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Abstract 

Inclusion of dissipation and memory mechanisms, non-classical elasticity and 
thermal effects in the currently used plate/shell mathematical models require 
that we establish if these mathematical models can be derived using the con-
servation and balance laws of continuum mechanics in conjunction with the 
corresponding kinematic assumptions. This is referred to as thermodynamic 
consistency of the mathematical models. Thermodynamic consistency en-
sures thermodynamic equilibrium during the evolution of the deformation. 
When the mathematical models are thermodynamically consistent, the 
second law of thermodynamics facilitates consistent derivations of constitu-
tive theories in the presence of dissipation and memory mechanisms. This is 
the main motivation for the work presented in this paper. In the currently 
used mathematical models for plates/shells based on the assumed kinematic 
relations, energy functional is constructed over the volume consisting of ki-
netic energy, strain energy and the potential energy of the loads. The Euler’s 
equations derived from the first variation of the energy functional for arbi-
trary length when set to zero yield the mathematical model(s) for the de-
forming plates/shells. Alternatively, principle of virtual work can also be used 
to derive the same mathematical model(s). For linear elastic reversible de-
formation physics with small deformation and small strain, these two ap-
proaches, based on energy functional and the principle of virtual work, yield 
the same mathematical models. These mathematical models hold for reversi-
ble mechanical deformation. In this paper, we examine whether the currently 
used plate/shell mathematical models with the corresponding kinematic as-
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sumptions can be derived using the conservation and balance laws of classical 
or non-classical continuum mechanics. The mathematical models based on 
Kirchhoff hypothesis (classical plate theory, CPT) and first order shear de-
formation theory (FSDT) that are representative of most mathematical mod-
els for plates/shells are investigated in this paper for their thermodynamic 
consistency. This is followed by the details of a general and higher order 
thermodynamically consistent plate/shell thermoelastic mathematical model 
that is free of a priori consideration of kinematic assumptions and remains 
valid for very thin as well as thick plates/shells with comprehensive nonlinear 
constitutive theories based on integrity. Model problem studies are presented 
for small deformation behavior of linear elastic plates in the absence of thermal 
effects and the results are compared with CPT and FSDT mathematical models.  
 

Keywords 
Plate and Shell Mathematical Models, Energy Functional, Thermodynamic 
Consistency, Classical Continuum Mechanics, Non-Classical Continuum 
Mechanics, Internal Rotations, Cosserat Rotations, Principle of Virtual Work 

 

1. Introduction 

The plate/shell theories and their mathematical models used currently are natu-
ral extensions of beam bending theories. The plate bending theories based on 
Kirchhoff hypothesis (Classical Plate Theory, CPT), first order shear deforma-
tion assumption (First order Shear Deformation Theory, FSDT) and the Higher 
order Shear Deformation Theory (HSDT) are in fact derived using the concepts 
used in Euler-Bernoulli beam theory, Timoshenko beam theory and higher order 
beam theories [1] [2] [3] [4] [5]. The earlier presentations of the concepts and 
formulations related to the bending of plates can be traced back to Chladni et al. 
(1802), Germain (1826), Lagrange et al. (1828), Cauchy (1828), Poisson (1829) 
and Kirchhoff (1850) in references [6]-[12]. A formal presentation of the plate 
bending theory now referred to as classical plate theory (CPT) is due to Kir-
chhoff (1850) in references [11] [12]. This plate bending theory is also referred 
to as plate theory based on Kirchhoff hypothesis (kinematic assumptions) that 
consists of: 

1) Normals perpendicular to the middle surface of the plate before deforma-
tion remain normal after deformation to the deformed middle surface. 

2) The normals perpendicular to the middle surface are assumed inextensible.  
3) Based on (1), the normals to the middle surface before deformation rotate 

during deformation such that they remain normal to the deformed middle sur-
face.  

These assumptions are incorporated in the description of displacements 
( )1 1 2 3, , ,u x x x t  and ( )2 1 2 3, , ,u x x x t  at an arbitrary point using the rotations  

3

1

u
x
∂
∂

 and 3

2

u
x
∂
∂

 while displacement u3 remains a function of x1, x2 and t only. 
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The problems associated with this plate theory are:  
1) zero transverse shear stress (non physical)  
2) its failure to accommodate deformation physics of thick plates etc. is well 

known.  
In an attempt to correct the shortcomings of CPT many papers, books and 

monographs have appeared [13]-[21]. The first significant improvement was due  

to what is now referred as FSDT in which 3

1

u
x
∂
∂

 and 3

2

u
x
∂
∂

 in the kinematic  

assumptions for 1u  and 2u  are replaced by unknown rotations 1φ  and 2φ  
(similar to Timoshenko beam theory). This resulted in nonzero transverse shear 
stresses that are constant across the plate cross-section (this is well known to be 
non physical). The HSDT and their many variations are now available in the 
published works that alleviate the problems associated with CPT and FSDT. 
Other published works related to the plate bending theories can be found in ref-
erences [22] [23] [24] [25]. In a recent paper, Surana et al. [26] investigated 
thermodynamic consistency of the currently used beam mathematical models 
that are based on kinematic assumptions and are derived either using energy 
methods or using the principle of virtual work. The authors concluded that the 
currently used beam models cannot be derived using the conservation and bal-
ance laws of CCM or NCCM. Hence, these mathematical models are thermody-
namically inconsistent. A serious consequence of thermodynamic inconsistency 
is that any further enhancement of these models cannot be done using the con-
servation and balance laws of CCM or NCCM. 

Almost all currently used mathematical models for plates and shells are de-
rived based on specific kinematic assumptions defining displacements u1, u2, u3 
as functions of x1, x2, x3 and t in conjunction with the following: 

1) By constructing a functional (I) consisting of kinetic energy, strain energy 
due to bending and potential energy of the loads. 

2) The first variation of this functional is set to zero ( 0Iδ = ). This is a neces-
sary condition for an extremum of the functional I in (1).  

3) The Euler’s equations derived from 0Iδ =  (using either fundamental 
lemma of the calculus of variations or the fourth basic lemma ([27] [28] [29]) 
constitute the mathematical model (generally referred to as equations of equili-
brium) of the deforming plate or the shell. The mathematical model for most 
plates and shell theories is derived using this approach. The CPT, FSDT, etc. 
mathematical models are derived using this approach. 

Majority of the published works on the mathematical models for plates and 
shells [13]-[21] either follow this approach described in (1) - (3) or principle of 
virtual work. One could show that when the deformation due to mechanical 
work is reversible, both approaches yield identically the same mathematical 
models. The fundamental differences in various plate and shell theories and the 
corresponding mathematical models arise due to: 

1) Kinematic assumptions describing the deformation of the plate cross-section 
and its middle surface. This leads to specific strain, hence stress fields and spe-
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cific expressions for the moments obtained by integrating the moments of the 
stresses over the thickness of the plate or the shell.  

2) The second significant difference arises due to specific chosen physics re-
lated to strain energy in the functional I. 

Remarks  
1) Different choices in (1) - (2) lead to different mathematical models. 
2) The approaches described above (energy functional or principle of virtual 

work) for deriving mathematical models for plates and shells can only be used 
for isothermal processes with reversible mechanical deformation and the energy 
equation is not part of the mathematical models. Thus, the mathematical models 
for the plate and shell theories requiring consideration of dissipation and mem-
ory mechanisms, nonlinear considerations and thermal effects cannot be derived 
using this approach.  

3) Dissipation and memory mechanisms in the current plate and shell theories 
can only be addressed using phenomenological approaches employing 1D 
springs and 1D dashpots. Shortcomings of this approach and the difficulties as-
sociated with its extensions to 2  and 3  are well known [30].  

4) The consideration of kinetic energy and potential energy of loads in the 
energy functional I is rather straight forward. However, the strain energy con-
sideration requires rate of work conjugate pairs which are only known from the 
derivation of the energy equation (first law of thermodynamics). Since stress is a 
consequence of strain through material response, moment results due to curva-
ture through material response, thus it is perhaps fitting to say the stress and the 
strain rate, moment and curvature rate are rate of work conjugate pairs. This in 
fact is the basis for strain energy considerations in the functional I. It is rather 
obvious that this approach relies heavily on clear and precise understanding of 
physics and may work well in simple deformation physics, but in more complex 
situations this approach may not be as straight forward and may even lead to 
erroneous choices. 

Various Considerations, Scope and Outline of Work 

In the following we outline the basic approach used and the scope of work pre-
sented in this paper. 

1) In establishing thermodynamic consistency of the plate and shell mathe-
matical models it suffices to use bending of plates only as shell formulations are 
their extensions. We consider x1x2 plane to be the middle surface of the plate of 
thickness h.  

2) In the work presented here we consider small strain, small deformation and 
reversible mechanical deformation. The conservation and balance laws and the 
constitutive theory(ies) for such deformation are summarized in the “Appendix 
A” for classical as well as non-classical continuum mechanics.  

3) The CPT and FSDT mathematical models used currently contain all fea-
tures of the majority of the plate and shell mathematical models used currently, 
hence in this paper we only consider these two mathematical models as repre-
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sentative mathematical models for establishing thermodynamic consistency of 
all plate and shell mathematical models.  

4) The conservation and balance laws and the associated constitutive theories 
of continuum mechanics for isotropic and homogeneous solid continua in 3  
(such as plate/shell) must be used to describe physics of deformation to ensure 
that the deforming continua is always in thermodynamic equilibrium. Thus, to 
establish thermodynamic consistency (or lack of it) of the mathematical models 
of CPT and FSDT, we must begin with the conservation and balance laws of 
continuum mechanics and then incorporate the assumed kinematic relations of 
CPT and FSDT in these to arrive at the final mathematical models. The mathe-
matical models so derived using laws of thermodynamics are obviously thermo-
dynamically consistent and will honor the kinematic assumptions of CPT and 
FSDT. These mathematical models are compared with currently used mathe-
matical models for CPT and FSDT. 

a) If the mathematical models of CPT and FSDT derived in this paper using 
conservation and balance laws along with their corresponding kinematic as-
sumptions are exactly the same as those used currently, then the currently used 
mathematical models for CPT and FSDT are thermodynamically consistent.  

b) If we find that the currently used mathematical models for CPT and FSDT 
are not the same as the mathematical models derived here in 4(a), then the cur-
rently used mathematical models for CPT and FSDT are thermodynamically in-
consistent. In this case any further enhancement (such as incorporating dissipa-
tion and memory mechanisms) in the currently used mathematical models for 
CPT and FSDT are not possible using the conservation and balance laws of con-
tinuum mechanics. We keep in mind that the mathematical model derived using 
the conservation and balance laws of continuum mechanics may be invalid too 
due to enforcing the corresponding kinematic assumptions in their derivations, 
but this does not effect the issue of determining thermodynamic consistency of 
the current CPT and FSDT mathematical models.  

c) If we find that 4(b) holds, then obviously there is a need for thermodynam-
ically consistent mathematical model describing physics of bending of plates/shells 
based on the conservation and balance laws of continuum mechanics that can 
describe thin as well as thick plates/shells without violating thermodynamic con-
sistency. This is accomplished in the new formulation presented in the paper. 

5) The outline of the work presented in this paper is given in the following 
a) The derivations of currently used CPT and FSDT mathematical models us-

ing energy functional are described and the complete mathematical models are 
presented and discussed.  

b) Equations resulting form the conservation and balance laws and constitu-
tive theories are presented for 

i) Classical continuum mechanics.  
ii) Non-classical continuum mechanics using internal rotation [31] [32]. 
iii) Non-classical continuum mechanics using internal and Cosserat rotations 

[33] [34]. 
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c) The conservation and balance laws of classical and non-classical continuum 
mechanics (CCM, NCCM) are used in conjuction with kinematic assumptions 
of the CPT and FSDT to derive the resulting mathematical models for CPT and 
FSDT based on CCM as well as NCCM conservation and balance laws. These 
mathematical models honor the conservation and balance laws and kinematic 
assumptions.  

d) The mathematical models derived in 5(c) are compared with the currently 
used mathematical models of CPT and FSDT.  

e) Derivation of the new kinematic assumption free thermodynamically con-
sistent plate/shell mathematical model is presented that is free of kinematic as-
sumptions and is capable of describing the thin as well as thick plate/shell de-
formation physics.  

f) Model problem studies comparing results from currently used CPT, FDST 
plate models and from the new formulation presented in this paper are given.  

g) Summary and conclusions are given in the last section of the paper.  
h) “Appendix A” contains complete mathematical models based on CCM and 

NCCM i.e., the equations resulting from the CCM as well as NCCM conserva-
tion and balance laws, the basic definitions of rotations (both internal and Cos-
serat) and the constitutive theory considerations for CCM as well as NCCM 
based on internal rotations and Cosserat rotations.  

2. Currently Used Mathematical Models for CPT and FSDT 

For simplicity consider bending of a a b h× ×  rectangular plate with thickness 
h with its middle surface in 1 2x x  plane, hence 3x  normal to the middle plane 
of the plate/shell. Let ( )1 ,iu x t , ( )2 ,iu x t  and ( )3 ,iu x t  be the displacements 
in 1 2 3, ,x x x  directions of a point ( ) [ ] [ ] [ ]1 2 3, , 0, 0, 2, 2ix x x x a b h h= ∈ × × −  
(see Figure 1). In this paper we use the same notations as used in the currently 
published works on plates and shells. Some of these notations are not consistent 
with the notations used in continuum mechanics. Based on continuum mechan-
ics notations, ijσ  refers to Cauchy stress on the i plane in the j direction. For-
tunately, this notation is same in plate and shell mathematical models. Likewise 

ijm  is the component of the Cauchy moment tensor acting on the i plane about 
the j axis. Unfortunately, this notation is not followed in the derivations of plate 
and shell models. We will illustrate the differences when discussing the various 
mathematical models for plates and shells. To avoid confusion, we present  
 

 
Figure 1. Schematic of the plate. 
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currently used plate and shell mathematical models using the same notations as 
used currently in the literature. 

2.1. Classical Plate Theory (CPT) Based on Energy Functional (or  
the Principle of Virtual Work) 

The classical plate theory is due to Kirchhoff hypothesis [11] [12] and is based 
on the following kinematic assumptions for the displacements 1 2 3, ,u u u  at an 
arbitrary point [ ] [ ] [ ]( )1 2 3, , 0, 0, 2, 2x x x a b h h∈ × × −  for an arbitrary value of 
time t. 

