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Abstract

Acute myocardial infarction initiates a cascade of events including loss of
protein homeostasis and chronic inflammation that affect overall cellular re-
pair and senescence. This contributes to loss of cardiomyocytes and conse-
quent formation of fibrotic scar. In certain vertebrate species, the heart can
completely self-repair or regenerate after myocardial injury; however, this
does not appear to be the case for humans. Despite this limitation, studies
using novel non-pharmacologic interventions designed to protect against
ischemic damage and to improve patient outcomes are ongoing. Remote
ischemic conditioning stratagems are used to attenuate ischemia-reperfusion
injury in clinical and animal studies; endogenous protective factors that sti-
mulate complex signal transduction pathways are deemed responsible. Some
of these factors could conceivably act in concert with those involved in regu-
lating cardiovascular regeneration. Numerous studies have focused on cardiac
regenerative interventions using stem-cell based therapies and transplanta-
tion of cardiomyocyte (or other cell types) or biocompatible matrices. This
review discusses recent progress of pre-clinical and clinical translational stu-
dies for cardiac regeneration. In addition, we submit that interventions using
cellular adjunctive therapies combined with remote ischemic conditioning
may prove to be of interest in the battle to find novel strategies for protection
against cardiac injury.

Keywords

Cardiac Injury, Cardiac Regeneration, Myocardial Infarction, Remote
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1. Introduction

Ischemic heart disease is a leading cause of mortality [1] [2]. Cardiac injury
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triggered by acute myocardial infarction results in rapid and significant loss of
cardiomyocytes [3]. The adult human heart is limited in its capacity to regene-
rate, or to self-repair; [4] this is in contrast to other species (neonatal mice and
swine, zebrafish, etc.) that are able to repopulate ischemic myocardium with mi-
nimal scar formation [5] [6].

The gold standard of treatment to limit myocardial injury is reperfusion of the
infarct-related coronary artery using percutaneous coronary interventions [7].
On the other hand, reperfusion may exacerbate cellular injury that is manifest as
myocardial stunning, coronary artery no-reflow, ventricular arrhythmias and
cardiomyocyte necrosis, Ze. lethal reperfusion injury [8] [9].

Even though reperfusion is effective in patients, other strategies to regenerate
damaged myocardium include transplantation of stem cells or cardiomyocytes,
e.g. bone marrow-derived cells, resident cardiac cells, skeletal myoblasts, etc. to
the ischemic zone and induction of cardiomyocyte proliferation [10]. Replace-
ment of cardiomyocytes in adult humans could occur through mitotic division
[11] [12]; however, the proliferative capacity of these cells remains unclear [4]
[13].

Ischemic conditioning, e.g. preconditioning, postconditioning, preconditioning,
remote conditioning, etc., the heart with repetitive episodes of non-lethal occlu-
sion-reperfusion stimulates cellular protection pathways in animals and humans
and protects myocardium and coronary vessels against injury [14] [15]. A ple-
thora of animal and human studies examining the effects of ischemic condition-
ing on organ protection with different conditioning strategies has been pub-
lished since it was initially reported in 1986; the reader is referred to several re-
cent reviews that have addressed this topic [15] [16] [17].

This review discusses relevant translational studies with regard to cardiac re-
generation as well as the potential influence of remote cardiac conditioning on
ischemic injury. The literature search used MEDLINE and PubMed and was
combined with a free search; keywords included angiogenesis, cardiac condi-
tioning, cardiac regeneration, cardiomyocyte proliferation, cardioprotection,

myocardial cell injury and stem cells.

