
Advances in Pure Mathematics, 2020, 10, 181-199 
https://www.scirp.org/journal/apm 

ISSN Online: 2160-0384 
ISSN Print: 2160-0368 

 

DOI: 10.4236/apm.2020.104012  Apr. 27, 2020 181 Advances in Pure Mathematics 
 

 
 
 

The Extension of Cauchy Integral Formula to 
the Boundaries of Fundamental Domains 

Dorin Ghisa 

Glendon College, York University, Toronto, Canada 

           
 
 

Abstract 

The Cauchy integral formula expresses the value of a function ( )f z , which 

is analytic in a simply connected domain D, at any point 0z  interior to a 

simple closed contour C situated in D in terms of the values of 
( )

0

f z
z z−

 on C. 

We deal in this paper with the question whether C can be the boundary ∂Ω  
of a fundamental domain Ω  of ( )f z . At the first look the answer appears 

to be negative since ∂Ω  contains singular points of the function and it can 
be unbounded. However, the extension of Cauchy integral formula to some of 
these unbounded curves, respectively arcs ending in singular points of ( )f z  

is possible due to the fact that they can be obtained at the limit as r →∞  of 
some bounded curves contained in the pre-image of the circle z r=  and  

of some circles 1z a r− =  for which the formula is valid. 
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1. Introduction 

We make reference to [1] for elementary knowledge in complex analysis used 
below. It is known (see [2]) that for every rational function ( )R z  of degree n 
the complex plane can be partitioned into n sets whose interior are fundamental 
domains of ( )R z , i.e. they are mapped conformally (hence bijectively) by 
( )R z  onto the whole complex plane with some slits. A similar partition takes 

place for transcendental functions (see [3]), except that for those functions the 
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number of fundamental domains is infinite. Every fundamental domain Ω  of 
an analytic function ( )f z  is either unbounded or Ω ∂Ω  contains singular 
points of ( )f z , or both. 

Although integrals on unbounded contours have been used frequently in 
complex analysis (see [1], page 214), they have never appeared in the context of 
Cauchy integral formula. The main novelty of this paper is that it makes possible 
such an undertaking. The famous Cauchy integral formula is in this way upgraded 
from a rather local instrument to a more global one. Moreover, it shows that the 
functions we are studying are completely determined by the values on the 
boundaries of their fundamental domains. 

The integral on ∂Ω  of 
( )

0

f z
z z−

 shall be treated as an improper integral the  

convergence of what remains to be investigated. This can be accomplished in 
different ways which apply to particular classes of functions; hence instead of 
trying to prove theorems valid for any analytic function, we must treat separately 
those classes of functions. However, the techniques used are in general similar; 
namely they consist in isolating the singular points and z = ∞  by the pre-image 
of some circles whose radii are let tend to zero, respectively to infinity, then in 
applying the Cauchy integral formula to the bounded sub-domains of Ω  
obtained in this way and making sure that the integrals on the boundaries of the 
complementary domains tend to zero when the radii tend to zero or to infinity. 
As ( )f z  is injective in every fundamental domain, if such a domain is mapped 
conformally by the function onto the complex plane with a slit; then for some 
values 0r >  there is a function ( )eir θϕ  corresponding to that fundamental 
domain such that ( )( )e ei if r rθ θϕ = , 0 2θ≤ ≤ π . The function ( )eir θϕ  is 
injective in the interval [ )0,2π  and maps this interval onto an arc γ  included 
in that fundamental domain. Making the change of variable ( )eiz r θϕ=  in the  

integral 
( )

0

d
f z

z
z zγ −∫  it becomes an integral on the interval [ )0,2π  and it is  

possible that it tends to zero as r →∞  or 0r → . This assertion should be 
checked for every particular class of functions. 

The contours we used for integration needed to be illustrated and most of the 
graphics are computer generated by the software Mathematica. When this was 
not possible, we used illustration by hand made drawings. However, they are 
pictures of known fundamental domains (see [1], page 268 and 282). One of the 
most studied classes of meromorphic functions is that of Dirichlet functions and it 
can be considered as a prototype in many aspects. Let us start then with this class. 

2. General Properties of Dirichlet Functions 

The Dirichlet functions are obtained by analytic continuation of general Dirichlet 
series across the line of convergence. The family of general Dirichlet series 
includes that of well known Dirichlet L-series defined by Dirichlet characters. 
These last series can be all extended as meromorphic functions in the whole 
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complex plane. The extended functions are called Dirichlet L-functions. They 
are implemented in Mathematica and some affirmations about general Dirichlet 
functions are illustrated by using Dirichlet L-functions. However, the interest in 
more general functions is obvious and we have recently devoted to them a lot of 
publications (see [2]-[15]). An account of recent advances in this field can be 
found in [8]. 