( ) ( ) ( )

( ) ( ) ( )

( )

3 1 2
1 1 2 3 1 1 2 3

1

3 1 2
2 1 2 3 2 1 2 3

2

3 3 1 2

, ,0,
, , , , ,0,

, ,0,
, , , , ,0,

, ,0,

u x x t
u x x x t u x x t x

x
u x x t

u x x x t u x x t x
x

u u x x t

∂
= −

∂

∂
= −

∂

=



             (1) 

Using (1) we can derive the linear strain measures ( ijε  symmetric part of the 
displacement gradient tensor): 

2 2
1 3 2 3

11 3 22 3 332 2
1 1 2 2

2
1 2 3

23 31 12 3
2 1 2 1

; ; 0

10;
2

u u u ux x
x x x x

u u ux
x x x x

ε ε ε

ε ε ε

∂ ∂ ∂ ∂
= − = − =
∂ ∂ ∂ ∂

 ∂ ∂ ∂
= = = + − ∂ ∂ ∂ ∂ 

 

 

           (2) 

Based on (2), the strain energy is only due to 11σ , 11ε ; 22σ , 22ε ; 12σ , 12ε  
as 33ε , 23ε  and 31ε  are zero, hence make no contribution to strain energy. The 
mathematical model based on (1) and (2) and the linear constitutive theory for 
Cauchy stress tensor (isotropic, homogeneous matter)  

( )

( )

11 11 11 12 22 22 21 11 22 23 12 66 12

11 22 12 11 21 662

; ; 2

; ;
1 2 1

D D D D D
E ED D D D D D G

σ ε ε σ ε ε σ ε

ν
ν ν

= + = + =

= = = = = =
− +

      (3) 

is derived by considering energy functional (I) consisting of kinetic energy, 
strain energy and the potential energy of loads over length L and the area of 
cross-section A i.e. integral over the volume (V) of the plate and time [0, t]. Us-
ing Lagrangian description, we can write the following for I:  

( )

22 2
31 2

0
0

11 11 22 22 12 12 0

1
2

2 d d

t

V

b
i i

uu uI
t t t

u F V t

ρ

σ ε σ ε σ ε ρ

  ∂∂ ∂     = + +        ∂ ∂ ∂      


− − − + 


∫ ∫
            (4) 

We use (1) - (3) in (4) and expand each term in (4). For an extremum of I, we 
set first variation of I to zero ( 0Iδ = ). Using integration by parts all differentia-
tion is transferred from 1 2,u uδ δ   and 3uδ  to their coefficients. After grouping 
the coefficients of 1 2,u uδ δ   and 3uδ  and performing integration with respect  

to x3 using limits ,
2 2
h h− 

  
, the coefficients of 1 2,u uδ δ   and 3uδ  for arbitrary  
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time, length and the remaining spatial limits are set to zero. These are the Euler’s 
equations constituting the mathematical model for CPT based on (1) - (4): 

2
1 11 12

0 0 12
1 2

0bu N Qh h F
t x x

ρ ρ∂ ∂ ∂
− − − =

∂ ∂ ∂


                 (5) 

2
2 12 22

0 0 22
1 2

0bu Q Nh h F
t x x

ρ ρ∂ ∂ ∂
− − − =

∂ ∂ ∂


                 (6) 

2 3 4 3 4 2 2
3 3 3 11 12 22

0 0 32 2 2 2 2 2 2
1 2 1 1 2 2

2 0
12 12

bu h u h u M M Mh h F
t t x t x x x x x

ρ ρ∂ ∂ ∂ ∂ ∂ ∂
− − − − − − =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (7) 

( ),i xt x tx t∀ ∈Ω = Ω ×Ω  

in which 
2 2 2

11 11 3 22 22 3 12 12 3
2 2 2

d ; d ; d
h h h

h h h

N x N x Q xσ σ σ
− − −

= = =∫ ∫ ∫          (8) 

2 3 2 2
3 3

11 3 11 3 11 122 2
1 22

2 3 2 2
3 3

22 3 22 3 21 222 2
1 22

2 3 2
3

12 3 11 3 66
2 12

d
12

d
12

d
12

h

h

h

h

h

h

h u uM x x D D
x x

h u uM x x D D
x x

h uM x x D
x x

σ

σ

σ

−

−

−

 − ∂ ∂
= = + ∂ ∂ 

 − ∂ ∂
= = + ∂ ∂ 

 − ∂
= =  ∂ ∂ 

∫

∫

∫

           (9) 

The shear forces Q13 and Q23 are obviously zero. The complete mathematical 
model for CPT consists of (5), (6) and (7) in 1 2,u u   and u3 in which M11, M22 
and M12 are functions of u3 and are defined by (9). N11, N22 and Q12 can be easily 
obtained using (8) and (3). For pure bending without inplane load and deforma-
tion in x1x2 plane, the mathematical model consists of (7) and (9). If we only 
consider stationary process (boundary value problem) and if we substitute (9) in 
(7), then we can obtain a single fourth order partial differential equation in u3 
describing pure bending of plates.  

4 4 4
3 3 3

4 2 2 4
1 2 1 2

u u u q
x x x x D

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                   (10) 

in which 0 3
bq hFρ=  and 

( )
3

212 1
EhD

ν
=

−
. 

Remarks. 
1) As is well known, in this mathematical model the transverse shear stresses 

23σ  and 31σ  (hence the corresponding shear forces) are zero. This is obviously 
non physical.  

2) Because of (1), this mathematical model does not account for strain energy 
due to these shear stresses and the corresponding shear strains, hence we expect 
this model to underestimate the actual transverse displacement u3.  

3) We note that moment M11 due to 11σ  is about x2 axis, hence based on 
standard continuum mechanics notation it should have been M12 (on face x1 
about x2 axis). The same holds for other moments as well. We remark that these 
moments are not components of a moment tensor. We continue with this nota-
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tion for the currently used mathematical models presented in this paper for the 
sake of transparency between the material in this paper and the published works.  

2.2. First Order Shear Deformation Theory (FSDT) Based on  
Energy Functional (or the Principle of Virtual Work) 

The mathematical model for the first order shear deformation theory employs 
the following kinematic assumptions for the displacements u1, u2 and u3 at an 
arbitrary location 1 2 3, ,x x x  in the plate for an arbitrary time t [14] [18]. 

( ) ( ) ( )
( ) ( ) ( )

( )

1 1 2 3 1 1 2 3 1 1 2

2 1 2 3 2 1 2 3 2 1 2

3 3 1 2

, , , , ,0, , ,0,

, , , , ,0, , ,0,

, ,0,

u x x x t u x x t x x x t

u x x x t u x x t x x x t

u u x x t

φ

φ

= −

= −

=



              (11) 

In which 1φ  and 2φ  are the rotations of x1x3 and x2x3 sections of the plate 
with respect to center plane. These rotations 1φ  and 2φ  are in fact rotations 
about x2 and x1 axes once again inconsistency of notations, but we continue with 
(11) in 1φ  and 2φ  as stated above. Using (11), we can derive the linear strain 
measures 

( ) ( )

( ) ( )

( ) ( )

1 1 2 2
11 3 22 3 33

1 1 2 2

3
23 1 2 32 1 2 2

2

3
31 1 2 13 1 2 1

1

1 2 3 2 1
12 1 2 3 21 1 2 3

2 1 2

; ; 0

1, ,0, , ,0,
2

1, ,0, , ,0,
2

1, , , , , ,
2 2

u ux x
x x x x

ux x t x x t
x

ux x t x x t
x

u u xx x x t x x x t
x x x

φ φε ε ε

ε ε φ

ε ε φ

φ φε ε

∂ ∂ ∂ ∂
= − = − =
∂ ∂ ∂ ∂

 ∂
= = − + ∂ 

 ∂
= = − + ∂ 

 ∂ ∂ ∂ ∂
= = + − + ∂ ∂ ∂ 

 

 

1x
 
 ∂ 

    (12) 

Based on (12) only 33σ , 33ε  do not contribute to strain energy. If we assume 
linear constitutive theory with plane stress behavior in the plane(x1x2 plane), 
then 

( ) ( ) ( )

( )

11 11 11 12 22 22 21 11 22 22

23 44 23 31 55 31 12 44 12

11 22 12 21 112

44 55 66

;
2 ; 2 ; 2

;
1

.
2 1

D D D D
D D D

ED D D D D

ED D D G

σ ε ε σ ε ε
σ ε σ ε σ ε

ν
ν

ν

= + = +

= = =

= = = =
−

= = = =
+

          (13) 

The mathematical model based on (11) - (13) is also (as in the case of CPT) 
derived by considering energy functional I consisting of kinetic energy, strain 
energy and the potential energy of loads over the volume V of the plate and time 
[0, t]. Using Lagrangian description we can write the following for I. 

( ) ( )

22 2
31 2

0 11 11
0

22 22 23 23 31 31 12 12 0

1
2

2 (2 ) 2 d d

t

V

b
i i

uu uI
t t t

u F V t

ρ σ ε

σ ε σ ε σ ε σ ε ρ

  ∂∂ ∂     = + + −        ∂ ∂ ∂      


− − − − + 


∫ ∫
       (14) 
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We use (11) - (13) in (14) and expand each term in (14). For an extremum of I, 
we set first variation of I to zero ( 0Iδ = ). Using integration by parts all diffe-
rentiation from 1uδ  , 2uδ  , 3uδ , 1δφ  and 2δφ  is transferred to their coeffi-
cients. After grouping the coefficients of 1uδ  , 2uδ  , 3uδ , 1δφ  and 2δφ  and  

performing integration with respect to x3 using limits ,
2 2
h h− 

  
 the coefficients  

of 1uδ  , 2uδ  , 3uδ , 1δφ  and 2δφ  for arbitrary time and spatial limits are set 
to zero. These are the Euler’s equations constituting the mathematical model for 
FSDT based on (11) - (14): 

2
1 11 12

0 0 12
1 2

2
2 12 22

0 0 22
1 2

2
3 13 23

0 0 32
1 2

3 2
1 11 12

0 132
1 2

3 2
2 12 22

0 232
2 2

0

0

0

0
12

0
12

b

b

b

u N Qh h F
t x x

u Q Nh h F
t x x

u Q Qh h F
t x x

h M M Q
t x x

h M M Q
t x x

ρ ρ

ρ ρ

ρ ρ

φρ

φρ

∂ ∂ ∂
− − − =

∂ ∂ ∂

∂ ∂ ∂
− − − =

∂ ∂ ∂

∂ ∂ ∂
− − − =

∂ ∂ ∂

∂ ∂ ∂
− − + =

∂ ∂ ∂

∂ ∂ ∂
− − + =

∂ ∂ ∂





               (15) 

in which 
2

1 2
11 11 3 11 12

1 22

2
1 2

22 22 3 21 22
1 22

d

d

h

h

h

h

u uN x h D D
x x

u uN x h D D
x x

σ

σ

−

−

 ∂ ∂
= = + ∂ ∂ 

 ∂ ∂
= = + ∂ ∂ 

∫

∫

 

 

             (16) 

( )

( )

( )

2 2
3

23 32 23 3 44 23 3 44 2
22 2

2 /2
3

13 31 13 3 55 13 3 55 1
12 2

2 2
1 2

12 21 12 3 66 12 3 66
2 12 2

d 2 d

d 2 d

d 2 d

h h

h h

h h

h h

h h

h h

uQ Q x D x hD
x

uQ Q x D x hD
x

u uQ Q x D x hD
x x

σ ε φ

σ ε φ

σ ε

− −

− −

− −

 ∂
= = = = − +  ∂ 

 ∂ = = = = − +  ∂  
 ∂ ∂ = = = = + ∂ ∂ 

∫ ∫

∫ ∫

∫ ∫
 

    (17) 

and 

( )

2 3
1 2

11 3 11 3 11 12
1 22

2 3
1 2

22 3 22 3 21 22
1 22

2 2 3
1 2

12 3 12 3 3 66 12 3 66
2 12 2

d
12

d
12

d 2 d
12

h

h

h

h

h h

h h

hM x x D D
x x

hM x x D D
x x

hM x x x D x D
x x

φ φσ

φ φσ

φ φσ ε

−

−

− −

 − ∂ ∂
= = +  ∂ ∂  

 − ∂ ∂ = = +  ∂ ∂  
 − ∂ ∂ = = = + ∂ ∂ 

∫

∫

∫ ∫

   (18) 

Equations (15) constitute the complete mathematical model in 1 2 3 1, , ,u u u φ    
and 2φ . 11 22 12 11 22 12, , , , ,N N Q M M M  as functions of 1 2 3 1, , ,u u u φ    and 2φ  are 
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defined by (16) - (18). 
Remarks. 
1) We note that the transverse shear forces Q13 and Q23 are not zero in this 

mathematical model.  
2) This mathematical model when compared with CPT is expected to yield 

higher transverse deflection u3 due to shear deformation (additional strain ener-
gy due to transverse shear strains 13ε , 23ε  and shear stresses 13σ  and 23σ ).  

3) We note from (17) that transverse shear forces Q13 and Q23 are not func-
tions of x3 i.e., these are constant along the thickness of the plate where as their 
actual distributions are parabolic functions of x3. Thus, the strain energy due 

23σ , 23ε  and 13σ , 13ε  in this model is not correct(as well known). Shear cor-
rection factors [14] [35] are used to correct this situation. In the present work, 
we do not consider shear correction factors, instead we use this final mathemat-
ical model (15) - (18) that is consistent with the kinematic assumptions (11) 
when obtaining solutions for comparison with the new formulation.  

4) In case of pure bending (in the absence of in plane (x1x2 plane) loads) we 
only need to consider equations three through five in (15), equations one and 
two in (17) and equations in (18). This mathematical model for pure bending 
consists of eight first order partial differential equations in eight dependent va-
riables u3, Q13, Q23, M11, M12, M22, 1φ  and 2φ . Q13, Q23, M11, M12 and M22 can be 
eliminated by substituting them in equations three, four and five of (16). This 
gives rise to three partial differential equations in u3, 1φ  and 2φ , containing up 
to second order derivatives of u3, 1φ  and 2φ . 

3. Kinematic Assumption Free Methodology for Bending of  
Plates and Shells 

The derivations of the mathematical models for bending of plates and shells that 
are free of kinematic assumptions should always begin with the use of conserva-
tion and balance laws as this is necessary for thermodynamic consistency of the 
resulting mathematical models. We present a brief summary of the conservation 
and balance laws of classical continuum mechanics (CCM) as well as non-classical 
continuum mechanics (NCCM). In case of CCM, for small strain, small defor-
mation and isothermal reversible mechanical deformation physics, we only need 
to consider balance of linear momenta, balance of angular momenta and the li-
near constitutive theory for the Cauchy stress tensor (“Appendix A”, Section 
A.1). However, in case of NCCM, additional considerations are necessary as 
shown in “Appendix A”, Section A.2 and Section A.3. In the following sections 
we present explicit forms of the conservation and the balance laws in 1 2 3, ,x x x  
space and time t as needed in the derivations of the CPT and FSDT plate bend-
ing mathematical models. 