2. Physiopathology of Cell Death and Myocardial Remodeling

An abrupt and total interruption of blood flow through an epicardial coronary
artery leads to myocardial necrosis if reperfusion of blood to the ischemic bed is
not rapidly restored. After onset of ischemia, a highly regulated process is acti-
vated to re-establish tissue architecture and morphology; the time to cell death
varies among species. Cardiac cellular injury is characterized by marked swel-
ling, development of contraction bands, mitochondrial calcification and mem-
brane disruption [18]. It is often classified as reversible (reperfusion instituted
within 15 minutes of acute coronary occlusion) or irreversible (failure to survive
when environment is restored) and follows a transmural gradient from the inner

to outer layers of the ventricular wall [7]. Various forms of reperfusion injury
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are described in the scientific literature; myocardial stunning, i.e. viable cardi-
omyocytes that exhibit prolonged post-ischemic contractile dysfunction even af-
ter reperfusion, and myocardial hibernation, ie. viable, but chronically con-
tractile dysfunctional cardiomyocytes. While the pathogenesis of cell death in
non-cardiac cells is less considered in most studies, it is clear that vascular en-
dothelial and smooth muscle cells along with nervous system components with-
in the ischemic zone are negatively affected by coronary occlusion; this contri-
butes significantly to overall loss of cardiac contractile function and limits re-
covery potential. Loss of these myocardial components probably renders the af-
fected tissue non-salvageable for a number of reasons including no-reflow, or
disrupted electrical conduction, etc. Timely reperfusion of the infarct-related ar-
tery by various clinical strategies (just enumerate them as reperfusion therapy
which may be pharmacological, primary percutaneous coronary intervention,
primary PCI, urgent coronary artery bypass graft, appears to limit overall myo-
cardial damage; however, reperfusion itself may exacerbate injury via apoptosis
or autophagy [19].

While patient survival after ischemia has markedly improved over the last
forty years, the prevalence of chronic heart failure due, in part, to remodeling of
the damaged left ventricle has also increased [20] [21]. Cardiac repair is a com-
plex, tightly regulated process between innate and immune systems [22] that in-
cludes inflammation and infiltration of the infarct area by immune cell subtypes
(neutrophils, monocytes, etc.), proliferation of myofibroblasts that deposit col-
lagen required for scar formation, and maturation of scar tissue.

During evolving necrosis, pro-inflammatory cytokines released from cardi-
omyocytes promote recruitment of circulating inflammatory cells. Signals that
stimulate upregulation of cellular adhesion molecules facilitate leukocyte adhe-
sion, endothelial rolling and extravasation into damaged myocardium [21] [23].
Macrophages, which compose almost 10 percent of the non-cardiomyocyte pop-
ulation in the heart, are major constituents of post-ischemic cardiac repair; [24]
neutrophils, which first infiltrate infarcted myocardium, phagocytize cellular
debris, release proteolytic enzymes and generate reactive oxygen species that de-
grade extracellular matrix and initiate wound healing [25]. However, neutrophils
also exacerbate cellular damage by microvessel plugging and release of cytotoxic
compounds [26] [27]. The disproportionate accumulation of neutrophils could
impede the transition from inflammatory to proliferative phase of cardiac repair.
On the other hand, use of pharmacologic stratagems to limit inflammatory cell
access to infarcted myocardium may not be ideal because it could constrain in-
farct healing and promote adverse myocardial remodeling [28] [29]. In addition,
the complement cascade, which is part of the innate immune system, has been
implicated in tissue regeneration; [23] inhibition of C5aR1, a complement re-
ceptor, increases scar size and attenuates proliferation of cardiomyocytes [30].

Once degradation and digestion of irreversibly injured cardiomyocytes, and

other cell types, is complete, cardiac repair is initiated by accumulation of myo-
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fibroblasts, angiogenesis and deposition of collagen [31]. Inflammation and an-
giogenesis are inter-related: [32] release of vascular endothelial growth factor
and other pro-angiogenesis or pro-survival factors within or near the infarct area
stimulates maturation of nascent vessels but the precise mechanisms involved
are not established.

Leukocyte infiltration is an important facilitator of healing that com-
mences within the first week after reperfusion to the ischemic bed. At this
time, a cascade of anti-inflammatory and pro-fibrotic mediators is released
to permit the proliferation of fibroblasts that are required for development of
a collagen-rich scar [33] [34]. Fibroblast expansion and conversion to a syn-
thetic myofibroblast phenotype are central to the release of anti-inflammatory
and pro-angiogenic factors that are involved in formation of granulation tis-
sue; this is also a key component of the proliferative phase [35]. While their
source is unclear, myofibroblasts (characterized on the basis of a-smooth mus-
cle actin expression) may arise from resident fibroblasts or circulating bone
progenitor cells; [36] [37] regardless, these cell types promote synthesis of extra-
cellular matrix proteins, Ze collagen, fibrin, fibronectin, etc., that contribute to
scar formation [38] [39]. Extracellular matrix changes require induction of matri-
cellular proteins, e.g. thrombospondins, tenascins, osteopontin, etc., which mod-
ulate protease and growth factor activity during transition to scar formation.