A general Dirichlet series ( ),A sζ Λ  is defined by an arbitrary sequence of 
complex numbers ( )1 2, ,A a a=  , the coefficients of the series and by a non 
decreasing sequence of non negative numbers ( )1 2, ,λ λΛ =  , the exponents of 
the series. It is given by the formula 

( ), 1 e ns
A nns a λζ ∞ −
Λ =

= ∑                         (1) 

We will deal only with normalized general Dirichlet series in which 1 1a =  
and 1 0λ = . For such a series we have ( ),lim 1A itσ ζ σ→+∞ Λ + =  uniformly with 
respect to t (see [8], Theorem 3). There is a number cσ , called the abscissa of 
convergence of ( ),A sζ Λ , cσ−∞ ≤ ≤ +∞  such that the series (1) converges for 
Re cs σ>  and it diverges for Re cs σ< . The series converges uniformly on 
compact subsets of Re cs σ>  and therefore it is an analytic function in that half 
plane. Denoting by ( ) e

1,e
e n s

nnA
s a

λ
ζ Λ

∞ −
=

= ∑  we have proved in [8] that if the 
abscissa of convergence of ( ),A sζ Λ  is finite then the abscissa of convergence of 

( ),eA
sζ Λ  is zero and if ( ),A e

sζ Λ  has only isolated singular points on Re 0s = , 
then ( ),A sζ Λ  can be continued across the line Re cs σ=  to a meromorphic 
function in the whole complex plane. We keep the notation ( ),A sζ Λ  for the 
extended function when it exists and we call it Dirichlet function. Following 
Speiser [16], who studied the Riemann Zeta function, we have used in [2]-[15] 
the pre-image of the real axis by ( ),A sζ Λ . This is the set of points in the s-plane 
where ( ),A sζ Λ  takes real values. For every Dirichlet function it is a family of 
analytic curves whose structure has very profound implications on the value 
distribution of that function. Figure 1(a) illustrates the pre-image of the real axis 
by a Dirichlet L-function defined by a complex Dirichlet character and Figure 
1(b) by a real one. Details about Figure 1(c) are found in Section 3. 

We have proved (see for example [8]) that for any Dirichlet function ( ),A sζ Λ  
this pre-image is formed with unbounded curves (components) which fall into 
three categories. Namely, there are infinitely many curves ,k k′Γ ∈ , which do 
not intersect each other and consecutive k′Γ  and 1k+′Γ  ( k′Γ  below 1k+′Γ ) form 
infinite strips kS  extending for Re s  going from −∞  to +∞ . The counting 
is such that 00 S∈ . Every curve k′Γ  is mapped homeomorphycally by 

( ),A sζ Λ  onto the interval ( )1,+∞  of the real axis and therefore every kS
-strip is mapped (not necessarily one to one) onto the whole complex plane with 
a slit alongside this interval. For 0k ≠  every strip kS  contains a unique 
component ,0kΓ  of the pre-image of the real axis which is mapped 
homeomorphycally by ( ),A sζ Λ  onto the interval ( ),1−∞  of the real axis and 
a finite number of components , , 0k j jΓ ≠  which are mapped each one 
homeomorphycally by ( ),A sζ Λ  onto the whole real axis. The component ,0kΓ   
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Figure 1. The pre-image of the real axis by Dirichlet L-functions. 

 
extends for Re s  going from −∞  to +∞ , while , , 0k j jΓ ≠  are parabola 
shaped curves with a finite supremum of Re s , therefore we can distinguish the 
interior and the exterior of such a curve.  

In the case of a strip , 0kS k ≠ , if ( ), , 0A k jvζ Λ′ =  then connecting ( ), ,A k jvζ Λ  
with 1z =  by a Jordan arc ,k jη  the component of the pre-image of ,k jη  
passing through ,k jv  can be an unbounded curve ,k jγ , when for ,k jitσ γ+ ∈  
we have ( ),lim 1A itσ ζ σ→+∞ Λ + = . On the other hand the origin of such a curve 
must be a point ,k ju  on a curve ,k jΓ  such that ( ), , 1A k juζ Λ = . The curve 

jk ,γ  is bounded when its ends belong to different curves ,k jΓ  and ,k j′Γ . This 
is the case when ,k jΓ  and ,k j′Γ  are embraced curves (see [8]) and when 0k = . 
The curve ,k jγ  is mapped 2 to 1 by ( ),A sζ Λ  onto ,k jη . Then we can form 
fundamental domains using parts of the curves ,k jΓ , the curves ,k jγ  (and k′Γ , 
when is the case, as in Figure 2). These are strips unbounded to the right and to 
the left when ,k jγ  is unbounded and they are bounded to the right when ,k jγ  
is bounded. They are mapped conformally by ( ),A sζ Λ  onto the whole complex 
plane with some slits alongside the interval [ )1,+∞  of real axis and some other 
slits alongside ,k jη . 

In the case of the strip 0S , when the zeros of ( ),A sζ Λ′  are complex, the 
curves 0, jγ  are all bounded for 0j ≠  and together with kΓ  they form the  

https://doi.org/10.4236/apm.2020.104012


D. Ghisa 
 

 

DOI: 10.4236/apm.2020.104012 185 Advances in Pure Mathematics 
 

 

Figure 2. Conformal mapping of fundamental domains by ( )sζ . 
 
boundaries of fundamental domains bounded to the right. It is known (see, for 
example [13]) that every kS -strip, 0k ≠  of ( ),A sζ Λ  can be partitioned into a 
finite number of sets whose interior are fundamental domains of ( ),A sζ Λ . The 

0S -strip contains infinitely many fundamental domains. The way they are 
mapped conformally onto the complex plane with some slits by the Riemann 
Zeta function is illustrated in Figure 2 (see [13], Figure 6). 

3. Cauchy Integral Formula for Fundamental Domains and  
Sk-Strips of the Function ( )A s,Λζ   

The Cauchy integral formula has the form:  

( ) ( )
0

0

1 d
2 C

f z
f z z

i z z
=

π −∫                       (2) 

where the function ( )f z  is analytic in a simply connected domain D 
containing the simple closed contour C and 0z  is an arbitrary point inside C.  

We would like ( )f s  to be a Dirichlet function ( ),A sζ Λ  and C to be the 
boundary ∂Ω  of a fundamental domain Ω  of ( ),A sζ Λ  or the boundary 

kS∂  of an kS -strip. The problem is that ∂Ω  and kS∂  are not simple closed 
contours. However, we can show that the formula (2) can be extended to these 
curves. 