3.1. Classical Continuum Mechanics 

Complete details of the mathematical model consisting of balance of linear mo-
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menta, balance of angular momenta, linear strain measures and the linear con-
stitutive theory for the Cauchy stress tensor are given in “Appendix A”, Section 
A.1. 

3.2. Non-Classical Continuum Mechanics (NCCM) 

In non-classical continuum mechanics the description of the physics of defor-
mation of solid continua considers additional aspects of deformation physics 
over and beyond classical continuum mechanics. In the present work, we con-
sider two non-classical continuum theories that are directly applicable in the de-
rivation of the mathematical models of the CPT and FSDT due to the kinematic 
assumptions used. 

3.2.1. Non-Classical Continuum Mechanics with Internal Rotations 
In this continuum theory the entire displacement gradient tensor, i.e. symmetric 
part (strain measures) as well as the antisymmetric part (measures of internal 
rotations) are considered in the derivation of the conservation and balance laws 
(see Surana et al. [31] [32] [36] for details), and we have the following. Balance 
of linear momenta yields the same equations as in CCM (Equation (A2), “Ap-
pendix A”). Following Section A.2 in “Appendix A”, we have the following from 
the remaining balance laws including the linear constitutive theories:  

for ;

and for and 0 for
ij ji ij s ij a ij

s ij s ji a ij a ji a ij

j i
i j j i

σ σ σ σ σ

σ σ σ σ σ

≠ ≠ = +

= = − ≠ = =
         (19) 

( ) ( ), BAMmk m ijk ij ijk a ijm σ σ= − = −                 (20) 

( )BMM .ij jim m=                        (21) 

Linear constitutive theories for sσ , m  and q  are given by 

2s ij ij kk ijσ µε λε δ= +                        (22) 

( )2 i
kj s kjm Jµ Θ=



                         (23) 

and 

.i iq kg= −                            (24) 

Equations (A2), (20), (22) and (23) constitute eighteen partial differential eq-
uations in eighteen dependent variables iu , s ijσ , a ijσ  and ijm , hence the 
mathematical model has closure. µ , λ  and µ



 are material coefficients. 

3.2.2. Non-Classical Continuum Mechanics with Internal and Cosserat  
Rotations 

In this continuum theory, we also consider internal rotations ( )1 2 3
, ,i x i x i xΘ Θ Θ  

due to antisymmetric part of the displacement gradient tensor in addition to 
strain measures (hence we consider the displacement gradient tensor in its enti-
rety) as well as three Cosserat rotations (

ie xΘ , additional degrees of freedom) at 
a material point both acting about the axes of the same triad with its axes parallel 
to fixed x-frame. Thus, now we have total rotations tΘ , sum of tΘ  and eΘ  at 
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each material point. In the following we present conservation and balance laws 
and the constitutive theories that consider this physics. The balance of linear 
momenta remains the same as in CCM (Equation (A2) in “Appendix A”) except 
that Cauchy stress tensor σ  is not symmetric. 

Following Section A3 in “Appendix A”, we have the following from the re-
maining balance laws and the linear constitutive theories: 

for ;

and for and 0 for
ij ji ij s ij a ij

s ij s ji a ij a ji a ij

j i
i j j i

σ σ σ σ σ

σ σ σ σ σ

≠ ≠ = +

= = − ≠ = =
         (25) 

( ) ( ), BAMmk m ijk ij ijk a ijm σ σ= − = −                  (26) 

( )BMM .ij jim m=                       (27) 

Linear constitutive theories for sσ , m , aσ  and q  are given by [31] [32] 
[33] [34] [36]: 

( )2 trs Iµ λ= +σ ε ε                        (28) 

( ) ( )2 trt t
s sµ λΘ Θ= +m J J





                     (29) 

( )2 t
a aβ= r



σ                           (30) 

.k= −q g                             (31) 

Equations (A2), (26), (28) - (30) are a system of twenty one partial differential 
equations in twenty one dependent variables: iu , s ijσ , a ijσ , ijm  and 

it xΘ . 

4. Thermodynamic Consistency of the Currently Used Plate  
and Shell Mathematical Models 

In this section we attempt derivations of CPT and FSDT mathematical models 
using the conservation and balance laws and constitutive theory of classical con-
tinuum mechanics as well as non-classical continuum mechanics based on in-
ternal rotations due to antisymmetric part of the displacement gradient tensor as 
well as internal rotations and Cosserat rotations in conjunction with the kine-
matic assumptions used in CPT and FSDT mathematical models. 

4.1. CPT Mathematical Model Derivation Using CCM 

We initiate the derivation by considering the conservation and balance laws and 
the constitutive theory in Section (A2) of “Appendix A”. These are valid for the 
deformation of continuous matter in 3  and ensure thermodynamic consis-
tency. Thus, use of these is justified for bending of plates and shells in 3 . The 
currently used mathematical model for CPT requires that we incorporate kine-
matic assumptions (1) in the conservation and balance laws of CCM. From (1) 
the expressions for the strain measures 11ε , 22ε  and 12ε  are obtained as 
shown in (2) and we also find that the 33 0ε = , 23 0ε =  and 31 0ε = . The ex-
pressions for the components of the Cauchy stress tensor are established using 
linear constitutive theory as shown in (3). If we assume deformation in 3 , then 

33 0σ ≠  even though 33 0ε = . On the other hand if we assume plane stress, then 
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33 0σ =  and the only nonzero components of stress tensor are 11σ , 22σ  and 

12σ . In the present work, we consider plate deformation in 3 , hence we have 

33 0σ ≠ . In addition to (3), we have 33 31 11 32 22D Dσ ε ε= +  in which 

31 13 11D D Dν= = . 
We substitute from (2) and (3) in the balance of linear momenta (A2), and 

consider integral over the volume [ ]2, 2V A h h= × −  of the plate. In which A 
is the area of the middle plane ( 3 0x = ) of the plate. We integrate with respect to 

[ ]3 2, 2x h h∈ − . The resulting integral is valid over arbitrary area A, hence the 
integrand must be zero, which gives us the following equations: 

2
1 11 12

0 0 12
1 2

2
2 12 22

0 0 22
1 2

2
3 33

0 0 32
3

0

0

0

b

b

b

u N Qh hF
t x x

u Q Nh hF
t x x

u Nh hF
t x

ρ ρ

ρ ρ

ρ ρ

∂ ∂ ∂
− − − =

∂ ∂ ∂

∂ ∂ ∂
− − − =

∂ ∂ ∂

∂ ∂
− − =

∂ ∂







                 (32) 

where, 
2 2 2

11 11 3 22 22 3 12 12 3
2 2 2

/2 2 2
33 33 2 3

3 31 322 2
3 3 1 22

d ; d ; d

d .

h h h

h h h

h

h

N x N x Q x

N u ux h D D
x x x x

σ σ σ

σ

− − −

−

= = =

   ∂ ∂ ∂ ∂
= − = +   ∂ ∂ ∂ ∂  

∫ ∫ ∫

∫
          (33) 

Equations (32) are three partial differential equations in 1 2,u u   and u3. 
Remarks 
1) This mathematical model (32) is obviously not the same as the currently 

used mathematical model (5) - (7). Thus, we can conclude that the mathematical 
model of Section 2.1 (currently used) is thermodynamically inconsistent based 
on CCM as it cannot be derived using the conservation and balance laws of 
CCM.  

2) If we only consider plane stress deformation in the plane of the plate as 
considered in almost all currently used theories, then 33 0N = . For this case, the 
balance of linear momenta (third equation in (32)) contains no deformation 
physics related to the internal stress field.  

3) Transverse shear stresses 23σ  and 31σ  and hence the corresponding 
transverse shear forces Q23 and Q31 are zero (as also in the case of currently used 
models) for CPT. This is obviously non physical.  

4) We note that in Equation (7) except the first and the last terms, the re-
maining terms cannot be justified based on the derivation using CCM (third 
equation in (32)).  

5) We observe that in this derivation we began with perfectly valid balance 
laws of CCM, a valid mathematical model for continuous deformation in 3 , 
but these are altered and damaged due to kinematic assumptions, finally result-
ing in a mathematical model that is not valid for the physics under consider-
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ation. 

4.2. Derivation of Mathematical Model for CPT Using NCCM Based  
on Internal Rotations 

The motivation for the consideration of NCCM in deriving the CPT mathemat-
ical model becomes clear if we decompose displacement gradient tensor d J  
into symmetric and skew symmetric components. 

d d d
s a= +J J J                         (34) 

in which components of d
a J  are in fact related to the internal rotations 

ji xΘ . 
First, we define the internal rotations 

ji xΘ   

( ) ( ) ( )1 2 31 2 3

3 2 1 3 2 1
1 2 3

2 3 3 1 1 2

or .

i x i x i x

u u u u u u
x x x x x x

× = Θ + Θ + Θ

     ∂ ∂ ∂ ∂ ∂ ∂
× = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂    

u e e e

u e e e

∇

∇
     (35) 

Using the kinematic assumptions (1), we obtain following for the internal ro-
tations defined in (35) 

1

2

3

3

2

3

1

2 1

1 2

2

2

.

i x

i x

i x

u
x

u
x

u u
x x

∂
Θ =

∂
∂

Θ = −
∂

 ∂ ∂
Θ = − ∂ ∂ 

 

                     (36) 

The components of d
a J  can now be defined using (36) 

3

2

1

12 21

13 31

23 32

2

2

2

i xd d
a a

i xd d
a a

i xd d
a a

J J

J J

J J

− Θ
= − =

Θ
= − =

− Θ
= − =

                    (37) 

where 
1 2 3
, ,i x i x i xΘ Θ Θ  are internal rotations [31] [32] [33] [34] [36] at a materi-

al point about the axis of a triad with axes parallel to x-frame. The positive rota-
tions in (35) are the counterclockwise sense. From (37) we note that kinematic 
assumptions in (1) employs internal rotations which are not supported by CCM, 
hence the motivation for considering NCCM with internal rotations for the de-
rivations considered in this section. Details of strain tensor components remain 
the same as defined by (2). The stress tensor σ  is decomposed into symmetric 

sσ  and skew symmetric aσ  tensors. 

s a= +σ σ σ                          (38) 

The components sσ  are same as those defined by (2). Substituting the total 
stress tensor σ  from (38) in the balance of linear momenta and integrating 
with respect to 3x  [ ]( )2, 2h h− , we obtain the following: 
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2
1 11 21 31

0 0 12
1 2 3

2
2 12 22 32

0 0 22
1 2 3

2
3 13 23 33

0 0 32
1 2 3

0

0

0

b

b

b

u N Q Qh hF
t x x x

u Q N Qh hF
t x x x

u Q Q Nh hF
t x x x

ρ ρ

ρ ρ

ρ ρ

∂ ∂ ∂ ∂
− − − − =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
− − − − =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
− − − − =

∂ ∂ ∂ ∂





              (39) 

( )

11 11 11 3 22 22 22 3
2 2

2 2
3333 2 3

31 322 2
3 3 1 2

d ; d
s s

s s s s
h h

s

N N x N N x

NN u uh D D
x x x x

σ σ
− −

= = = =

∂  ∂ ∂ ∂
= = + ∂ ∂ ∂ ∂ 

∫ ∫
           (40) 

12 21 31 13 23, , , ,Q Q Q Q Q  and 32Q  are defined later. 
The internal rotation gradient tensor i ΘJ  

{ }
{ }

i iJ
x

Θ  ∂ Θ
  =    ∂ 

                          (41) 

is decomposed into symmetric and skew symmetric tensors. 

i i i
s a

Θ Θ Θ= +J J J                           (42) 

in which 

( )

( )

( )

( ) ( )

( ) ( )

1

2

3

1 2

1 3

2
3

11
1 1 2

2
3

22
2 1 2

33
3

2 2
3 3

12 2 2
2 1 2 1

2 2
2 1

13 2
3 1 1 1 2

23

2

2

0.

1
2

1 1
2 2

i

i

i

i

i

i

i x
s

i x
s

i x
s

i x i x
s

i x i x
s

s

uJ
x x x

uJ
x x x

J
x

u uJ
x x x x

u uJ
x x x x x

J

Θ

Θ

Θ

Θ

Θ

Θ

∂ Θ ∂
= =

∂ ∂ ∂

∂ Θ ∂
= = −

∂ ∂ ∂

∂ Θ
= =

∂

 ∂ Θ ∂ Θ  ∂ ∂ = + = −  ∂ ∂ ∂ ∂  
 ∂ Θ ∂ Θ  ∂ ∂ = + = −  ∂ ∂ ∂ ∂  

 

( ) ( )2 3
2 2

2 1
2

3 2 1 2 2

1 1
2 2

i x i x u u
x x x x x

 ∂ Θ ∂ Θ  ∂ ∂ = + = −  ∂ ∂ ∂ ∂  

 

           (43) 

From balance of angular momenta we have  

, 0.mk m ijk ijm σ+ =                          (44) 

Balance of moment of moments show that [37] [38]  

.ij jim m=                              (45) 

The constitutive theories for sσ  and m  are [31] [32] [33] [34] [36] 

2s ij ij kk ijσ µε λε δ= +                        (46) 

( ) ( )2 ; as 0 .i i
ij s ij s kkm J Jµ Θ Θ= =                    (47) 
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The constitutive theory for 11 11sσ σ= , 22 22sσ σ=  and 12 21s sσ σ=  are ob-
tained using (46) and are same as those in (3). 33 33 0sσ σ= ≠  if we consider the 
deformation of plate bending in 3  (discussed earlier). Using (47) and (42), 
explicit expressions for the constitutive theory for ijm  can be obtained in terms 
of the symmetric part of the rotation gradient tensor. 

Using these expressions for ijm  in BAM (44) and dividing them by 2 and 
then integrating with respect to 3x  over [ ]( )2, 2h h−  we obtain 

( ) ( )
( ) ( )
( ) ( )

11,1 21,2 23 1 2

12,1 22,2 13 1 2

13,1 23,2 12 1 2

2

, , 3
2

13 31 21 12 32 23

,

,

,

1in which d
2

and ; ;

a

a

a

h

mk m mk m
h

a a a a a a

h m m Q x x

h m m Q x x

h m m Q x x

m m x

Q Q Q Q Q Q
−

+ = −

+ = −

+ = −

=

= − = − = −

∫

 

 

 

            (48) 

12 12 12

2

12 12 3

2

2

12 21 12 3

2

d

d

s a
h

s s
h

h

a a a
h

Q Q Q

Q x

Q Q x

σ

σ

−

−

= +

=

= − =

∫

∫

                     (49) 

31 31 31

3 3 3

23 23 23

3 3 3

23 23 23 23

2 2 2 2

31 31 31 31

1 1 1 1

0

0

.

s a

s a

s a a

s a a

Q Q Q
x x x

Q Q Q
x x x

Q Q Q Q
x x x x

Q Q Q Q
x x x x

∂ ∂ ∂
= + =

∂ ∂ ∂
∂ ∂ ∂

= + =
∂ ∂ ∂
∂ ∂ ∂ ∂

= + =
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + =
∂ ∂ ∂ ∂

                   (50) 

We note that 31

3

Q
x

∂
∂

 and 32

3

Q
x

∂
∂

 terms in (39) are zeros as  

( )31 31 1 2, ,0,Q Q x x t=  and ( )32 32 1 2, ,0,Q Q x x t= .  