In the heart, the extracellular matrix comprises basement membrane, intersti-
tial matrix and extracellular fluid; proteoglycans, glycoproteins, cell-matrix inte-
raction proteins and collagen are major structural components [40]. Inflamma-
tory cells migrate within the extracellular matrix in response to stress and injury.
Maturation comprises several steps including translation and post-translation
(hydroxylation and glycosylation) of procollagen chains; collagen being the
principle structural component of the extracellular matrix. Increased collagen
cross-linking is associated with adverse remodeling, higher ventricular filling
pressure and poor clinical outcome [41] [42]. Matricellular protein expression
allows localization of inflammatory and fibrotic responses at or near the infarct
border zone (existence of an infarct border zone has been debated elsewhere [43]
[44]).

Extracellular matrix stiffness contributes to efficacy of post-infarction heart
regeneration. In the mammalian heart, once extracellular matrix is established
and cardiac cells exit the cell cycle, upregulation of extracellular matrix consti-
tuents reduces proliferation and causes formation of a collagenous stiff scar; car-
diac regenerative capacity increases when extracellular matrix is less stiff [45]
[46].

A second wave of immune activation has been described whereby upregula-
tion of inflammation mediators in a distant organ, e.g. spleen, influences re-
modeling of the heart [33] [47]. Such a scenario could be used for the remote
conditioning phenomenon that has been reported to confer considerable pro-

tection against ischemia-induced organ injury; remote conditioning could at-
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tenuate adverse myocardial remodeling by intercellular communications
through extracellular vesicles, e.g. exosomes, which contain proteins, mRNAs,
miRNAs (small noncoding RNAs) and DNA [48] [49]. MiRNAs are crucial for
cardiac development and regeneration; [5] [50] they regulate target protein levels
post-translationally by binding to complementary sequences in the untranslated
region that leads to mRNA degradation or stop translation. Antifibrotic effects of
specific miRNAs, e.g. miR-21, miR-29, etc., via exosome-mediated transmission
[51] [52] could be affected by remote conditioning. Inhibition of miRNAs (cf.
review by Soler-Botija [53]) may also reduce cardiomyocyte death; silencing
various miRNA families in mice has been reported to protect the heart against
effects of remodelling [54] [55]. Although less studied, recent findings support a
role for noncoding RNAs (ncRNAs) in cardiomyocyte proliferation, but a more
profound examination is necessary [56] [57].

Damage to the myocardial microvasculature, micro-embolization (neutrophil
plugging, platelet aggregation, etc.) and external vascular compression caused by
oedema all contribute to poor transmural perfusion following an ischemic event
[58] [59]. Re-establishment of functional blood vessels is critical for delivery of
oxygen and nutrients to ischemic myocardium; [60] either by re-opening of res-
ident vessels or via angiogenesis within the infarct zone. Transplantation of bone
mesenchymal stem cells (BMSCs) to infarcted myocardium promotes angioge-
nesis via release of angiogenic cytokines; [61] in rats, pretreatment with catalpol
facilitates survival of BMSCs, inhibits apoptosis and increases vascular endo-
thelial growth factor within ischemic myocardium [62] [63].

In zebrafish, delayed angiogenesis within the infarct zone reduces cardiomyo-
cyte proliferation and results in nonresolution of scar [22] [64]. Additionally, in
Hippo-deficient cardiomyocytes, upregulation of vasculogenesis [65] stimulates
development of collateral vessel networks that are essential for tissue regenera-
tion [66]. Furthermore, exogenous application of CXCL12 (chemotactic ligand
induced by hypoxia) on the epicardium induces formation of collateral vessels
by migration of arterial endothelial cells along pre-existing capillaries (arterial
re-assembly) [66] [67]. An additional element of cardiac repair that is the forma-
tion of lymph vessels within the ischemic region; stimulation of lymphangioge-
nesis after infarction is necessary for removal of inflammatory cells and cellular
by-products from the zone under repair [68]. Impeding formation of lymph
vessels limits immune cell clearance and worsens clinical outcomes.

