125020 233 Natural Science 
 

where ( )1, , t
nx x= x  is the relative frequency vector for one population, while ( )1, , t

my y= y  is that 
for the second population. This approach is based on the theory of games and the notion of evolutionarily 
stable strategy (abbreviated as ESS), of which theory was introduced by [24]. 

In any case, in Eq. (32) A is the payoff matrix for one population, while B is the payoff matrix for the 
second population, and these two matrices are denoted as 

1 1
1 1
1 1

x

x

x

ε
ε

ε

− 
 = − 
 − 

A , 
1 1

1 1
1 1

y

y

y

ε
ε

ε

 −
 = − 
 − 

B ,                        (33) 

where 1 1xε− < <  and 1 1yε− < < . Here, columns of these matrices are placed in the order of “rock”, 
“paper”, and “scissors”. If x yε ε ε= − = , this game is called a zero sum game. In matrix notation, this con-
dition is denoted as t= −A B . Matrices, A and B, are nothing but theoretical examples of ASM, in that 
these ASMs cannot be observed and are hypothesized a priori. 

Although [23] discuss these matrices from the viewpoint of a dynamical system, they do not discuss 
the metric structure of these matrices. Such a structure can be examined by applying HFM to them. Let us 
now examine the structure of A in the case when 0.25xε = , which is one of the cases in which xε  and 

yε  are treated as a bifurcation parameter of the dynamical system described by Equation (32). The eigen-
values of the Hermitian matrix constructed from this ASM were 1.9821, −1.4821, 0.2500. These eigenva-
lues mean that this data has a holistic indefinite metric structure. Figure 9 shows this structure. Each of 
the configurations shows the positions of the three elements, i.e., “1. rock”, “2. paper”, and “3. scissors”, in 
a one-dimensional Hilbert space. For further details, see [19]. 

5. DISCUSSION 
In considering mutual interactions among objects in various disciplines of sciences, we usually discuss 

two aspects, one being the space in which objects interact with one another, and the other being the dynam-
ics by which objects interact. In this paper, we have restricted our attention to the former and have had a  
 

 
Figure 9. Three configurations of the payoff matrix A corresponding to one-dimensional Hilbert 
spaces, which constitute the holistic 3-dimensional Hilbert space. 
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glance at the various spaces in which objects are embedded, first. In the macroscopic world, symmetric me-
tric spaces, i.e., the Minkowski metric space and the Riemannian metric space, are required according to 
the special and general relativity theories, respectively [15]. In the microscopic world, Hilbert spaces are 
necessary to discuss states of the elementary particles, which are complex spaces (unitary spaces) whose 
metric is induced by the Hermitian inner products (e.g., [20]). In modern quantum mechanics, PT sym-
metry, which is a generalization of the condition of Hermitian in Hamiltonian systems, has been discussed 
(e.g., [22]). However, if we look at the medium-sized world, interactions among objects, say, neurons or 
boxels of neurons, several proteins in a budding yeast, a few species of corals, members in a class, social 
classes, nations, and so on, are asymmetric in most cases. Then, what is the most appropriate metric space 
in which objects can be embedded, given the observed or hypothesized ASM whose elements denote cer-
tain similarities between objects? Here, these similarities must be measured or hypothesized at the ratio 
scale level, which is defined in psychometrics. Asymmetric MDS techniques developed in psychometrics, 
especially the HFM proposed by [18] has an answer to this question. 

As revisited in Section 2, HFM transforms such an ASM, say, S, into a Hermitian matrix, H, first. 
Then, HFM performs the eigenvalue-eigenvector decomposition of H, and embeds objects in a finite-dimen- 
sional Hilbert space or in an indefinite metric space, depending on whether H is p.s.d. or not. In any case, 
as HFM transforms the observed or hypothesized similarity between objects into the Hermitian form, it 
naturally possesses the property of Hermitian symmetry in regard to the argument of the corresponding 
complex quantity, as was discussed in that section. 

In Section 3, we have discussed the similarities and differences in the Hilbert space used in quantum 
mechanics and psychometrics, especially, in HFM. The Hermitian matrix is the density matrix operator in 
quantum mechanics, while it is the complex matrix constructed from the observed or hypothesized simi-
larities among objects in HFM. If both Hermitian matrices are p.s.d., then we can embed the state of an 
elementary particle as well as objects in HFM into the finite-dimensional Hilbert space. 

In Section 4, we have shown some applications of HFM to ASMs observed or hypothesized in some 
branches of science. Although we could not show applications to the other branches of sciences such as 
community ecology, there exist various examples accumulated in this area of research (e.g., [25, 26]), 
which are depicted as digraphs. 

As regards the dynamics by which objects interact in the medium-sized world, we have been devel-
oping a nonlinear complex difference equation model whose state spaces are a finite-dimensional Hilbert 
space or an indefinite metric space (e.g., [27-29]). We shall publish a final version of this model elsewhere 
in the near future. 
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