This mathematical model consists of BLM (39) (3 equations), BAM (44) (3 
equations), constitutive theories for sσ  (or 11 22 12 33, , ,s s s sN N Q N , Equations 
(40) and (49)) (4 equations) and constitutive theories for m  ( 11 12 22 13 23, , , ,m m m m m , 
Equations (47)) (5 equations). These are a total of fifteen partial differential equ-
ations in fifteen variables 1 2 3 11 22 33 12 12 31 23, , ; , , , , , ,s s s s a a au u u N N N Q Q Q Q  ;  

11 12 22 23 13, , , ,m m m m m , hence the mathematical model has closure. 
Remarks 
1) Obviously, the mathematical model used currently consisting of (5) - (9) is 

not the same as derived here using NCCM consisting of Equations (39), (40), 
(48) - (50).  
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2) The balance of linear momenta (39) contain usual terms related to the gra-
dients of the stress tensor σ . 

3) 31sQ  and 23sQ  are zero but 31aQ  and 23aQ  are nonzero due to nonze-
ro 31aσ  and 23σa . Existence of 31aQ  or 31aσ  and 23aQ  or 23aσ  is due to 
Cauchy moment tensor (necessitated due to the presence of internal rotations).  

4) The moment tensor m  is symmetric due to balance of moment of mo-
ments balance law [37] [38] necessary in NCCM.  

5) It is rather obvious that the physics considered in the present derivation is 
consistent with the kinematic assumptions. This is not the case in derivation 
based on the energy method or the principle of virtual work.  

6) We comment that the moment tensor m  in the present derivations is 
Cauchy moment tensor. This is not the case for 11M , 22M  and 12M  obtained 
in the currently used mathematical models by integrating moments of 11σ , 22σ  
and 12σ  in the 3x  direction for ( )3 2, 2x h h∈ − .  

7) The mathematical model derived here is consistent with the conservation 
and balance laws of NCCM and incorporates the kinematic assumptions of CPT, 
but is obviously different than the mathematical model used currently for CPT. 
Thus, we conclude the CPT mathematical model used currently is thermody-
namically inconsistent based on NCCM.  

8) Since the kinematic assumptions (1) in CPT does not contain unknown ro-
tations (Cosserat rotations), there is no motivation or need for undertaking the 
derivation of CPT mathematical model based on NCCM that considers both in-
ternal and Cosserat rotations.  

4.3. Derivation of Mathematical Model for FSDT Using CCM 

In this derivation we need to incorporate kinematic assumptions (11), strains 
(12) and associated stresses (13) in the conservation and balance laws of CCM 
(“Appendix A”). 

Substituting (13) in the conservation and balance laws of CCM (“Appendix A”) 
and integrating in 3x  direction between −h/2 to h/2 we obtain 

( ) ( ) ( )12 1 2 21 31 1 2 13 32 1 2 23, ; , ; ,Q x x Q Q x x Q Q x x Q= = =            (51) 

2
1 11 21

0 0 12
1 2

2
2 12 22

0 0 22
1 2

2
3 13 23 33

0 0 32
1 2 3

0

0

0

b

b

b

u N Qh hF
t x x

u Q Nh hF
t x x

u Q Q Nh hF
t x x x

ρ ρ

ρ ρ

ρ ρ

∂ ∂ ∂
− − − =

∂ ∂ ∂

∂ ∂ ∂
− − − =

∂ ∂ ∂

∂ ∂ ∂ ∂
− − − − =

∂ ∂ ∂ ∂





               (52) 

We note that 31

3

0Q
x

∂
=

∂
 and 32

3

0Q
x

∂
=

∂
 as ( )31 31 1 2, ,0,Q Q x x t=  and  

( )32 32 1 2, ,0,Q Q x x t=  are functions of 1 2,x x  and t only. 33

3

N
x

∂
∂

 is given in Equ-

ation (40).  
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Forces 11N , 22N , 12 21Q Q= , 31 13Q Q=  and 23 32Q Q=  are defined by 
Equation (16). 

Remarks 
1) This mathematical model does not have closure. We have Equations (52) (3 

equations) and Equations (16) (5 equations), a total of eight equations in ten 
dependent variables 1u , 2u , 3u ; 11N , 22N , 13 31Q Q= , 12 21Q Q= , 23 32Q Q= ; 

1φ  and 2φ . Hence, this mathematical model is not valid.  
2) Equations four and five in (15) are not possible in the derivation considered 

here as the time derivatives of 1φ  and 2φ  do not exist in this derivation. These 
only appear in the derivation based on energy methods or in the methods based 
on principle of virtual work. 

3) This mathematical model is obviously not the same as the currently used 
FSDT mathematical model presented in Section 2.2, and is also invalid due to 
lack of closure. 

4.4. FSDT Model Derivation Using NCCM Based on Internal and  
Cosserat Rotations 

The motivation for considering NCCM based on internal and Cosserat rotations 
in deriving the mathematical model becomes clear if we decompose displace-
ment gradient into symmetric and antisymmetric tensors (as in Section 4.2) 
d d d

s a= +J J J  or alternatively expand × u∇ . 
Using × u∇  and the kinematic relations (11) we can obtain 

( ) ( ) ( )1 2 3

1

2

3

1 2 3

3
2

2

3
1

1

2 1 2 1
3

1 2 1 2

in which

t x t x t x

t x

t x

t x

u
x

u
x

u u x
x x x x

φ

φ

φ φ

∇× = Θ + Θ + Θ

 ∂
Θ = + ∂ 

 ∂
Θ = − − ∂ 

   ∂ ∂ ∂ ∂
Θ = − + − +   ∂ ∂ ∂ ∂   

u e e e

 

               (53) 

The total rotations 
1t xΘ , 

2t xΘ  and 
3t xΘ  are the rotations at a material 

point about the axes of a triad with its axes parallel to x-frame. These rotations 
consist of internal rotations as well as the unknown Cosserat rotations 1φ  and 

2φ , both of which are not supported in CCM. This suggests that we should per-
haps undertake the derivations of FSDT plate theory using conservation and 
balance laws and the constitutive theories of NCCM that considers internal and 
Cosserat rotations (Section A.3 in “Appendix A”). 

Based on the kinematic assumptions (11), strains are defined by (12) and the 
components of the symmetric stress tensor are defined by (13) if we assume 
plane stress behavior in the plane of the plate. However, if we consider the plate 
deformation in 3 , then coefficients ijD  are modified and are due to linear 
constitutive theory in 3  giving rise to 33 0σ ≠  and 
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( )1 2
33 31 32 33 1 2 3

1 2

, , ,u uD D x x x t
x x

σ σ∂ ∂
= + =

∂ ∂
               (54) 

The stress tensor σ  is decomposed into symmetric and skew symmetric 
tensors sσ  and aσ : 

s a= +σ σ σ                           (55) 

Definitions of the components of the sσ  is same as in (13). Substituting to-
tal stress tensor σ  into the balance of linear momenta and integrating with re-
spect to [ ]( )3 2, 2x h h−  we obtain (39) in which 

( )

2 2

11 11 11 3 22 22 22 3
2 2

2 2
3333 3 3

31 322 2
3 3 1 2

d ; d

.

h h

s s s s
h h

s

N N x N N x

NN u uh D D
x x x x

σ σ
− −

= = = =

∂  ∂ ∂ ∂
= = + ∂ ∂ ∂ ∂ 

∫ ∫
          (56) 

12 21 31 13 23, , , ,Q Q Q Q Q  and 32Q  appearing in (39) are defined by (67) - (71). 
The gradient t ΘJ  of total rotation tΘ  is defined by 

{ }
{ }

t tJ
x

Θ  ∂ Θ
  =    ∂ 

                       (57) 

Components of t JΘ    can be obtained using definition of 
it xΘ  in (53) and 

using (57): 

( )

( )

( )

( )

( )

1

1

1

2

2

2
3 2

11
1 1 2 1

2
3 2

12 2
2 2 2

13
3

2
1 3

21 2
1 1 1

2
1 3

22
2 2 1 2

0

t

t

t

t

t

t x

t x

t x

t x

t x

uJ
x x x x

uJ
x x x

J
x

uJ
x x x

uJ
x x x x

φ

φ

φ

φ

Θ

Θ

Θ

Θ

Θ

∂ Θ  ∂ ∂
= = + ∂ ∂ ∂ ∂ 

∂ Θ ∂ ∂
= = +

∂ ∂ ∂

∂ Θ
= =

∂

∂ Θ  ∂ ∂
= = − − ∂ ∂ ∂ 

∂ Θ  ∂ ∂
= = − − ∂ ∂ ∂ ∂ 

 

( )

( )

( )

( )

2

3

3

3

23
3

2 2 2 2
2 1 2 1

31 32 2
1 1 1 2 1 1 2

2 2 2 2
2 1 2 1

32 32 2
2 1 2 2 1 2 2

2 1
33

3 1 2

0

.

t

t

t

t

t x

t x

t x

t x

J
x

u uJ x
x x x x x x x

u uJ x
x x x x x x x

J
x x x

φ φ

φ φ

φ φ

Θ

Θ

Θ

Θ

∂ Θ
= =

∂

∂ Θ    ∂ ∂ ∂ ∂
= = − + − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ Θ    ∂ ∂ ∂ ∂
= = − + − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ Θ  ∂ ∂
= = − + ∂ ∂ ∂ 

 

 

       (58) 

Decomposition of t ΘJ  into symmetric ( t
s
ΘJ ) and skew symmetric ( t

a
ΘJ ) 

https://doi.org/10.4236/ajcm.2020.102010


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/ajcm.2020.102010 187 American Journal of Computational Mathematics 
 

tensors gives 
t t t

s a
Θ Θ Θ= +J J J                        (59) 

in which 

( )

( )

T

T

1
2
1 .
2

t t t

t t t

s

a

Θ Θ Θ

Θ Θ Θ

= +

= −

J J J

J J J
 

The nonzero components of the symmetric and the skew symmetric tensors in 
(59) can be easily obtained using (58). 

From the balance of angular momenta [31] [32] [36] we have  

, 0.mk m ijk ijm σ+ =                         (60) 

From the balance of moment of moments balance law [37] [38], we can show 
that  

.ij jim m=                            (61) 

The linear constitutive theories for sσ , m  and aσ  are given by [31] [32] 
[33] [34] [36] 

2s ij ij kk ijσ µε λε δ= +                       (62) 

( )2 t t
ij s ij s kk ijm J Jµ λ δΘ Θ= +





                    (63) 

( )2 t
a ij a ijJσ β Θ=



                        (64) 

where µ , λ  are Lame’s constants and µ


, λ


 and β


 are material coefficients 
related to constitutive theory for non-classical physics due to internal and Cos-
serat rotations. We integrate (60), (62), (63) and (64) with respect to 3x  
[ ]( )2, 2h h−  to obtain the forces per unit length used in the balance of linear 

momenta (39). First, from (60): 

12 3, 21

23 1, 32

31 2, 13

a m m a

a m m a

a m m a

Q m Q
Q m Q
Q m Q

= = −

= = −

= = −







                       (65) 

in which 
2

, , 3
2

1 d
2

h

mk m mk m
h

m m x
−

= ∫


                       (66) 

2 2 2

12 12 3 23 23 3 31 31 3
2 2 2

d ; d ; d .
h h h

a a a a a a
h h h

Q x Q x Q xσ σ σ
− − −

= = =∫ ∫ ∫        (67) 

We note that 11N , 22N , and 33N  due to 11 11sσ σ= , 22 22sσ σ= , 

33 33sσ σ=  are already defined in (40).  
Furthermore,  

12 12 12 23 23 23 31 31 31; ;s a s a s aQ Q Q Q Q Q Q Q Q= + = + = +         (68) 

in which 
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2

12 21 12 3

2

2

23 32 23 3

2

2

31 13 31 3

2

d

d

d

h

s s s
h

h

s s s
h

h

s s s
h

Q Q x

Q Q x

Q Q x

σ

σ

σ

= =

= =

= =

∫

∫

∫

                       (69) 

We substitute constitutive theory for 12sσ , 23sσ  and 31sσ  in (69). 

From (63) after integration of ( ) ( )21
2 2 2

t t
ij s ij s kkm J J

µ λΘ Θ= +




 we obtain 

( ) ( )
2 2

3 3

2 2

d d .
2

t t

h h

ij s ij s kk
h h

m J x J xλµ Θ Θ= +∫ ∫




                 (70) 

Likewise integrating (64) with respect to 3x  between the limits [ ]2, 2h h−  
we obtain 

( )

( )

( )

2

12 12 3
2

2

23 23 3
2

2

31 31 3
2

2 d

2 d

2 d

t

t

t

h

a a
h

h

a a
h

h

a a
h

Q J x

Q J x

Q J x

β

β

β

Θ

−

Θ

−

Θ

−

=

=

=

∫

∫

∫

                     (71) 

We finally rewrite the balance of linear momenta using symmetric and anti-
symmetric decomposition of shear forces. 

( ) ( )

( ) ( )

( ) ( )

2
21 21 31 311 11

0 0 12
1 2 3

2
12 12 32 322 22

0 0 22
1 2 3

2
13 13 23 233 33

0 0 32
1 2 3

0

0

0

s a s a b

s a s a b

s a s a b

Q Q Q Qu Nh hF
x x xt

Q Q Q Qu Nh hF
x x xt

Q Q Q Qu N
h hF

x x xt

ρ ρ

ρ ρ

ρ ρ

∂ + ∂ +∂ ∂
− − − − =
∂ ∂ ∂∂

∂ + ∂ +∂ ∂
− − − − =

∂ ∂ ∂∂

∂ + ∂ +∂ ∂
− − − − =

∂ ∂ ∂∂



      (72) 

The complete mathematical model consists of twenty equations. BLM (3 equ-
ations), BAM (3 equations), constitutive theory for s ijσ  defining 11N , 22N , 

33N , 12sQ , 23sQ , 31sQ  (through (40) and (69)) (6 equations), constitutive 
theory for a ijσ  defining 12aQ , 23aQ , 31aQ  (3 equations), constitutive theory 
for ijm  (5 equations) in dependent variables: 1 2,u u  , 3u  (3); ijm  (5); 11N , 

22N , 33N , 12sQ , 23sQ , 31sQ , 12aQ , 23aQ , 31aQ  (9), 1φ  and 2φ  (2), a total 
of 19.  