Cardiac interstitial cells such as myofibroblasts, infiltrating and tissue-resident
macrophages, endothelial, stromal and other cell types [69] all help to regulate
injury and regenerative responses but the factors responsible are not clear. A
better understanding of complex interactions between signalling and develop-
mental pathways of the various cell types that comprise the myocardium is es-
sential for conception of novel clinical interventions. Heart regeneration may be
limited with respect to location of injury within the ventricular wall; for instance,

regeneration by activation of angiogenesis and formation of extracellular matrix
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have been documented in the epicardial layer [70] [71] [72]. While epicardial
factors are important for cardiac regeneration after myocardial infarction, the
reader is reminded that necrosis of the heart generally occurs first within the

endocardial or deeper layers of the myocardial wall.

3. Remote Cardiac Conditioning

Remote cardiac conditioning was initially described as “preconditioning at a dis-
tance” by Przyklenk and coworkers [73]. Use of this intervention, before or after
an ischemic event, markedly limits organ injury; repeated inflation/deflation of a
blood pressure cuff on either an upper or a lower limb is generally used in pa-
tients [74] [75] [76]. A recent review of clinical studies that used remote condi-
tioning reported, in about half of those studies, manifest cardiac protection; [77]
the remainder documented either a positive trend, no benefit or even exacerba-
tion of injury [8] [16]. Multiple comorbidities in patients may be responsible for
the discordant results; however, cellular protection has been reported depending
on the scale of stimulus used to trigger protective pathways [78].

The constancy of the level of protection against necrosis, ventricular dys-
rhythmias and contractile dysfunction provided by various conditioning strat-
egies, e.g. anesthetic, pharmacologic, non-pharmacologic, direct and remote,
etc. is remarkable. The commonality of underlying physiopathological me-
chanisms responsible for triggering cellular protection suggests the existence of
cross-tolerance. Mechanisms involved in conditioning-mediated protection have
been discussed elsewhere; as such, the reader is referred to a number of review
articles that have examined intracellular signalling cascades and other mechan-
isms implicated in conditioning [1] [17] [79]. The benefits of conditioning on
cardiac repair are known; protection afforded by non-pharmacologic interven-
tions is potentially mediated by inhibition of extracellular matrix degradation
and collagen synthesis [80] [81].

How protective signals, either humoral or neural, are transported from condi-
tioned tissue to the target organ remain unclear. Diverse hypotheses have been
examined and include communication: via blood or perfusate-borne humoral
factors, by neuronal stimulation and transmission, and by systemic alteration of
circulating immune cells [77] [82] [83]. Restoration of blood flow is key for in-
itiating cellular protection; without it, transfer of mediators that trigger protec-
tive pathways to distant organs is questionable. Pharmacologic ganglionic
blockade abrogates remote conditioning-mediated protection; this implies that
protective signals are principally transferred via neural pathways [84] [85]. Inte-
grity of cardiac nerve status influences immediate, or delayed condition-
ing-mediated cellular protection differently [86] [87] [88]. The requirement for
intact and functional nerves is also questionable as nerve transection may ab-
olish conditioning-induced protection; [89] but direct nerve stimulation can in-
duce the protection phenotype [90] [91]. Exposure to brief periods of antecedent

ischemia, Ze. ischemic conditioning, influences cardiomyocyte regeneration.
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Cellular protection with this intervention is either immediate, being triggered
by release of endogenous mediators, e.g. adenosine, nitric oxide, bradykinin, etc.
and activation of complex second messenger systems and anti-oxidant pathways,
[92] [93] or delayed, being dependent on induction and release of cytoprotective
proteins [94] [95].

Ischemic conditioning may stimulate angiogenesis within ischemic myocar-
dium via release of various biochemical factors [96] and thereby improve perfu-
sion at the microvessel level [97] but these findings remain controversial [98].
Improved availability of nutrients and oxygen within ischemic myocardium of

conditioned hearts may be advantageous for tissue regenerative therapies.