The shape of the fundamental domains of ( ),A sζ Λ  depends on the 
pre-image of the real axis and on the zeros of ( ),A sζ Λ′ . Since ( ),A sζ Λ  is 
injective in every fundamental domain the zeros of ( ),A sζ Λ′  must be located on 
the boundaries of these domains. Figure 3 portrays a fundamental domain Ω  
of ( ),A sζ Λ  bounded by a curve 1k+′Γ , the part of the last curve ,k jΓ  from kS  
on which Re s  vary from −∞  to 0Reu , where we have ( ), 0 1A uζ Λ = , as well 
as the pre-image of the segment determined by 1z =  and ( ), 1Az sζ Λ=  where 

1s  is the zero of ( ),A sζ Λ′  the closest to 0u . The pre-image 1η  of the circle 

1 : z rγ =  and the pre-image 3 6η η+  of the circle 3 6 : 1zγ γ+ − =   are also 
drawn, where r is big enough and   is small enough. Figure 1(c) illustrates 
computer generated pre-images of these circles for 10r =  (the orange curve) 
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Figure 3. A fundamental domain of ( ),A sζ Λ  and its conformal mapping. 
 
and 1 10=  (the green curve). It has been worked by Florin Alan Muscutar. 
Due to the continuity of ( ),A sζ Λ  at 0s u=  and to the fact that ( ),A sζ Λ  is a 
normalized Dirichlet series, the arc 3η  squeezes to the point 0u  and Re s  
with s on 6η  tends to +∞  as 0→ . Also Re s  with s on 1η  tends to −∞  
as r → +∞ . 

The domain Ω  is mapped conformally by ( ),A sζ Λ  onto the complex plane 
with a slit alongside the subinterval [ )1,+∞  of the real axis and alongside the 
segment determined by 1z =  and ( ), 1Az sζ Λ= . Also, the domain ,rΩ  is 
mapped conformally onto the ring domain ,rD  determined by the two circles 
with the corresponding slit (see Figure 3). The function ( ),A sζ Λ  is analytic in 
a domain containing , ,r rΩ ∂Ω   and therefore the Cauchy integral formula is 
valid for ,r∂Ω .  

Theorem 1. If we denote by rΩ  the infinite strip obtained from ,rΩ  as 
0→ , then for every rs∈Ω  we have  

( ) ( ),
,

d1
2 r

A
A

u u
s

i u s
ζ

ζ Λ
Λ ∂Ω

=
π −∫                      (3) 

Proof: Let us take ′ <  . Then the pre-image of the circle 1z ′− =   
intersected with Ω  is formed with two arcs 3η′  inside 3η  and 6η′  at the 
right of 6η . The arcs 6 6,η η′  and the curves ,k jΓ  and 1k+′Γ  determine a 

https://doi.org/10.4236/apm.2020.104012


D. Ghisa 
 

 

DOI: 10.4236/apm.2020.104012 187 Advances in Pure Mathematics 
 

curvilinear quadrilateral whose conformal module is the same as that of the 
quadrilateral determined by 6 6,γ γ ′ , the real axis and the segment from 1z =  to 

( ), 1Az sζ Λ= , which in turn is less than the conformal module of the ring 
domain 1z′ ≤ − ≤  . It is known (see [17], page 31) that the value of this last  

module is log
′



. If we take 
2

′ =


  then this module is log 2 , which shows  

that the length of 6η  remains bounded as 0→ , since otherwise the 
respective module would tend to ∞ , contrary to the fact that it remains  

constant log 2 . Let us evaluate 
( )

6

, dA u u
u sη

ζ Λ

−∫ . Since ( )Re ,lim 1u A uζ→+∞ Λ =  we 

have that 
( ),

Relim 0A
u

u
u s

ζ Λ
→+∞ =

−
 and since the length of 6η  remains bounded 

we have 
( )

6

,
Re

d
lim 0A

u

u u
u sη

ζ Λ
→+∞ =

−∫ . 

On the other hand, by Cauchy theorem 
( )

,

, d
r

A u u
u s

ζ Λ

∂Ω −∫


 does not depend on 

  since 
( )

, ,

,

\

d
0

r r

A u u
u s

ζ
′

Λ

∂Ω ∂Ω
=

−∫
 

. Then we can let 0→  in  

( ) ( )
,

,
,

d1
2 r

A
A

u u
s

i u s
ζ

ζ Λ
Λ ∂Ω

=
π −∫


 and we obtain (3).  

It is not clear what happens with 
( )

1

, dA u u
u sη

ζ Λ

−∫  as r →∞ . Making the  

change of variable ( )eiu r θϕ= , where ( )( ), e ei i
A r rθ θζ ϕΛ = , which is allowed 

since ( ),A uζ Λ  is injective on 1η , we get  
( )

( ) ( )( ) ( ) ( )( )1

22 2, 2
0 0

, ,

d e e e dd
e ee e

i i i
A

i ii i
A A

u u r ir ir
u s r s r sr r

θ θ θ

θ θη θ θ

ζ θθ
ϕ ϕζ ϕ ζ ϕ

π πΛ

Λ Λ

= =
− − −′ ′∫ ∫ ∫ .  

Although the integrand tends to zero as r →∞ , a limitation of the initial 
integral is problematic, due to the factor 2r  in the last term. So, as long as we  

cannot make sure that 
( )

1

, dA u u
u sη

ζ Λ

−∫  tends to zero as r →∞ , the problem of  

extending the Cauchy integral formula to the whole fundamental domain 
remains unsolved. 