Remarks 
1) This mathematical model does not have closure as we have twenty equa-

tions but only nineteen dependent variable. Thus, this mathematical model de-
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rived based on the kinematic assumptions of FSDT with conservation and the 
balance laws of NCCM incorporating internal and Cosserat rotations is invalid.  

2) As in case of the derivation in Section 4.3, here also we observe that the 
time derivative of 1φ , and 2φ  present in the currently used FSDT model derived 
based on the energy method (or the principle of virtual work) does not exist in 
the derivation presented here using NCCM.  

3) This mathematical model is not only different from the currently used 
FSDT mathematical model, but is also invalid due to lack of closure.  

5. General Remarks 

1) In Section 4 we have shown that currently used mathematical models for 
CPT and FSDT cannot be derived using the conservation and balance laws of 
classical as well as the non-classical continuum mechanics based on internal 
and/or Cosserat rotations.  

2) Currently used mathematical model for CPT requires use of internal rota-
tion(s) and the currently used FSDT model requires internal as well as Cosserat 
rotations. Furthermore, all currently used mathematical models for plate bend-
ing (and their extensions to shells) either require use of internal rotation(s) or 
internal and Cosserat rotation(s). Thus, use of CPT and FSDT as typical repre-
sentative mathematical model for investigating thermodynamic consistency of 
all currently used plate/shell mathematical models is justified. Hence, the re-
marks and the inferences presented for CPT and FSDT mathematical models 
hold in general for all currently used plate/shell mathematical models.  

3) From (1) and (2), all currently used plate/shell mathematical models that 
are based on kinematic assumptions and energy methods or principle of virtual 
work are thermodynamically inconsistent. That is, when these mathematical 
models are used to study deformation of plates/shells, thermodynamic equili-
brium is not ensured during the evolution of the deformation.  

4) Since laws of thermodynamics cannot be used in deriving the currently 
used mathematical models, the dissipation, memory mechanism and any further 
enhancements in these mathematical models can only be done phenomenologi-
cally. As well known [30], the phenomenologically incorporated dissipation and 
memory mechanism are only possible in 1  and their extensions to 2  and 

3  (required for plates/shells) is not possible. Due to the absence of energy eq-
uation and the entropy inequality thermodynamically consistent treatment of 
dissipation and memory mechanisms is not possible in currently used plate/shell 
mathematical models.  

6. Kinematic Assumptions Free Methodology Plates and  
Shells 

The derivations of the mathematical models for currently used plate and shell 
theories are based on kinematic assumptions that contain internal rotations that 
arise due to displacement gradient tensor and/or assumed Cosserat rotations 
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(that are additional unknown degrees of freedom) at a material point. We have 
shown that if the kinematic assumptions in plate/shell mathematical models are 
a requirement, then the currently used mathematical models for plates/shells 
cannot be derived using the conservation and balance laws of CCM or NCCM 
incorporating internal or the internal and the Cosserat rotations. Inadequacy of 
the energy methods in deriving the plate/shell mathematical models for en-
hanced deformation physics have already been discussed and is the strong moti-
vator for the present work. Additional benefit of the new methodology presented 
in this paper is that a single formulation will be able to address the physics of all 
plate/shell deformations for linear as well as nonlinear elasticity regardless of the 
plate/shell thickness, loading and the boundary conditions (and the initial con-
ditions). As is well known the conservation and balance laws of CCM and 
NCCM always yield thermodynamically consistent mathematical models, hence 
are always considered as a first step in all of the derivations presented in this pa-
per for establishing thermodynamic consistency of the currently used plate/shell 
mathematical models. We have shown that it is only after incorporating the ki-
nematic assumptions that the mathematical models lose thermodynamic consis-
tency. We consider the following guidelines: 

1) It is perhaps meritorious to consider a methodology in which the kinematic 
assumptions as they are used in the current theories are not considered (i.e., 
eliminated) as these are the main cause of thermodynamic inconsistency of the 
resulting mathematical model. Instead, we begin with mathematical model in 

3  consisting of conservation and balance laws and incorporate the desired 
physics of the kinematics of deformation in a much more general manner so that: 
a) it maintains thermodynamic consistency, and b) the resulting formulation 
holds and remains accurate for slender as well as thick plate and shell deforma-
tion physics.  

2) For continuous media CCM and NCCM are two possible approaches for 
deriving mathematical models of the deforming continuous matter. The CCM 
has been the foundation for describing the physics of deformation of continuous 
media. NCCM incorporates additional physics in the mathematical models over 
and beyond CCM. This may be beneficial in some instances. Nonetheless for 
isotropic, homogeneous linear elastic continuous matter, classical continuum 
mechanics must at least provide some reasonable description of the deformation 
physics regardless of 1 , 2  and 3 . Thus, we should be able to describe the 
plate/shell deformation physics using the conservation and balance laws of CCM 
as well as NCCM if we eliminate the kinematic assumptions at the onset of the 
derivations of the mathematical model(s). In the following, we consider the 
conservation and balance laws of CCM in describing the plate and shells defor-
mation physics.  

3) The finite element method is perhaps the most general and versatile tech-
nique of obtaining solution of the mathematical models consisting of partial dif-
ferential equations. Such solutions are numerical but piecewise analytical and 
with higher order global differentiability local approximations, these solutions 
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can truly approach theoretical solutions [28] [29]. Thus, if the finite element 
technique is eventually to be used to obtain solution of plate or shell mathemat-
ical models, then keeping this in mind we can begin with conservation and bal-
ance laws of CCM in 3 , followed by the design of a geometric description of 
the plate or the shell finite element that is identical to the manner in which 
plates and shells are geometrically described currently i.e., the geometric de-
scription of the midplane of the plate or the shell and the nodal vector at each 
point located at the middle surface given by the difference of the two ends which 
define the bottom and top surface of the plate or the shell.  

4) We map the geometry of the plate or the shell element in (3) in 3  into a 
natural coordinate space ξηζ  in a two unit cube in which ξ  and η  are in 
the middle plane of the element and ζ  is the transverse direction to the middle 
plane. The origin of the coordinate system ξηζ  is at the center of the two unit 
cube (Figure 2).  

5) We can design p-version hierarchical local approximation in ξ , η  and 
ζ  of p-levels pξ , pη  and pζ  with variable choice of the orders of the ap-
proximation space to ensure desired global differentiability of the approxima-
tions. In the local approximation, displacements 1u , 2u  and 3u  can be ap-
proximated by polynomials of degrees pξ , pη  and pζ  as well as higher or-
ders of differentiability. Choices of p-levels pξ , pη  and pζ  define approxi-
mations in the plane of the plate or the shell element as well as deformation of its 
cross section(s). By choosing pξ , pη  and pζ  and desired orders of global 
differentiability of the approximations i.e., the orders of the approximation space 
defining the global differentiability of the approximation for 1u , 2u  and 3u  
desired kinematic behavior of the mid plane of the plate or the shell as well as its 
cross-sections can be achieved.  

6) Thus now we have: a) conservation and balance laws in 3  defining the 
mathematical model for the plate or the shell. b) Geometric description of the 
plate or the shell element and the local approximation for the displacements de-
scribing the deformation physics. The algebraic equation for the plate or the 
shell element are derived using the integral form based on Galerkin Method with 
Weak Form (GM/WF) or residual functional i.e., least squares method [28] [29]. 
For stationary processes i.e., boundary value problems and for linear elastic re-
versible deformation of solid continua, GM/WF yields unconditionally stable 
computational processes [28] [29]. In all other cases, least squares method based 
on residual functional can be shown to obtain unconditionally stable computa-
tions [28] [29].  

7) In the methodology presented here, desired kinematic requirements are 
achieved through local approximation by progressively increasing p-levels. In 
this methodology conservation and balance laws of CCM or those of NCCM can 
be considered. In the present work we consider CCM conservation and balance 
laws.  

8) It is important to point out that the formulation of p-version hierarchical 
0C  plate/shell finite element formulation (for reversible deformation without  
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(f) 

Figure 2. Curved shell element geometry, mappings and nodal configurations. (a) A 3D 
solid element with nine node configuration on its opposite faces (top and bottom); (b) A 
3D curved shell (or plate) element with nodes on the middle surface and nodal vector 
ends defining top and bottom faces; (c) Node i on the middle surface of the shell and 
vector 3V  defining the top and bottom surfaces at node i in ,ξ α  space ( ξαΩ ); (d) Map 
of the element of figure - (b) in the natural coordinate space ξ , η  and ζ ; (e) Nodal 
configuration in ζ  direction; (f) Map of node i and vector 3V . 

 
temperature effects and linear constitutive theory) was originally derived by Su-
rana et al. [39] [40] using principal of virtual work. Exactly similar derivation as 
in ref [39] [40] is also possible using energy method. This approach was also ki-
nematic assumption free, but has the following major shortcomings and limita-
tions. 

a) Principle of virtual work as used in reference [39] can only be used for re-
versible mechanical deformation, hence cannot be extended to include physics of 
dissipation and memory mechanisms.  

b) The constitutive theory for Cauchy stress tensor is assumed to be linear 
generalized Hooke’s law.  

c) Due to absence of energy equation, rate of work conjugate pairs needed for 
constitute theories cannot be established. The energy methods and principle of 
virtual work used in ref [39] [40] assumes a constitutive theory as there is no 
mechanism to derive it.  

9) The methodology used here for thermoelastic plates and shells based on the 
conservation and balance laws of CCM is free of all these restrictions described 
in (8), yet results in the same formulation as due to principle of virtual work or 
energy method for reversible small deformation physics and linear constitutive 
theory in the absence of thermal effects.  

6.1. Conservation and Balance Laws of CCM and Constitutive  
Theories 

For thermoelastic deformation physics, the conservation and balance laws are 
given in the “Appendix A”, Section A.1. We consider thermoelastic solid conti-
nua reversible mechanical deformation and general constitutive theories based 
on integrity [30] [41]-[57]. Based on the conservation and balance laws (more 
specifically second law of thermodynamics), the choice of Φ , η , σ  and q  as 
constitutive variables at the onset is rather straight forward. Using the conjugate 
pairs, ij ijσ ε  and 

θ
⋅q g  and thermoelastic deformation, choice of ε , θ  as ar-
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gument tensors of σ  and g  and θ  as argument tensors of q  is appropriate. 
Using the principle of equipresence, we can choose ε , g  and θ  as argument 
tensors for Φ , η . Thus, we have  

( ),θ=σ σ ε                           (73) 

( ),θ=q q g                           (74) 

( ), ,θΦ = Φ gε                          (75) 

( ), ,η η θ= gε                          (76) 

6.1.1. Constitutive Theory of σ 
Constitutive theory for Cauchy stress tensor σ  can be derived either based on 
Helmholtz free energy density or using representation theorem. We consider 
both approaches here. The resulting constitutive theories from both approaches 
are same and are nonlinear in the components of ε  but linear in θ  when 
based on integrity [30]. 

1) Constitutive theory for σ  using Helmholtz free energy density Φ  using 
(75), we can write 

kl i
kl i

D g
Dt g

ε θ
ε θ

Φ ∂Φ ∂Φ ∂Φ
= Φ = + +

∂ ∂ ∂




                 (77) 

Substituting (77) in SLT (A5) and rearranging terms, we can write 

0 0 0 0kl kl i
kl i

g
g

ρ σ ε ρ η θ ρ
ε θ

 ∂Φ ∂Φ ∂Φ − + + + ≤   ∂ ∂ ∂  


            (78) 

For (78) to hold for arbitrary but admissible choices of ε , θ  and g , the 
following must hold 

0 00kl kl
kl kl

ρ σ σ ρ
ε ε
∂Φ ∂Φ

− = ⇒ =
∂ ∂

                 (79) 

0 0ρ η η
θ θ

∂Φ ∂Φ + = ⇒ = − ∂ ∂ 
                  (80) 

( )0 0i
i

g
g

ρ ∂Φ
= ⇒Φ ≠ Φ

∂
g                    (81) 

and SLT (78) reduces to 

0
θ
⋅

≤
q g                             (82) 

with (79) - (82), SLT (78) is satisfied.  
Remarks 
a) Equation (79) can be used to derive constitutive theory for Cauchy stress 

tensor σ .  
b) Equation (80) implies that η  is not a constitutive variable as it is defined 

by 
θ

∂Φ
∂

.  
c) Equation (82) implies that Φ  is not a function of g , thus ( ),θΦ = Φ ε .  
In the following we derive constitutive theory for σ  using  
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( )
0

,
kl

kl

φ θ
σ ρ

ε
∂

=
∂
ε

                         (83) 

Since, the constitutive theories must be frame independent, we must consider 
( ), , ,I II IIIε ε ε θΦ = Φ ; , ,I II IIIε ε ε  being principle invariants of ε . Thus (83) 

becomes 

( )
0

, , ,
kl

kl

I II IIIε ε εφ θ
σ ρ

ε
∂

=
∂

                     (84) 

or 

0kl
kl kl kl

I II III
I II III

ε ε ε

ε ε ε

φ φ φσ ρ
ε ε ε

 ∂ ∂ ∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ ∂ ∂ 

              (85) 

Following the details of similar derivations in reference [30], we can obtain 
the following from (85) after using the Hamilton-Cayley theorem. 

[ ] [ ] [ ] [ ]20 1 2Iσ σ σσ α α ε α ε= + +
  

                   (86) 

in which 

( ), , , ; 0,1,2i i I II III iσ σ
ε ε εα α θ= =

 

                 (87) 

Material coefficients are determined by expanding ( ).iσα


; 0,1,2i =  in 
Taylor series in Iε , IIε , IIIε  and θ  about a known configuration Ω  and 
only retaining up to linear terms in the invariants and temperature θ  (for sim-
plicity). 

( ) ( )

( ) ( )

i i
i i i

i i
i

I I II II
I II

III III
III

σ σ
σ σ σ σ

ε ε ε ε
ε ε

σ σ
σ

ε ε
ε

α αα α α α

α αα θ θ
θ

Ω ΩΩ
Ω Ω

ΩΩ
ΩΩ

∂ ∂
= + − + −

∂ ∂

∂ ∂
+ − + −

∂ ∂

 

   

 



     (88) 

We substitute (88) in (86) and group the terms and coefficients and if we de-
fine 

1 2 3; ;

i.e., ; 1,2, , ; 3; the invariantsj

I I I II I III

I j M M

σ σ σ
ε ε ε

σ

= = =

= =
  





           (89) 

and 

[ ] [ ]21 2;

i.e., ; 1,2, , ; 2; the generators.i

G G

G i N N

σ σ

σ

ε ε   = =   
  = = 

 





         (90) 

Then (86) can be written as [30]: 

[ ] [ ]

( ) ( )[ ]

0 1

1 =1 1 1

1

M N N M
i j i

j iji
j i i j

N
i

i tm
i

a I I b G C I G

d G I

σσ σ σ σ σ σ

σ σ

σ σ

θ θ α θ θ

Ω
= = =

Ω Ω Ω
=

   = + + +   

 − − − − 

∑ ∑ ∑∑

∑

   



     (91) 

in which; , , ,j ij iia b C dσσ σ σ



; 1,2, ,i N=   and 1,2, ,j M= 
 are material 

coefficients that are functions of invariants jIσ



; 1,2, ,j M= 
 i.e., Iε , IIε , 

IIIε  and θ  in the known configuration Ω . 
Remarks 
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1) This constitutive theory for σ  contains ( 2, 3N M= = ) fourteen material 
coefficients and contains up to fifth degree terms of the components of strain 
tensor [ ]ε , but is linear in temperature θ . 