4. Heart Regeneration

Myocardial injury stimulates cell cycle activation without mitosis; [99] multipo-
tent cells with characteristics of cardiac stem cells can differentiate into myo-
cytes, smooth muscle cells and endothelial cells [100]. Application of cardi-
omyocyte regeneration therapies to damaged myocardium is a promising thera-
peutic strategy for restoration of post-ischemic cardiac dysfunction. Progress of
cardiomyocyte regenerative interventions is hindered by numerous challenges
related to cell survival and engraftment post-injection.

During gestation, cardiomyocytes grow by hyperplasia (cellular division after
duplication of entire cellular content) and by hypertrophy (increased cell size
without increasing number) to increase overall mass [2] [101]. While the num-
ber of cardiomyocytes in the human heart is considered as fixed, [4] some proli-
feration and hypertrophy may occur with ageing due to activation of hormonal
triggers [102]. The latter might also be due to loss of centrosome integrity and
acytokinetic mitosis [103] [104]. Activators that interact with, and modulate,
cyclin-CDK complexes, regulate progression through the cell cycle [2] [105]
[106]. Species with regenerative capabilities comprise mononucleated and dip-
loid cells; [107] more than 30 percent of adult cardiomyocytes are diploid [108].
Cardiomyocytes increase ploidy (ie. number of chromosome sets) by acytoki-
netic mitosis, endomitosis and endoreduplication [109] [110]. Human cardi-
omyocytes reinitiate DNA synthesis (not associated with cardiomyocyte prolife-
ration), without nuclear division, in response to various pathological conditions,
e.g. hypertension, volume overload, valvular disease, etc. [111] Cardiomyocyte
ploidy increases after myocardial infarction particularly within the border region
(between injured and patent myocardium); [109] [112] the principal difference
between non-regenerative and regenerative species is ploidy. Despite the in-
creasing number of studies documenting improved cardiac performance in pa-
tients with ischemic heart disease benefitting from cardiomyocyte regenerative
interventions, understanding the controlling mechanisms for cell cycle progres-
sion in humans is a challenge.

A host of genetic mechanisms are necessary for control of heart regeneration;

a better understanding of these mechanisms is essential if we hope to improve
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success of interventions designed to stimulate cardiac repair. For instance, the
Hippo pathway, Ze. evolutionarily conserved kinase cascade, is a key modulator
of cardiac regeneration, cardiomyocyte replenishment, development, homeosta-
sis, pathology and vascularity [113] [114]. Activation of the Hippo pathway leads
to phosphorylation of transcriptional co-activators, e.g. YAP, TAZ, etc.; this
prevents their nuclear localization and restrains cardiomyocyte proliferation
[113] [115]. In mice, with myocardial infarction, deletion of core Hippo signal-
ling components in cardiomyocytes leads to reversal of heart failure [50] [65].

Various other strategies are under investigation for regeneration of damaged
myocardium post-infarction in patients; the most recent involves injection of
stem cells to affected regions of the heart. To date, differentiation of stem cells to
cardiomyocytes has proved to be underwhelming but some improvement of
ventricular function has been reported [116]. Mechanisms advanced to explain
these beneficial effects include paracrine actions, e.g. exosome-derived effects,
which promote angiogenesis, mitigate apoptosis, modulate inflammation and
subsequent scar formation or cardiac remodeling [117] [118].

Transplantation of cardiomyocytes, obtained from human heart or animal
biopsies, into, or on, the injured heart is ongoing. A major limitation of most
cell-based interventions is a lack of vascular support that is essential for the high
oxygen and metabolic demands of contracting myocardium. Other factors that
affect safety of cell delivery include; mode of delivery, cell type and dosage, status
of the heart (contractile function, arrhythmic potential), time of treatment and
adjunctive therapy used to enhance cellular homing and transdifferentiation
[119]. Su and coworkers recently showed that a vascularized biomimetic micro-
vessel patch promoted cardiomyocyte proliferation and neovascularization
post-infarction [120]. Injectable collagen-based biomaterials could provide me-
chanical support, improve angiogenesis and tissue integration and limit negative
remodelling; [121] [122] however, further testing is necessary to limit risks to
patients [123]. McLaughlin and coworkers recently developed a recombinant
human collagen matrix that prevents adverse cardiac remodelling but improves
ventricular function even when applied during the late proliferative phase [124].
In immune-suppressed rats, transplantation of primary neonatal cardiomyocytes
markedly enhanced ventricular function post-infarction [125] [126]. Similar
findings are observed in other animal and clinical experiments; [127] [128] but