Theorem 2. Let kS  be an arbitrary strip of the function ( ),A sζ Λ  as defined 
in Section 2 and for r big enough let ( )rη  be the part of the pre-image by 

( ),A sζ Λ  of the circle z r=  included in kS . We denote by ( )kS r  the part 
of the strip kS  bounded at the left by ( )rη . Then for every ( )ks S r∈  we have: 

( ) ( )

( ),
,

d1
2 k

A
A S r

u u
s

i u s
ζ

ζ Λ
Λ ∂

=
π −∫                      (4) 

Proof: For an arbitrary 0>  and for the given r, let us build the domains 

,rΩ  as in Theorem 1 corresponding to every fundamental domain kSΩ ⊂ . 
The sum of the corresponding arcs 1η  from these domains is ( )rη  and the 
sum of the corresponding arcs 6η  is an arc ( )η   connecting k′Γ  and 1k+′Γ . 
The arcs 3η  squeeze each one to the respective points 0u  when 0→ , where 
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( ), 0 1A uζ Λ = . 

Since for each arc 6η  we have 
( )

6

,
Re

d
lim 0A

u

u u
u sη

ζ Λ
→+∞ =

−∫  it results that 

( )

( ),
Re

d
lim 0A

u

u u
u sη

ζ Λ
→+∞ =

−∫ 
. Denoting by ( ),kS r  the domain bounded by  

( ) ( )1, , ,k k rη η+′ ′Γ Γ   and the arcs 3η  we see that this domain becomes ( )kS r  
when 0= . On the other hand, the Cauchy integral formula is applicable to  

( ),kS r , i.e. for every ( ),ks S r∈   we have ( ) ( )

( ),
, ,

d1
2 k

A
A S r

u u
s

i u s
ζ

ζ Λ
Λ ∂

=
π −∫ 

  

and then at the limit as 0→  this equality becomes (4) and the theorem is 
proved. 

We notice that this theorem says that the values of ( ),A sζ Λ  are completely 
determined by its values greater than 1 and those taken on an arbitrary circle of 
radius big enough. Moreover, the integral of the formula (4) is always convergent. 

If ( ) , 1ks s x x= ≥  is the parametric equation of k′Γ  such that  
( )( ),A ks x xζ Λ =  then the formula (4) becomes 

( ) ( )
( )

( )
( ) ( )

( ),1
, 1

1 0 0

d1 d
2

r Ak k
A r

k k

u us x s x
s x x

i s x s s x s u sη

ζ
ζ Λ+

Λ
+

′ ′ 
= − +  π − − − 

∫ ∫      (5) 

We notice that ( )1lim kx s x = ∞


, hence the first integral in (5) is an improper 
integral. By Theorem 1 this integral is always convergent. 

The function ( ),A sζ Λ  is not injective in kS , hence the integrals (4) and (5) 
give us the same value for different points s in kS . If we would like to have a 
unique point corresponding to a given value, then we need to use the formula 
(3). 

Also, taking into account the fact that the domain interior to every curve ,k jΓ , 
which is not embracing curve, is mapped conformally and therefore injectively 
by ( ),A sζ Λ  onto the upper or the lower half plane, a unique point s from that 
domain corresponds to every given value from the respective half plane. Then 
the following formula is true for every r big enough: 

( ) ( )

( )
,

,
,

d1
2 k j

A
A r

u u
s

i u s
ζ

ζ Λ
Λ Γ

=
π −∫                    (6) 

where ( ),k j rΓ  is the boundary of the domain bounded by ,k jΓ  and the pre- 
image of the circle z r= . 

If the equation of the curve ,k jΓ  is ( ), ,k js s x x= ∈  such that  
( )( ), ,A k js x xζ Λ =  then the formula (6) becomes 

( ) ( )
( ) ( ) ( )( )

2 22,
, 0

, ,

d1 e d
2 2 e e

ir k j
A ir i

k j A

xs x x rs
i s x s r s r

θ

θ θ

θζ
ϕ ζ ϕ

π

Λ −
Λ

′
= +

π − π − ′∫ ∫      (7) 

where ( )( ), e e ,0 2i i
A r rθ θζ ϕ θΛ = ≤ < π . 

4. The Distribution of the Values of a Dirichlet Function 

The contour of integration in Theorem 2 is simpler than that appearing in 
Theorem 1. However, (3) has the advantage of representing a univalent function 
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in ,k jΩ . The pre-image of the circle z r=  intersects several components of 
the pre-image of the interval ( )1,+∞  of the real axis situated in kS , more 
exactly if ( ),A sζ Λ  has m zeros in kS , then this pre-image intersects exactly 

1m +  such components, hence it traverses m fundamental domains. Each one 
of these domains contains a unique point ( ) , 1, 2, ,js j m=   such that 

( )( ) ( ), ,
j

A As sζ ζΛ Λ= . A point on the circle z r=  should turn m times around 
the origin for its pre-image to traverse the m fundamental domains going from 

1k+′Γ  to k′Γ . At every turn it assigns a unique point ( )js  where ( ),A sζ Λ  takes 
the same value. Since ( ),A sζ Λ  is univalent in ,k jΩ  that value is completely 
determined by the values on 1k+′Γ  and k′Γ . 