2) 0σ
Ω

 is the initial stress field. 
3) A linear constitutive theory in which the products of jIσ



, iGσ


, 

( )θ θ
Ω

−  are neglected and only up to linear terms in [ ]ε  and θ  are re-
tained is given by  

[ ] [ ] [ ] ( )[ ]0 1 1
1 1 tmI a I I b G Iσ σ σ σσ σ α θ θ

Ω ΩΩ
 = + + − − 

 

 

using the notation 1 12 ,b aσ σµ λ
Ω Ω

= =
 

 (Lame’s constants) and realizing that 
[ ]1Gσ ε  = 



 and [ ]1 trIσ ε=


 we can write (91) as follows 

[ ] [ ] [ ] [ ]( )[ ] ( )[ ]0 2 tr tmI I Iσ σ µ ε λ ε α θ θΩΩ Ω ΩΩ
= + + − −       (92) 

this of course is generalized Hooke’s law. 
b) Constitutive theory for σ  can also be derived using ( ),θ=σ σ ε  and the 

representation theorem [30] [41]-[57], this leads to 

[ ] [ ] [ ] [ ]20 1 2Iσ σ σσ α α ε α ε= + +
  

                 (93) 

in which [ ]I , [ ]ε  and [ ]2ε  are combined generators of the argument tensors 
[ ]ε  and θ  that are symmetric tensors of rank two. Since (93) is same as (86), 
the rest of the derivation remains same as in case of the derivation using Φ  
given above.  

6.1.2. Constitutive Theory of q 
We begin with ( ),θ=q q g  based on entropy inequality and use representation 
theorem [30] [41]-[57] which gives us the following constitutive theory for q  

( ) ( )1 2κ κ κ θ θ
Ω Ω Ω Ω

= − − ⋅ − −q g g g g g            (94) 

This constitutive theory is based on integrity, hence uses complete basis. From 
(94), we can also derive a linear constitutive theory 

κ
Ω

= −q g                         (95) 

where 1 2, ,κ κ κ  are material coefficients defined in a known configuration Ω . 
These can be functions of ( )Ω⋅g g  (invariant of g ) and θ

Ω
. 

7. Final Mathematical Model (Thermoelastic) 

( )
2

0 02 0 BLMjibi
i

j

D u F
Dt x

σ
ρ ρ

∂
− − =

∂
               (96) 

( )BAMij jiσ σ=                       (97) 

( )0 0 FLTi
ij ij

i

De q
Dt x

ρ σ ε∂
+ − =
∂

                 (98) 

[ ] [ ]

( ) ( )[ ]

0 1

1 =1 1 1

1

M N N M
i j i

j iji
j i i j

N
i

i tm
i

a I I b G C I G

d G I

σσ σ σ σ σ σ

σ σ

σ σ

θ θ α θ θ

Ω
= = =

Ω Ω Ω
=

   = + + +   

 − − − − 

∑ ∑ ∑∑

∑

   



      (99) 
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( ) ( )1 2κ κ κ θ θ
Ω Ω Ω Ω

= − − ⋅ − −q g g g g g            (100) 

The entropy inequality is identically satisfied with the choices we have made 
in deriving the constitutive theories.  

Remarks 
1) Use of this mathematical model (96) - (100) in 3  will result in a com-

prehensive nonlinear plate and shell formulation that describes evolution in 
which [(a)]  

a) The constitutive theory for σ  is based on integrity.  
b) The thermal effects are incorporated using the mechanism consistent with 

the conservation and balance laws.  
2) In the formulation of reference [39] [40] based on principle of virtual work, 

the resulting Euler’s equations representing the associated mathematical model 
are 

0 0jib
i

j

F
x
σ

ρ
∂

− − =
∂

                      (101) 

2ij ij kk ijσ µε λε δ= +                      (102) 

In this approach, even though principle of virtual work permits non-linear 
reversible mechanical deformation, there is no mechanism of the constitutive 
theory like (99). Secondly, consideration of thermal effects requires considera-
tion of energy equation (98) which is not possible in energy methods or prin-
ciple of virtual work. Nonetheless, if we limit the physics to conform to what has 
been considered in reference [39] [40], then the mathematical model (96) - (100) 
obviously reduces to (101) and (102). 

3) We clearly see that enhancement of mathematical model used in reference 
[39] [40] to (96) - (100) using energy methods or principle of virtual work is not 
always possible (as shown here) due to limitations of energy methods and prin-
ciple of virtual work. 

4) In this paper, CPT and FSDT mathematical models for BVPs are used as 
representative plate/shell mathematical models that are based on reversible me-
chanical small deformation without thermal effects. Thus, to compare the work 
presented here with CPT and FSDT, we need to consider the mathematical 
model consisting of (101) and (102) in 3  (simplified form of (96) - (100)). 

8. Finite Element Formulation 
8.1. Complete Mathematical Model 

Expanded form of the mathematical model in 3  ((101), (102)) are given in the 
following: 

( )

( ) ( )

( )

3111 21
1 0 1

1 2 3

3212 22
2 0 2 1 2 3

1 2 3

13 23 33
3 0 3

1 2 3

. 0

. 0 , ,

. 0

b

b
x

b

A F
x x x

A F x x x
x x x

A F
x x x

σσ σ
ρ

σσ σ
ρ

σ σ σ
ρ

∂∂ ∂
= − − − − =

∂ ∂ ∂
∂∂ ∂

= − − − − = ∀ ∈Ω
∂ ∂ ∂
∂ ∂ ∂

= − − − − =
∂ ∂ ∂

   (103) 
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in which x xΩ = Ω Γ  is the closed spatial domain in 3 . 1 2Γ = Γ Γ  is the 
closed boundary of xΩ . The linear constitutive theory for Cauchy stress tensor 
σ  and in terms of linear strain is given in the following (using Voigt’s notation) 

{ } [ ]{ }Dσ =                           (104) 

{ } [ ]
{ } [ ]

T
11 22 33 23 31 12

T
11 22 33 23 31 12

, , , , ,

, , , , ,

σ σ σ σ σ σ σ

ε ε ε ε ε ε ε

=

=
                 (105) 

1 2 3
11 22 33

1 2 3

2 3 1 3 1 2
23 31 12

3 2 3 1 2 1

; ;

1 1 1; ;
2 2 2

u u u
x x x

u u u u u u
x x x x x x

ε ε ε

ε ε ε

∂ ∂ ∂
= = =
∂ ∂ ∂

     ∂ ∂ ∂ ∂ ∂ ∂
= + = + = +     ∂ ∂ ∂ ∂ ∂ ∂    

    (106) 

The nonzero elements of (6 × 6) [D] material coefficient matrix are given by: 
( )

( )( )

( )( )

( )

11 22 33

12 21 13 31 23 32

44 55 66

1
1 1 2

1 1 2
2

2 1

E
D D D

ED D D D D D

D D D G
EG

ν
ν ν

ν
ν ν

ν

−
= = =

+ −

= = = = = =
+ −

= = =

=
+

         (107) 

The boundary conditions (BCs) are defined by: 

1 1 2 2 3 3 1, and onu u u u u u= = = Γ
  

               (108) 

1 2 3

1 2 3

1 2 3

11 21 31 1

12 22 32 2 2

13 23 33 3

on
x x x

x x x

x x x

n n n t

n n n t

n n n t

σ σ σ

σ σ σ

σ σ σ

+ + =


+ + = Γ
+ + = 

              (109) 

where, 1 2Γ = Γ Γ , a closed boundary of xΩ , 
1xn , 

2xn  and 
3xn  are direc-

tion cosines of a unit exterior normal to the boundary 2Γ . E and ν  are mod-
ulus of elasticity and Poisson’s ratio. Equations (103) and (104), nine equations 
in nine unknowns 1 2 3, ,u u u  and ijσ  constitute the complete mathematical 
model for the plate or the shell in 3 . 1 2 3, ,u u u

  

 are known displacement 
boundary conditions on 1Γ  and 1t



, 2t


 and 3t


 are known tractions on the 
boundary 2Γ . 

8.2. Integral Form and Element Formulation 

If we substitute stresses from (104) in balance of linear momenta (103), then we 
obtain a system of three partial differential equations in 1u , 2u  and 3u . One 
could easily show that the differential operator A  and its adjoint *A  in this 
system of differential equations are same, hence for this system of Equations 
(103) and (104) in whatever form, GM/WF would yield an integral form that is 
variationally consistent (VC) [28] [29], thus the resulting computational 
processes are ensured to be unconditionally stable for all choices of computa-
tional parameters (h, p, k) and the physical parameters in the mathematical 
model. Construction of the finite element formulation using GM/WF is facili-
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tated using the mathematical model in the form of (103) and (104). Let T
xΩ  be 

discretization of xΩ , then T e
x x

e
Ω = Ω



 in which e
xΩ  is a typical element “e”. 

Let 1 2 3, ,w w w  be test functions such that  

1 1 2 2 3 3; ; .w u w u w uδ δ δ= = =                   (110) 

We construct integral form over T
xΩ  using (103) and (110) based on funda-

mental lemma of the calculus of variations [27] [28] [29].  

( )( ) ( )( ) ( )( )T T T1 1 2 2 3 3. , 0, . , 0, . , 0
x x x

A w A w A w
Ω Ω Ω

= = =          (111) 

We substitute from (103) in (111) for ( )1 .A , ( )2 .A  and ( )3 .A  and transfer 
one order of differentiation from the stress derivative terms to the test functions. 

Let ( )1 hu , ( )2 hu  and ( )3 hu  be approximations of 1 2,u u  and 3u  over T
xΩ  

and ( )1
e
hu , ( )2

e
hu  and ( )3

e
hu  be the approximations of 1 2,u u  and 3u  over an 

element “e” with domain e
xΩ  such that ( ) ( )e

i ih h
e

u u=


 where 1,2,3i =  are 
the approximations of 1 2 3, ,u u u  over T

xΩ .  

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

T

T

T

1 1 1 1

2 2 2 2

3 3 3 3

. , . , 0

. , . , 0

. , . , 0

e
x x

e
x x

e
x x

e

e

e

e

e

e

A w A w

A w A w

A w A w

Ω Ω

Ω Ω

Ω Ω

= =

= =

= =

∑

∑

∑

                 (112) 

Consider ( )( ). , e
x

e
i iA w

Ω
; 1,2,3i =  over e

xΩ   

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

11 21 31
1 1 0 1 1

1 2 3

12 22 32
2 2 0 2 2

1 2 3

13 23 33
3 3 0 3 3

1 2 3

. , ,

. , ,

. , ,

e
x

e
x

e
x

e
x

e
x

e
x

e e e
e bh h h

e e e
e bh h h

e e e
e bh h h

A w F w
x x x

A w F w
x x x

A w F w
x x x

σ σ σ
ρ

σ σ σ
ρ

σ σ σ
ρ

Ω
Ω

Ω
Ω

Ω
Ω

 ∂ ∂ ∂
 = − − − −
 ∂ ∂ ∂ 

 ∂ ∂ ∂
 = − − − −
 ∂ ∂ ∂ 

 ∂ ∂ ∂
 = − − − −
 ∂ ∂ ∂ 

      (113) 

Transfer one order of differentiation from the stresses to the test functions 

1w , 2w  and 3w  in (113) using integration by parts (IBP) to obtain 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

1 2 3

1 2 3

1 1 1
1 1 11 21 31 0 1 1

1 2 3

1 11 21 31

2 2 2
2 1 12 22 32 0 2 2

1 2 3

2 12 22 32

. , d

d

. , d

d

ee
xx

ee
xx

e e ee b
h h h

e e e
x x xh h h

e e ee b
h h h

e e e
x x xh h h

w w wA w F w
x x x

w n n n

w w wA w F w
x x x

w n n n

σ σ σ ρ

σ σ σ

σ σ σ ρ

σ σ σ

ΩΩ

Γ

ΩΩ

Γ

 ∂ ∂ ∂
= + + − Ω ∂ ∂ ∂ 

− + + Γ

 ∂ ∂ ∂
= + + − Ω ∂ ∂ ∂ 

− + + Γ

∫

∫

∫

∫





( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )1 2 3

3 3 3
3 1 13 23 33 0 3 3

1 2 3

3 13 23 33

. , d

d

ee
xx

e e ee b
h h h

e e e
x x xh h h

w w wA w F w
x x x

w n n n

σ σ σ ρ

σ σ σ

ΩΩ

Γ

 ∂ ∂ ∂
= + + − Ω ∂ ∂ ∂ 

− + + Γ

∫

∫

 (114) 

From (114), 1 2 3, ,u u u  are primary variables (PVs) and the coefficients of 

1 2 3, ,w w w  are secondary variables (SVs). Boundary conditions (108) are essen-
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tial boundary conditions (EBCs) and those defined by (109) are natural boun-
dary conditions (NBCs). Let 

( ) [ ]{ }

( ) [ ]{ }

( ) [ ]{ }

1 1

2 2

3 3

1
1

2
1

3
1

ne u u
i ih

i
ne u u

i ih
i
ne u u

i ih
i

u N N

u N N

u N N

δ δ

δ δ

δ δ

=

=

=

= =

= =

= =

∑

∑

∑

                  (115) 

be equal order, equal degree local approximations for 1 2,u u  and 3u  in which 
[ ]N  are approximation functions and { }1uδ , { }2uδ  and { }3uδ  are nodal de-
grees of freedom for ( )1

e
hu , ( )2

e
hu  and ( )3

e
hu . From (115), we obtain  

( )( )
( )( )
( )( )

1 1

2 2

3 3

; 1,2,3

e
jh

e
jh

e
jh

w u N

w u N j

w u N

δ

δ

δ

= =

= = =

= =

                (116) 

First we define secondary variables 1
eP , 2

eP  and 3
eP  as  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 3

1 2 3

1 2 3

1 11 21 31

2 12 22 32

3 13 23 33

e e ee
x x xh h h

e e ee
x x xh h h

e e ee
x x xh h h

P n n n

P n n n

P n n n

σ σ σ

σ σ σ

σ σ σ

= + +

= + +

= + +

             (117) 

We substitute strains (106) in (104), then (104) in (114) to obtain  

( )
( )
( )

{ } { } { }
1

2

3

.