this is not always the case in heart failure patients.

5. Limitations

While many studies advocate the promising aspects of cardiac regenerative
techniques [129] there are limitations that underscore the optimism and benefits
initially attributed to these interventions. For example, post transplantation al-
most 85 percent of donor stem cells are lost within the first 24 h; [130] mitigat-
ing factors such as patient characteristics, e.g. sex, age, underlying medical con-

ditions, etc., immune rejection of transplanted cells, obstruction of the micro-
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vasculature and tumor formation also merit consideration [131] [132]. Benefits
of regenerative cell treatments may depend on myocardial location; success of
stem cell or cardiomyocyte applications to the epicardial surface of the heart,
which differ from intra-myocardial injections for a host of reasons amongst spe-
cies. Moreover, a crucial missing element in this puzzle is the question of blood
perfusion to the affected ischemic (Ze microvessel level) area after, and during
formation of scar, transplantation of regenerative cells or cellular scaffolds; rapid
stimulation of neo-angiogenesis and neo-arteriogenesis to provide required nu-
trients and oxygen to newly formed myocardium has not been adequately do-
cumented. Successful implantation of cardiomyocytes, from human heart biop-
sies, across the myocardial wall surely depends on availability of blood perfusion
at the macro- and micro-levels. Furthermore, information is lacking with respect
to formation of a venous and lymphatic network that are critical for tissue via-
bility.

Local effects of transplanted cells on diseased myocardium must also be eva-
luated. Resultant excessive inflammation or aberrant tissue formation, i.e. scar
formation, tissue calcification, etc., could impair myocardial function [133]. Ad-
ditionally, the in vivo regenerative capacity of other cell types essential for
post-ischemic restoration of ventricular function remains uncertain [134] [135].
Nonetheless, ongoing efforts continue to search for ideal cell types and optimal
treatment protocols including gene therapy; investigations are also underway to
examine cell-free strategies aimed at multiple cell targets, e.g. cardiomyocytes,
endothelial cells, etc. [136].

Despite the massive investment in regenerative interventions and therapy,
studies show only modest improvement of ventricular contractile function; nu-
merous clinical trials have reported unconvincingly that greater cardiac struc-
ture and function can be achieved in patients with ischemic heart disease. The
regenerative capacity of mammalian myocardium remains questionable due to
low-level re-entry of mature cardiomyocytes into the cell cycle; [137] [138] ex-
ogenously administered stem cells could be limited with regard to their capacity

to stimulate myocardial repair or regeneration after pathological stress.

6. Concluding Remarks

Successful organ regeneration following acute myocardial infarction requires a
perfect symphony between multiple micro-environmental factors, cardiac fi-
broblasts, extracellular matrix proteins, macrophages, redox status, etc., to sti-
mulate or activate cellular signaling pathways or molecules that control the car-
diomyocyte cell cycle. It is clear that numerous hurdles need to be overcome to
ensure the re-organisation of functional myocardial structure after infarction.
Finally, further evaluation in controlled large animal (Ze. non-rodent) or clinical
studies is essential before cardiac regenerative interventions can be successfully
applied to improve patient outcomes. A combinatorial treatment approach may

turn out to be more effective than those aimed at single factors. For instance, in
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patients receiving remote conditioning interventions, a more favorable envi-

ronment for proliferation of regenerative cell types within ischemic myocar-

dium, e.g. due to less extensive ischemic injury, may be available. While this has

not been examined in either animal or clinical studies, these questions must be

addressed to ensure development of novel therapies to limit the effects of

ischemic injury.
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