5. Extension of Cauchy Integral Formula for the Derivatives  
of Dirichlet Functions 

Following the known technique of computing ( ) ( )0 , 0 , 0
1limh A As h s
h

ζ ζ→ Λ Λ + −    

we find that 

( ) ( )

( )
( )

,
, 0 2

0

d1
2 k

A
A S r

s s
s

i s s

ζ
ζ Λ

Λ ∂
′ =

π −
∫                   (8) 

Thus, as for ( ),A sζ Λ  the values of ( ),A sζ Λ′  are completely determined in 
every strip kS  by the real values greater than 1 of ( ),A sζ Λ . By recursive 
computation we find that: 

( ) ( ) ( )
( )

,
, 0 1

0

d!
2 k

n A
A nS

s sns
i s s

ζ
ζ Λ

Λ +∂
=

π −
∫                    (9) 

for every natural number n.  
It is known (see [4] and Figure 4) that if a Dirichlet L-function ( );L sχ  has 

m zeros in the strip kS  then ( ) ( ); , 1nL s nχ ≥  has 1m −  zeros in kS  (which 
are all simple zeros). 

This figure illustrates the following: 
Theorem 3. If ( ),A sζ Λ  has m fundamental domains in kS  then every 

derivative ( ) ( ),
n

A sζ Λ  has exactly 1m −  zeros in kS . 
Proof: The pre-image by ( ),A sζ Λ  of a circle z r=  has m components in 

kS  which are disjoint if r is small enough. By letting r increase these 
components expand and after two of them touch each other, they fuse into a 
unique component including the corresponding zeros. When 1r =  a unique 
component becomes unbounded with branches tending to ∞  with Re s → +∞ . 
The remaining bounded components are outside this unbounded one and none 
of them can intersect kS∂ . Increasing r past 1 the unbounded components from 
all the strips kS  fuse into a unique unbounded component crossing these strips. 
After touching bounded components of the pre-image of the circle z r=  with 

1r >  (if such components exist in a given kS ), these last components are 
absorbed into the unbounded one and the corresponding zeros of ( ),A sζ Λ  pass  
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Figure 4. The zeros of ( )sζ  and those of its first two derivatives for ( )0,100t∈ . 

 
to the right of it. For r big enough all the zeros of ( ),A sζ Λ  from the strip kS  
will be at the right of the unbounded component of the pre-image of the circle 
z r= . That value of r depends on kS . 

The points where two components of the pre-image of a circle z r=  touch 
each other are the zeros of ( ),A sζ Λ′ . A complete binary tree can be formed 
having as leaves the zeros of ( ),A sζ Λ  and as internal nodes these touching 
points. It is known from the graph theory that if a complete binary tree has m 
leaves then it has exactly 1m −  internal nodes. This proves that ( ),A sζ Λ′  has 

1m −  zeros in kS . The zeros of the second derivative are obtained in a similar 
way, yet since ( ),lim 0A itσ ζ σ→+∞ Λ′ + = , there will be m components of the 
pre-image by ( ),A sζ Λ′  of the circle z r=  for r small enough, even if there are 
only 1m −  zeros of ( ),A sζ Λ′ . One of these components contains no such a zero. 
These components touch each other at the zeros of ( ),A sζ Λ′′  and by the 
previous analysis there should be 1m −  zeros of ( ),A sζ Λ′′ . The same procedure 
can be applied to derivatives of any higher order and the theorem is completely 
proved.  

Figure 5 portraying the pre-image of the real axis by the Riemann Zeta 
function and by its derivative shows that their kS -strips and their fundamental 
domains overlap, but they do not completely coincide (see [11]). However, the  
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Figure 5. The pre-image of the real axis by ( )sζ  and ( )sζ ′ . 
 
integral (8) gives the same value for ( ), 0A sζ Λ′  as 

( ) ( )

( ),
, 0

0

d1
2 k

A
A S r

s s
s

i s s
ζ

ζ Λ
Λ ∂

′
′ =

π −∫                   (10) 

since if kΣ  is the corresponding strip of ( ),A sζ Λ′  the integral on 
 

( ) ( )( )k kS r r∂ Σ  is zero, by Cauchy Theorem. The same is true for the integrals 
on the boundaries of the corresponding fundamental domains of the two 
functions. 

6. Extension of Cauchy Integral Formula to Fundamental  
Domains of Modular Function 

By the Riemann mapping theorem there is a unique analytic function ( )z sλ=  
mapping conformally the domain D bounded by the half lines Re 0s = ,  

Re 1s = , Im 0s ≥  and the half circle ( )1 1 e ,0
2

is θ θ= + ≤ ≤ π  onto the upper  

half plane Re 0z >  such that ( )0 1λ = , ( )1λ = ∞  and ( ) 0λ ∞ = . The 
function ( )sλ  can be continued by symmetry into the upper half plane as in 
Figure 6. 

The symmetric domain D′  of D with respect to the imaginary axis is mapped 
conformally by ( )sλ  onto the lower half plane and  

{ }Re 0, Im 0D D s s s′Ω = = ≥   is mapped conformally onto the whole 
complex plane with the slit ( ] [ ),0 1,−∞ +∞ , alongside the real axis, hence Ω  
is a fundamental domain of ( )sλ . In fact the union any two adjacent domains 
bounded by the half circles above (the half lines can be considered half circles 
too!) and the common half circle is a fundamental domain of ( )sλ . For 
example { }1 2 1 2 1 2, Im 0D D s s s− = ≥   is mapped conformally by ( )sλ  
onto the whole complex plane with the slit ( ],1−∞  and  

{ }1 2 1 4 1 4, Im 0D D s s s− = ≥   is mapped conformally by ( )sλ  onto the  
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Figure 6. Continuation by symmetry of the modular function. 

 
whole complex plane with the slit [ )0,+∞  etc. So, Figure 6 exhibits a partition 
of the upper half plane into fundamental domains of ( )sλ . Each one of these 
half circles ends up into a singular point of ( )sλ , therefore these singular points 
form a dense subset of the real axis, which implies that ( )sλ  cannot be continued 
across the real axis and its full domain of definition is the upper half plane. 