.

.

e

e e e e e

e

A
A K f P
A

δ
 
   = − −   
 
 

               (118) 

in which 

[ ] [ ][ ]T de
eK B D B

Ω
  = Ω  ∫                    (119) 

{ } { } { } { }T T T T
1 2 3, ,e u u uδ δ δ δ =   

                 (120) 

{ }
{ }
{ }
{ }

1

2

3

u

ue

u

f

f f

f

 
  =  
 
  

                       (121) 

in which 
31 2

0 1 0 2 0 3d ; d ; d ; 1,2, ,
e e e
x x x

uu ub b b
i i i i i if N F f N F f N F i nρ ρ ρ

Ω Ω Ω

= Ω = Ω = Ω =∫ ∫ ∫   

{ }eP : a vector of secondary variables at the nodes. 
The matrix [ ]B  is defined by 

{ } [ ]{ }eBε δ=                        (122) 

eK    is the element stiffness matrix, { }ef  is the nodal load vector due to 
body forces. Assembly of the element equations, imposition of boundary condi-
tion and solution of resulting linear simultaneous algebraic equations follows 
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usual procedure [28] [29]. We note that 
Te eK K   =    , a consequence of the 

fact that adjoint of the differential operator in (103) is same as the operator itself. 
In order to be able to calculate eK    and { }ef  we need to determine the local 
approximation functions in [ ]N  in (115).  

Plate and Shell Element Geometry and Local Approximation 
We consider three dimensional hexahedral geometry shown in Figure 2(a). The 
plate/shell element geometry and the local approximation considered here are 
derived using element in Figure 2(a). Consider nine node configuration on the 
bottom and top surfaces (planes) of the hexahedron shown in Figure 2(a). We 
connect all nine pairing nodes between the bottom and top surfaces of the ele-
ment and define vectors 3 , 1,2, ,9i i =V   connecting nodes bottomi  and topi . The 
surface containing the middle points of vectors 3 , 1,2, ,9i i =V   are the shell 
element nodes and are assumed to represent the middle surface of the plate/shell 
element. The surfaces containing the bottom and top ends of these vectors 

3 , 1,2, ,9i i =V   define the bottom and top surfaces of the shell element (Figure 
2(b)). Details at a typical node i of the plate/shell element are shown in (Figure 
2(c)). The coordinates of nodes 1,2, ,9i =   (Figure 2(b)) and the vectors 

3 , 1,2, ,9i i =V   completely define the geometry of shell element in 3 . The 
shell element of Figure 2(b) is mapped into a natural coordinate space , ,ξ η ζ  
in a two unit cube with the origin of the coordinate system at the center of the 
cube (Figure 2(d)). 

Symbolically eΩ  is mapped into mΩ , mΩ  being the map of the element 
eΩ  in the two unit cube. In the map mΩ  of the element, the element nodes 
1,2, ,9i =   are located in ,ξ η  plane at 0ζ = . The natural coordinates 

1ζ = −  and 1ζ =  define bottom and top faces of the plate/shell element. Thus, 
each 3

iV  is mapped into a two unit length in the ζ  direction (perpendicular to 
ξη  plane at 0ζ = ). Let 1

ix , 2
ix , 3

ix ; 1,2, ,9i =   be the nodal coordinates of 
the shell element nodes located in 0ζ =  plane. Then, the coordinates of an arbi-
trary point say ( )1 2 3, ,mP x x x  for arbitrary ,ξ η  but 0ζ =  are defined by  

( )
1 19

2 2
1

3 3

,

i

i
i

i i
mid

x x
x N x
x x

ξ η
=

  
   =   

      

∑                    (123) 

in which ( )i i
j j mid

x x= ; 1,2,3j =  for 1,2, ,9i =  . The coordinates of a point 
at an arbitrary location , ,ξ η ζ  with respect to the middle plane ( 0ζ = ) are 
given by  

( ) ( )

0
1 1 19 9

0
2 2 2 3

1 10
3 3 3

, ,
2 2 2

i i

i i i
i i

i ii i
top bot

x x x
x N x x N
x x x

ζ ζ ζξ η ξ η
= =

      
      = − =      
             

∑ ∑ V      (124) 

Thus, the coordinates at any arbitrary point ( ), ,P ξ η ζ  in the plate/shell 
element are given by 0m

i i ix x x= + ; 1,2,3i = . Using (123) and (124) we obtain 
the following for the coordinates ix  at an arbitrary point at a location , ,ξ η ζ  
in the natural coordinate map mΩ . 
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( )
1 19

2 2 3
1

3 3

,
2

i

i i
i

i i

x x
x N x
x x

ζξ η
=

   
    = +    

        

∑ V                (125) 

The local approximation functions for the shell element are derived using 
tensor product of 1D functions in ,ξ η  and ζ  directions keeping in mind that 
all dofs at the element nodes may not be the same, the tensor product process 
necessitates that we take tensor product of approximation functions and the 
nodal variable operators separately. After taking the tensor product, the resulting 
3D nodal variable operators when act on the dependent variable(s) produce the 
corresponding nodal degrees of freedom that correspond to the approximation 
functions generated by taking the tensor product 1D approximation functions in 

,ξ η  and ζ . 
For the sake of simplicity we illustrate the process of deriving details of ele-

ment local approximation using approximations of class ( )0 eC Ω  for 1u , 2u  
and 3u . Such approximations are in a scalar product space ( ),k p eV H⊂ Ω ; 

1k = , with p-levels pξ , pη  and pζ . Extensions of the approximations to 
higher classes defining local approximations of higher order global differentia-
bility can be considered based on ref [28] [29] [58]-[63]. To illustrate the details, 
we consider ψ  to be the dependent variable for which we wish to establish lo-
cal approximation functions ( ), ,N ξ η ζ    such that  

( ) ( ) { }, , , ,e
h N ψψ ξ η ζ ξ η ζ δ=                     (126) 

The 0C  p-version local approximation for ψ  in the ξ  direction for the 
three node configuration (with nodes 1, 2 and 3 located at 1ξ = − , 1ξ =  and 

1ξ =  can be written as [28] [29].  

( ) 1 3
1 0

1 1
2 2 !

1; if  is even
; if  is odd

p i i

i
i

a
i

i
a

i

ξ

ξ

ξ ξ ξ ψψ ξ ψ ψ
ξ

ξ

= =

 − + − ∂   = + +      ∂     


= 


∑
        (127) 

Similarly in the η  direction for the three node configuration (with nodes 1, 2 
and 3 located at 1η = − , 0η =  and 1η = ) we can write the following for 0C  
p-version hierarchical local approximation.  

( ) 1 3
1 0

1 1
2 2 !

1; if  is even
; if  is odd

p i i

i
i

b
i

i
b

i

η

η

η η η ψψ η ψ ψ
η

η

= =

 − + − ∂   = + +      ∂     


= 


∑
       (128) 

In the ζ  direction, the shell element nodes are located at 0ζ =  (Figure 
2(b), Figure 2(d)), hence the Lagrange (or others) interpolations (local ap-
proximations) in the ζ  direction for 1,2,pζ = 

, etc. corresponding to 2, 3, 
4, …, etc. nodal configurations in ζ  direction respectively need to be reduced 
down to a single node located at 0ζ = .  

https://doi.org/10.4236/ajcm.2020.102010


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/ajcm.2020.102010 203 American Journal of Computational Mathematics 
 

We consider a map of 1 1ζ− ≤ ≤  at each node in α  coordinate system 
pointing in the same direction as ζ  in which [ ]1,1ζ ∈ −  is mapped into 

[ ]2, 2i ih hα ∈ −  at each node (say i) (Figure 2(e)). This mapping is given by 
1 1

2 2 2 2
i ih hζ ζα − − +   = +   

   
                 (129) 

or 

( ); at each node  of the element
2i

i
h
αζ =             (130) 

in which 3
i

ih = V , length of 3
iV  at node i of the shell element. Derivations of 

the one dimensional p-version hierarchical functions in ζ  or α  direction is 
given in the following. Consider a typical plate/shell element node i 
( 1,2, ,9i =  ) shown in Figure 2(c), Figure 2(d), Figure 2(f). For p-level of one 
( 1pζ = ) in the ζ  direction the Lagrange interpolation for the two node con-
figuration of Figure 2(e) can be written as  

( ) 2 1 2 1

2 2
ψ ψ ψ ψψ ζ ζ+ −   = +   
   

                (131) 

Substituting from (130) in (131) 

( ) 2 1 2 1

2 2 2ih
ψ ψ α ψ ψψ α + −   = +   
   

               (132) 

2 1

0

1
2 2ih α

ψ ψ ψ ψ
α α =

∂ − ∂ = = ∂ ∂ 
                 (133) 

Hence, 

2 1

02 2
ih

α

ψ ψ ψ
α =

− ∂  =  ∂ 
                    (134) 

and 

2 1 for the node  at 0 or 0
2

iψ ψ ψ ζ α+  = = = 
 

          (135) 

using (134) and (135) in (131)  

( )
02

ih

α

ζ ψψ ζ ψ
α =

∂ = +   ∂ 
                  (136) 

Likewise for 2pζ = , for the three node configuration in Figure 1, we can 
write (Lagrange interpolation)  

( )
2

3 1 1 2 3
2

2
2 2 2 2
ζ ψ ψ ζ ψ ψ ψψ ζ ψ − − +   = + +   
   

          (137) 

Substituting for ζ  from (130) 

( )
2

3 1 1 2 3
2 2

1 2
2 2 2

2
ih h
α ψ ψ α ψ ψ ψψ ζ ψ − − +   = + +   
    

 
 

        (138) 

differentiating ( )ψ α  with respect to α  twice and evaluating the derivatives at 
0α =  and substituting these back in (138) and then substituting for α  from 

(130) we obtain the following for the shell node i 
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( )
2 2

2
0 0

1
2 2 2!

i ih h

α α

ζ ψ ζ ψψ ζ ψ
α α= =

∂ ∂   = + +   ∂ ∂   
           (139) 

Following the same procedure, we can derive the following for a node i lo-
cated at 0ζ =  for p-level of pζ . 

( )
2 2

2
0 0 0

1 1
2 2 2! 2 !

p p
i i i

p
h h h

p

ζ ζ

ζ
α ζα α

ζ ψ ζ ψ ζ ψψ ζ ψ
α α α= = =

∂ ∂ ∂     = + + + +     ∂ ∂ ∂     
 (140) 

we note that ( )ψ ζ  in (140) is hierarchical i.e. lower p-level approximation 
functions are a complete subset of the higher p-level approximation functions 
and the same holds for nodal degrees of freedom.  

In the one dimensional approximations (127), (128) and (140) we separate the the 
approximation functions and the nodal variable operators (from the dofs) [28] [29]. 

In ξ  direction: for nodes 1, 2 and 3 

Nodal variable operators: 
2

21; , , ;1
p

p

ξ

ξξ ξ
∂ ∂
∂ ∂

  

Approximation functions: 1 1; ; 2,3, , ;
2 ! 2

i a i p
i ξ

ξ ξ ξ− − +
=    

In η  direction: for nodes 1, 2 and 3 

Nodal variable operators: 
2

21; , , ;1
p

p

η

ηη η
∂ ∂
∂ ∂

  

Approximation functions: 1 1; ; 2,3, , ;
2 ! 2

i b i p
i η

η η η− − +
=    

In ζ  direction: for node i at 0ζ =  or 0α =  

Nodal variable operators: 
2

2
0 0 0

1, , , ,
p

p

ζ

ζ
α α α

α α α= = =

∂ ∂ ∂
∂ ∂ ∂

  

Approximation functions: 
2 1 11, , , ,

2 2 2! 2 !

p
i i ih h h

p

ζ

ζ

ζ ζ ζ   
   
   

   

By taking tensor products of the 1D nodal variable operators in ,ξ η  and ζ  
and letting them act on ψ  we obtain the degrees of freedom for ( ), ,e

hψ ξ η ζ  
or ( ), ,ψ ξ η ζ  over mΩ  (hence over eΩ ) and the corresponding approxima-
tion functions are obtained by taking the tensor product of the 1D approxima-
tion functions in ,ξ η  and ζ  and we can write  

( ) ( ) { }, , , ,e
h N ψψ ξ η ζ ξ η ζ δ=                     (141) 

in which { }ψδ  are the degrees of freedom. Using (141) for 1 2,u u  and 3u  we 
can write the following for local approximation for ( ) ( )1 2,e e

h hu u  and ( )2
e
hu  of 

1 2,u u  and 3u  (assuming ,p pξ η  and pζ  to be same for 1 2,u u  and 3u ).  

{ }
( )
( )
( )

( ) [ ] [ ]
[ ] ( ) [ ]
[ ] [ ] ( )

{ }
{ }
{ }

1

2

3

1

2

2

, , 0 0

0 , , 0

0 0 , ,

ue
h
e ue

h h
e u
h

u N

u N

Nu

δξ η ζ

φ ξ η ζ δ

ξ η ζ δ

              = =       
             

 (142) 

In which { }1uδ  { }2uδ  { }3uδ  are the degrees of freedom for 1 2,u u  and 3u  
for an element e. 
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From the geometry defined by (125), we define the Jacobian of mapping [ ]cJ  
between e

xΩ  and master element mΩ  (using Murnaghan’s notation) [28] [29]. 

[ ] 1 2 3, ,
, ,c

x x xJ
ξ η ζ

 
=  
 

                      (143) 

The volumes in 1 2 3, ,x x x  and , ,ξ η ζ  frames and the derivatives of the ap-
proximation functions are related through 

[ ]d d d det d d dcx y z J ξ η ζ=                   (144) 

1

1T

2

3

; 1, 2, ,

i i

i i
c

ii

N N
x
N N

J i n
x

NN
x

ξ

η

ζ

−

 ∂ ∂ 
   ∂ ∂   
   ∂ ∂   = =    ∂ ∂   
   ∂∂
   

∂∂    


             (145) 

Using (145), [ ]B  matrix in (122) is completely defined. Coefficients of 
eK    are calculated using Gauss quadrature with element map mΩ . Details can 

be found in references [28] [29]. Assembly of the element equations and their 
solutions follows standard procedure [28] [29]. 

Remarks 
1) In this formulation p-levels in ,ξ η  and ζ  define the plate/shell defor-

mation behavior in the plane of the plate/shell as well as in the transverse direc-
tion to the shell middle surface.  

2) Increasing p-levels in ,ξ η  and ζ  result in higher degree approxima-
tions of 1 2,u u  and 3u . While p-levels pξ  and pη  primarily control the de-
formation in the plane, pζ  controls transverse deformation.  