The way the function ( )sλ  has been constructed implies that for every s in  

the upper half plane we have ( ) ( )2s sλ λ+ =  and ( )
2 1

s s
s

λ λ  = + 
 and then  

(see [1], page 280) ( )lim 0t itλ σ→+∞ + =  uniformly with respect to σ . Hence 
the part of the pre-image by ( )sλ  of the circle e ,0 2iz θ θ= ≤ < π  included in 
Ω  is an arc η : ( ) ( )e ei is itθ θσ= +  , 0 2θ≤ < π , where ( )0lim eit θ

→ = ∞   
uniformly with respect to θ . In particular, denoting by ( )zν  the inverse of  

( )sλ  in Ω , we have 
( )

( ) ( )( )
2

0
0 0

e e dd 0
e e

i i

i i

s is
s s s

θ θ

θη θ

λ θ
ν λ ν

π
= →

− − ′∫ ∫


 
 

 as 

0→ . 
On the other hand, the part of the pre-image by ( )sλ  of the circle 

e ,0 2iz r θ θ= ≤ < π  included in Ω  is formed for r big enough with two arcs 

,1rη  and , 1rη −  such that for ,1rs η∈  we have 1s →  as r →∞  and for 

, 1rs η −∈  we have 1s → −  as r →∞ . Let us denote by rΩ  the part of Ω  
obtained by removing the pre-image of the set { }z z r≥ . 

Theorem 4. For any fundamental domain Ω  of the function ( )sλ  and any 
point 0 rs ∈Ω  we have: 

( ) ( )
0

0

d
r

s
s s

s s
λ

λ
∂Ω

=
−∫                       (11) 

Proof: Let us deal first with the fundamental domain  
{ }Re 0, Im 0D D s s s′Ω = = ≥  . By isolating the point 0z =  with a small 

circle e ,0 2iz θ θ= ≤ < π  and the point z = ∞  with a big circle  
e ,0 2iz r θ θ= ≤ < π  and by removing from Ω  the pre-image of the disc z ≤   
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and of the exterior of the disc z r<  we obtain a bounded domain ,rΩ  for 
which the Cauchy integral formula is applicable: for any 0 ,rs ∈Ω  we have  

( ) ( )
,

0
0

d
r

s
s s

s s
λ

λ
∂Ω

=
−∫


. Taking ′ <   and having in view the Cauchy theorem 

we conclude that 
( ) ( )

, ,0 0

d d
r r

s s
s s

s s s s
λ λ

′∂Ω ∂Ω
=

− −∫ ∫
 

 and since  

( )
0

0

lim d 0
s

s
s sη

λ
→ =

−∫


 , we can set 0=  and get (11).  

Now, if we take for example { }1 1 2 1 2, Im 0D D s s sΩ = − = ≥   and 
proceed similarly, the new η  is the part of the pre-image of the circle z =   
included in D, hence again. 

( )
0

0

lim d 0
s

s
s sη

λ
→ =

−∫


  and the extension of the Cauchy integral formula is  

true for the new unbounded domain rΩ . We are brought to the same 
conclusion when { }1 1 2 1 2, Im 0D D s s s′Ω = + = ≥  .  

This theorem tells us that the modular function is completely determined by 
its real values and by the values on the pre-image of an arbitrary big circle 
centered at the origin. 

7. Extension of Cauchy Integral Formula to the Fundamental  
Domains of the Exponential Function 

It is known that the horizontal strips bounded by consecutive lines Im 2z k= π  
are fundamental domains kΩ  of the exponential function ezw = . The function 
ez  maps conformally each one of these strips onto the complex plane with the 
slit alongside the positive real half axis. The pre-image by ez  of the circle 
w r=  is the vertical line Re lnz r=  and if we denote by γ  the intersection 

of this line with any fundamental domain of ez  then  
( ) ( )2 1 2 1

2 2
00 0

e e e dd d
ln ln 1

ln

z i ik k

k k

r irz i
i zz z r i z r

r

θ θ

γ

θθ
θθ

+ π + π

π π
= =

−− + − +
∫ ∫ ∫  and at the limit as 

r →∞  we get an indetermination of the form 0∞∗ . Thus 
0

e d
k

z

z
z z∂Ω −∫   

might be divergent. However, we can prove: 
Theorem 5. For any fundamental domain kΩ  of ez  and for any positive 

number r, if we denote ( ) { }Re lnk kr z z rΩ = Ω ≤  we have 

( )
0

0

1 ee d
2 k

z
z

r
z

i z z∂Ω
=

π −∫                      (12) 

where 0z  is an arbitrary point of ( )k rΩ . 
Proof: The intersection of the pre-image by ez  of the annulus w rρ ≤ ≤  

and kΩ  is a bounded domain ( ),kD rρ  and for every ( )0 ,kz D rρ∈  we have  

( )
0

,
0

1 ee d
2 k

z
z

D r
z

i z zρ∂
=

π −∫                     (13) 
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In order to obtain (12) it will be enough to show that 0
0

elim d 0
z

z
z zρ

ρ γ→ =
−∫ ,  

where ργ  is { }ex
k z x iy ρΩ = + = . This integral is  

( ) ( )2 1 2 1

2 2
00

e e dd
ln ln 1

ln

i ik k

k k

ii
i zi z

θ θρ ρ θθ
θρ θ ρ

ρ

+ π + π

π π
=

−+ − +
∫ ∫  and since the integrand is 

bounded and 0lim 0
lnρ
ρ
ρ→ =  we obtain at the limit the formula (12). 

8. The Case of Trigonometric Functions 

We illustrate this case by dealing with the function cosw z=  (see [9], page 51). 
for which the fundamental domains are vertical half strips ,j jΩ ∈  
determined by the lines Re 2z j= π , Im 0z ≥  and jΩ , symmetric of jΩ  
with respect to the real axis. They are mapped conformally by the function 
cos z  onto the complex plane with a slit alongside the interval [ )1,− +∞ . For 

1r > , the pre-image of the circle eiw r θ=  is the curve of equation 
( ) ( )cos cos sinx iy r iθ θ+ = + . An elementary computation shows that this 

equation is equivalent to 2 2cosshy r x= ± − . This show that 2 1r shy r− ≤ ≤   
in Ωj and 2 1r shy r− ≤ ≤ − −  in jΩ  and shy r= ±  when ( )( )2 1 2x k= + π , 
respectively 2 1shy r= ± −  when x k= π . Hence the pre-image of the circle 

eiw r θ=  is formed with two sinusoidal curves symmetric with respect to the  

real axis. Moreover, lim 1r
shy
r→∞ =  in jΩ  and lim 1r

shy
r→∞ = −  in jΩ   

uniformly with respect to x when x iy+  is on either one of these curves. Let us 
denote by jγ  the part of this pre-image situated in jΩ . We would like to  

evaluate 
0

cos d
j

z z
z zγ −∫ . For every domain jΩ  there is an analytic function  

( )wϕ  such that ( )( )cos e ei ir rθ θϕ = . Then making the change of variable 

( ) ( )e ,2 2 1iz r j jθϕ θ= π ≤ ≤ + π  in this integral we get  
( )

( ) ( )( )
( )

( ) ( )( )

2 1

2
0 0

22 12
2

0

cos e ed d
e sin e

e 1 d
e sin e

j

i ij

ij i

ij

ij i

z r irz
z z r z r

ir
r z r

θ θ

θγ θ

θ

θ θ

θ
ϕ ϕ

θ
ϕ ϕ

+ π

π

+ π

π

−
=

− −

= −
−

∫ ∫

∫
. 

Let us notice that ( )( ) ( )( )2 2 2sin e 1 cos e 1 ei i ir r rθ θ θϕ ϕ− − −= ± − = ± −  and 
we need to chose the sine minus in the last term since if to 0 θ≤ < π  corresponds 

( )Re e 0ix r θϕ −= >  then to θ−  corresponds 0x < , hence ( )( )sin eir θϕ  is 
an odd function of θ . 

By making the change of variable 2 jθ θ→ + π , we get  

( ) ( )( )

( ) ( )( )

222
0

0 0

2
2

0

cos e 1d d
e sin e

e 1 d
e sin e

j

i

i i

i

i i

z z ir
z z r z r

ir
r z r

θ

θγ θ

θ

θ θ

θ
ϕ ϕ

θ
ϕ ϕ

π

π

−π

−
=

− −

−
=

−

∫ ∫

∫
           (14) 
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When r is big enough the term ( ) 0eir zθϕ −  varies very little as θ  varies 
from −π  to π . Assuming a constant instead of this term, what it remains to 
integrate between −π  and π  is an odd function, hence the integral is zero.  

This doesn’t necessarily mean that 
0

coslim d 0
j

r
z z

z zγ→∞ =
−∫ . However, the  

previous remark justifies the conjecture that this limit is true and therefore the 
Cauchy integral formula extends to the boundaries of the fundamental domains 
of the function cos z . 

9. Extension of Cauchy Integral Formula to the Fundamental  
Domains of the Weierstrass ℘  Function 

The Weierstrass ℘  function is defined (see [1], page 272) by the formula  

( )
( )2 2 20

1 1 1z
z zω ωω≠

 
 ℘ = + −
 − 

∑                 (15) 

where the sum ranges over all 1 2m nω ω ω= + , where ( ) ( ), \ 0,0m n ∈ ×   
with 1ω  and 2ω  arbitrary complex numbers having non real ratio 2 1ω ω . It 
is known that ( )w z=℘  is a doubly periodic function with the periods 1ω  
and 2ω . Hence it is sufficient to know the values of ( )z℘  into the 
(fundamental) parallelogram determined by 1ω  and 2ω  in order to be able to 
find its values anywhere in the complex plane. The series (15) converges 
uniformly and absolutely on any compact subset of   which does not contain 
points ω , therefore it is a meromorphic function in the complex plane. The 
points ω  are double poles for ( )z℘  and hence they are triple poles for  

( )
( )30

12z
zω ω≠

′℘ = −
−

∑ . 

It can be easily shown that ( ) ( ) ( )1 2 1 22 2 2 2 0ω ω ω ω′ ′ ′℘ =℘ =℘ + = . 
Moreover, since ( ) ( ) ( )1 2z z zω ω℘ =℘ − =℘ + − , by denoting 1 2z zω ω′ = + − ,  

we have 1 2

2 2
z z ω ω′ ++

= , thus z and z′  are symmetric with respect to the  

center of the fundamental parallelogram, hence if we know the values of ( )z℘  
in one of the triangles determined by a diagonal of the parallelogram, then we 
know its values in the whole parallelogram. Also, ( )z℘  takes the same value at 
points symmetric with respect to the middle of each one of the sides of this 
triangle. Since the function is univalent in the triangle and maps each side two to 
one onto some curve originating in the image of the middle of the respective side 
and going to infinity (the ends of each side being poles) we conclude that these 
triangles are fundamental domains of ( )z℘ . Let us denote ( )1 1 2e ω=℘ , 

( )2 2 2e ω=℘  and ( )3 1 22 2e ω ω=℘ + . Then ( )z℘  maps conformally every 
fundamental triangle onto the whole complex plane with infinite slits originating 
at 1 2,e e  and 3e . Figure 7 illustrates this situation. It shows also that each one 
of the domains , 0,1, 2,3kD k =  is mapped conformally onto the corresponding 
domain kD′  with two sides of , 0,1, 2,3kD k =  going onto the slits. From the 
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Figure 7. Fundamental triangle of ( )z℘  and its conformal mapping. 
 
differential equation of ( )z℘  (see [1], page 278) is obvious that 1 2 3 0e e e+ + = , 
which implies that the triangle with vertices 1 2 3, ,e e e  contains the origin, hence 
( )z℘  has a zero in the domain 0D  and, obviously another one in the  

symmetric domain with respect to 1 2

2
ω ω+

 (These might have been unknown  

facts until now!). 
Theorem 6. The Cauchy integral formula can be extended to any fundamental 

domain of the Weierstrass ℘  function . 
Proof: For r big enough the circle w r=  is intersecting every slit of ( )z℘  

and the pre-image by ( )z℘  of the domain { }w w r>  is formed with infinitely 
many connected open sets covering each one a vertex of the period parallelograms. 
The function ( )z℘  is analytic on the complementary set of this pre-image. In 
particular, the Cauchy integral formula is applicable to any fundamental triangle 
from which that pre-image has been removed. If we denote by rΩ  such a set, 
then we have: 

( ) ( )
0

0

1 d
2 r

z
z z

i z z∂Ω

℘
℘ =

π −∫                     (16) 

for every 0 rz ∈Ω . Due to the univalence of ( )z℘  in rΩ , it has an inverse 
function ( )wϕ  defined in the disc w r≤ . Thus, ( )( )e ei ir rθ θϕ℘ = . With the 
change of variable ( )eiz r θϕ= , the integral on the part of r∂Ω  belonging to 
the pre-image of the circle eiw r θ=  becomes 

( ) ( )( )
2

0
0

e e d
e e

i i

i i

r ir
r z r

θ θ

θ θ

θ
ϕ ϕ

π

− ′℘
∫                   (17) 

Since the points ω  are triple poles ( )z′℘  the term ( )( )eir θϕ′℘  tends to 
infinity as fast as 3r  when r →∞  therefore the integrand in (18) tends to zero 
as r →∞ . If we denote by Ω  any fundamental domain of ( )z℘ , then this limit  

guarantees the absolute convergence of the improper integral 
( )

0

d
z

z
z z∂Ω

℘
−∫  and  
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the fact that for every 0z ∈Ω  we have: 

( ) ( )
0

0

1 d
2

z
z z

i z z∂Ω

℘
℘ =

π −∫                       (18) 

which represents the extension of Cauchy integral formula to the fundamental 
domains of the Weierstrass ℘  function. It asserts that the function is completely 
determined by its values on the boundary of any fundamental triangle. 

Theorem 7. For any fundamental domain Ω  of ( )z℘  and for every point 

0z ∈Ω  the value of an arbitrary derivative ( ) ( )k z℘  at 0z  is given by the 
formula: 

( ) ( ) ( )
( )

( ) ( )
0 1

00

! 1d d
2 2

k
k

k

z zkz z z
i i z zz z +∂Ω ∂Ω

℘ ℘
℘ = =

π π −−
∫ ∫          (19) 

Proof: Since the integral (18) converges absolutely, we can differentiate term 
by term in (18) with respect to 0z  as many times as we want and we obtain the 
first equality in (19). For the second equality we write (17) with ( ) ( )k z℘  instead 
( )z℘  and notice that the corresponding term in (17) still tends to zero as 

r →∞ . Then a formula similar to (18) is true with ( )z℘  replaced by  

( ) ( )k z℘ , hence the improper integral 
( ) ( )

0

d
k z

z
z z∂Ω

℘
−∫  converges absolutely and  

we obtain the second equality in (19). 

10. An Integral Formula for the Weierstrass ζ-Function  

Weierstrass denoted the antiderivative of ( )z℘  (which is defined up to an 
additive constant) by ( )zζ− . Therefore ( ) ( )z zζ ′ = −℘  and if we normalize it  

so that it is odd (see [1], page 273) we get ( ) 20

1 1 1 zz
z zωζ

ω ω ω≠

 = + + + − 
∑ .  

The series converges absolutely and uniformly on every compact set which does 
not contain any period point ω . We obtain ( )zζ  by integrating on any path 
that does not pass trough the poles the function ( )s−℘  from 0z  to z, where 
we can take 0z  such that ( )0 0zζ ′ = . Then having in view (18) we can write: 

( ) ( )
0

1 d d
2

z

z

s
z s u

i s u
ζ

ζ
∂Ω

′ 
= −  

π − 
∫ ∫                   (20) 

11. Conclusion 

The concept of fundamental domain, as defined by Ahlfors (see [1], page 99), is 
crucial in understanding the geometry of the mappings by analytic functions. 
We realized that the Cauchy integral formula can be extended to the boundary 
of such a domain. However, this extension cannot be performed for an arbitrary 
analytic function and the process requires specific treatment for specific classes 
of such functions. We selected in this paper classes of functions we thought to be 
the most representative. The selection is far from exhaustive and a lot of work 
remains to be done. 
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