3) With ( )0 e
xC Ω  local approximation described here, the integral over T

xΩ  
are in Lebesgue sense. Smoothness of the analytical solution considered in the 
model problems ensures convergence of ( )0 e

xC Ω  solution to class ( )1 e
xC Ω  in 

the weak sense.  
4) In the derivation details presented here we have intentionally used curve 

geometry to emphasize that the formulation presented here is valid for flat 
plates/shells as well as shells of arbitrary geometry.  

5) We remark that when the deformation is reversible and when the matter is 
isotropic and homogeneous, the mathematical model derived using principle of 
virtual work or energy methods in Lagrangian description (in the absence of ki-
nematic assumptions) are same as those obtained using balance of linear mo-
menta. Thus, for such deformation physics one could derive the finite element 
formulation directly using principle of virtual work or energy method. This in 
fact has been done in reference [39] [40] for three dimensional laminated com-
posite curved shell elements. A serious drawback of this approach is that, in this 
approach only the equations corresponding to balance of linear momenta can be 
derived. Precise nature of the rate of work conjugate pairs is not possible either 
due to lack of second law of thermodynamics, hence derivations of a compre-
hensive constitutive theory is not possible. In the approach presented here using 
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balance of linear momenta, derivation of constitutive theory is based on integrity 
and the finite element formulation based on VC integral form using GM/WF 
[28] [29] (as *A A= ) results in more comprehensive mathematical model as 
presented here. 

9. Solutions of Model Problems 

We consider a square plate ( a a× ) simply supported on all four boundaries. 
Midplane of the plate lies in 1 2x x  plane and the origin of fixed x-frame is at the 
bottom left corner. Plate thickness is “h”. 3x  is normal to 1 2x x - plane pointing 
upwards. Top surface of the plate ( 3 2x h= ) is subjected to uniformly distri-
buted load acting in the negative 3x  direction. A schematic of the plate is 
shown in Figure 3. We nondimensionalize density ρ̂ , modulus Ê  and dis-
tance (or displacement) by using reference density 0 ˆρ ρ= , reference modulus 

0
ˆE E=  and reference length 0 1''L = . Reference velocity 0v  and reference 

time 0t  are 0 0 0v E ρ=  and 0 0 0t L v= . Schematic of the plate, coordinate 
system, material properties, reference quantities and the dimensionless quanti-
ties are shown in Figure 3. 

The values of the distributed load q are chosen such that it produces a deflec-
tion at point A ( 1 2 310, 0x x x= = = ) of 0.1 for all thicknesses using CPT. This 
gives us the following values of q for thicknesses of 0.1,1.0,5.0h =  and 10.0 
(Table 1). 
 

 
Figure 3. Model problem; schematic, discretization, material properties and boundary 
conditions. 
 
Table 1. Distributed load “q” values based on CPT model. 

h q 
0.1 1.40964108E−8 

1.0 1.40964108E−5 

5.0 1.765E−3 

10.0 1.41635E−2 

 
Material Properties     Reference Quantities     Dimensionless Quantities 

6ˆ 30 10 psiE = ×             0
ˆE E=                    1E =  

0.3ν =                    0 ˆρ ρ=                    1ρ =  
3ˆ 0.289018 lbm inρ =        0 1Ł =                     ˆL L=  
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20 20 0.1
20 20 1.0
20 20 5.0
20 20 10.0

a b h× ×
 × × × ×
 × ×
 × ×

 

In the numerical studies we choose ˆ 20''a =  hence 20a = . We consider a 4 
× 4 uniform discretization for the entire plate. We consider four different thick-
nesses: 0.1,1.0,5.0h =  and 10.0. Due to the choice of 0 1''L = , the dimension-
less distances, coordinates, thicknesses, deflections etc., are same as those with 
dimensions. In all studies, we keep the discretization fixed (4 × 4 uniform) and 
increase p-levels in the ,ξ η  and ζ  direction ( ,p pξ η  and pζ ) to obtain 
converged displacements, strains and stresses. The local approximations are 
considered in ( ),k p e

xH Ω  spaces with 1k = , hence solutions of class 0C . For 
this choice of local approximations, the integrals over T

xΩ  (discretization) are 
in Lebesgue sense. Due to the fact that solutions of the model problems are 
smooth, with p-refinement we expect solutions of class 0C  to converge to 1C  
in the weak sense. Solutions of the mathematical models for CPT and FSDT 
given in the following are also computed using finite element method based on 
residual functional (least squares method) with p-version hierarchical local ap-
proximations. For all four thicknesses of the plate a (2 × 2) discretization with 
p-levels of 4, 4 or 5, 5 was sufficient to obtain converged displacements for CPT 
and FSDT. These solutions of displacement for CPT and FSDT are compared 
with the new formulation for all four thicknesses. 
 

    
(a)                                               (b) 

    
(c)                                                (d) 

Figure 4. Displacement 3u  of the centerline ( 10y = ) versus axial distance 1x  for 0.1,1,5,10h = . (a) Displacement 3u  versus 

1x  ( 20 20 0.1L b h× × = × × ); (b) Displacement 3u  versus 1x  ( 20 20 1L b h× × = × × ); (c) Displacement 3u  versus 1x  
( 20 20 5L b h× × = × × ); (d) Displacement 3u  versus 1x  ( 20 20 10L b h× × = × × ). 
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Figure 5. Mating element edges at 1 2 5x x= = . 

 

   
(a)                                                      (b) 

   
(c)                                                      (d) 

Figure 6. Shear stress 13sσ  versus distance 3x  at 1 2 5.0"x x= =  for 0.1,1,5,10h = . (a) Shear stress 13sσ  versus 3x  at 

1 2 5.0x x= =  ( 20 20 0.1L b h× × = × × ); (b) Shear stress 13sσ  versus 3x  at 1 2 5.0x x= =  ( 20 20 1L b h× × = × × ); (c) Shear stress 13sσ  
versus 3x  at 1 2 5.0x x= =  ( 20 20 5.0L b h× × = × × ); (d) Shear stress 13sσ  versus 3x  at 1 2 5.0x x= =  ( 20 20 10.0L b h× × = × × ). 

 

   
(a)                                                       (b) 
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(a)                                                       (b) 

Figure 7. Normal stress 33sσ  versus distance 3x  at 1 2 10.0x x= =  for 0.1,1,5,10h = . (a) Normal stress 13sσ  versus 3x  at 

1 2 10.0x x= =  ( 20 20 0.1L b h× × = × × ); (b) Normal stress 13sσ  versus 3x  at 1 2 10.0x x= =  ( 20 20 1L b h× × = × × ); (c) Normal 
stress 13sσ  versus 3x  at 1 2 10.0x x= =  ( 20 0.20 5.0L b h× × = × × ); (d) Normal stress 13sσ  versus 3x  at 1 2 10.0x x= =  
( 20 20 10.0L b h× × = × × ). 

Discussion of Results 

Figures 4(a)-(d) show plots of transverse displacement 3u  of the middle plane 
of the plate as a function of 1x  at 2 10x =  for 0.1,1.0,5.0h =  and 10.0. In the 
case of new formulation, 3p pξ η= =  and 3 - 14pζ =  yield virtually the same 
displacement 3u  (shown in figures). In case of 0.1h = , the plate is thin, hence 
CPT and FSDT are expected to produce almost identical results (Figure 4(a)). 
The new formulation is 3D elasticity formulation, hence contains more com-
prehensive and complete deformation physics compared to CPT and FSDT. Plot 
of 3u  versus 1x  for the new formulation are in quite good agreement with 
those from CPT and FSDT. For 1.0h = , CPT under estimates 3u  (Figure 4(b)) 
due to lack of shear deformation. For this thickness ( 1.0h = ), FSDT results are 
quite reasonable as the shear deformation contribution is not very significant. 
The converged 3u  versus 1x  from the new formulation and those from FSDT 
are in good agreement (Figure 4(b)). For 5h =  and 10h = , the shear defor-
mation is progressively more dominant. Figure 4(c) and Figure 4(d) show 3u  
versus 1x  for CPT, FSDT and the new formulation. In both figures, we observe 
higher values of 3u  versus 1x  for FSDT compared to CPT. The new formula-
tion yields higher values of 3u  compared to FSDT as well as CPT and the dif-
ference between CPT and new formulation as well as the difference between 
FSDT and the new formulation increases for 10h =  compared to 5h = . These 
results from the mathematical models are in accordance with the physics of de-
formation. 

Next we consider the behavior of 13σ  at 1 2 5.0x x= =  as a function of 
coordinate 3x  (obtained using the new formulation). At 1 2 5x x= = , four ver-
tical edges are coincident. Since the local approximations are of class 0C , we 
expect discontinuity of 13σ  (function of displacement gradients) at lower 
p-level. However, with progressively increasing p-levels we expect convergence 
of 13σ  (weak convergence of 0C  solutions to the class 1C ). 
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Figures 6(a)-(d) show plots of 13σ  versus 3x  at 1 2 5.0x x= =  for  
0.1,1.0,5.0h =  and 10.0. From Figure 6(a) for 0.1h = , we note that at 

2p pξ η= =  and 3pζ = , there is a discontinuity of 13σ . We have two graphs 
of 13σ  versus 3x  even though at 1 2 5.0x x= = , there are four element edges 
coincident. Figure 5 shows locations 1 2 5.0x x= =  with four element edges 
marked ; 1,2,3,4i iA B i =  that are coincident. Let ( )13 i iA Bσ  be shear stress along  

the edges ; 1,2,3,4i iA B i = .  Since 1 3
13

3 1

u uG
x x

σ
 ∂ ∂

= + ∂ ∂ 
,  ( ) ( )

1 1 2 213 13A B A Bσ σ≠   

due to discontinuity of 3 1u x∂ ∂  even though 1 3u x∂ ∂  is continuous. Similarly 
( ) ( )

3 3 4 413 13A B A Bσ σ≠ , however ( ) ( )
1 1 3 313 13A B A Bσ σ=  and ( ) ( )

2 2 4 413 13A B A Bσ σ= . 
Thus, at 1 2 5.0x x= =  graphs of ( )

1 113 A Bσ  and ( )
3 313 A Bσ  versus 3x  are 

coincident. Likewise graphs of ( )
2 213 A Bσ  and ( )

4 413 A Bσ  versus 3x  are coinci-
dent as well but have different values than those of ( )

1 113 A Bσ  and ( )
3 313 A Bσ . 

Thus, in Figure 6(a) we only observe two sets of graphs. The discontinuity of 
( )13σ  is due to discontinuity of 3 1u x∂ ∂  along the edge, a consequence of 0C  
local approximation for displacements at 3p pξ η= =  and 3pζ = . At 

4p pξ η= = , 3pζ = , the discontinuity of 13σ  diminishes and at 5p pξ η= = , 
3 - 7pζ =  and 11-14 13σ  versus 3x  is almost converged (in weak sense) and 

has unique values from all the edges. Graphs of 13σ  versus 3x  at 

1 2 5.0x x= =  for 1.0,5.0h =  and 10.0 shown in Figures 6(b)-(d) exhibit ex-
actly similar behavior at lower p-levels. We observe discontinuity of 13σ  but 
with progressively increasing p-levels, the discontinuity of 13σ  diminishes and 
for p-levels in the range of 5 to 9, we obtain converged solutions for 13σ . Higher 
thicknesses of plate naturally require higher p-levels. 23σ  versus 3x  at 

1 2 10.0x x= =  behaves in exactly similar fashion; graphs and the details are 
omitted for the sake of brevity. 

Figures 7(a)-(d) show plots of 33σ  versus 3x  at 1 2 5.0x x= =  for 
0.1,1.0,5.0h =  and 10.0. On the top surface of the plate ( 3 2x h= ) a uniform 

pressure load of 33 qσ = −  is applied and on the bottom surface of the plate 
( 3 2x h= ), 33 0σ = . This holds regardless of the thickness of the plate. For all 
thickness values, p-levels 5 - 7p pξ η= =  and 4 - 9pζ =  are needed to obtain 
converged values of 33σ , but no difficulties are encountered in doing so. In case 
of CPT, FSDT and HSDT plate mathematical models, 33 0σ = . This is obviously 
non physical especially for thick plates. In case of the new formulation presented 
here 33σ  is calculated accurately regardless of the plate thickness. 

10. Summary and Conclusions 

Using currently used CPT and FSDT mathematical models as representative 
mathematical models for all plate/shell mathematical models, that are derived 
using energy methods or principle of virtual work and are based on kinematic 
assumptions, the thermodynamic consistency of all plate/shell mathematical 
models has been evaluated using the conservation and balance laws of CCM as 
well as NCCM based on internal, internal and Cosserat rotations. CPT utilizes 
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internal rotations whereas FSDT uses Cosserat rotations in the kinematic as-
sumptions but requires both internal and Cosserat rotations in the derivation of 
the mathematical model. Use of internal and/or Cosserat rotations in the kine-
matic assumptions is typical of all plate/shell mathematical models derived using 
the energy methods or the principle of virtual work. Thus, the findings in this 
work using CPT and FSDT mathematical models hold for all plate/shell mathe-
matical models used currently. 

It has been shown that CPT and FSDT mathematical models for plate bending 
with their respective kinematic assumptions cannot be derived using the con-
servation and balance laws of CCM or NCCM solely based on internal rotations 
and both internal and Cosserat rotations. Thus, we can conclude that all cur-
rently used plate/shell mathematical models are thermodynamically inconsistent 
i.e., the deformation resulting from the solutions of these mathematical models 
is in violation of the principle of thermodynamics of CCM as well as NCCM. 

The currently used plate/shell mathematical models are derived using the 
energy methods and the principle of virtual work, so only reversible mechanical 
deformation can be included in these mathematical models without resorting to 
phenomenological approaches. Inclusion of dissipation and memory mechan-
isms in these mathematical models is only possible using phenomenological ap-
proach in 1  due to the absence of the energy equation and the entropy inequa-
lity. This approach cannot be extended to 2  and 3 . From the derivations of 
CPT and FSDT presented in the paper using CCM and NCCM, it is obvious that 
the main source of problem is a priori assumption of kinematic relations. These 
kinematic assumptions result in conflict of some type or other when used in 
conjunction with the conservation and balance laws of CCM or NCCM. 

We have presented a kinematic assumption free thermoelastic plate/shell 
formulation in which the mathematical models consist of the conservation and 
balance laws of CCM in 3 : balance of linear momenta, balance of angular 
momenta (implies Cauchy stress tensor is symmetric) and the energy equation. 
The constitutive theory for the Cauchy stress tensor is based on integrity (com-
plete basis) and includes thermal effects. This constitutive theory is a non linear 
constitutive theory in terms of strain tensor components (contains terms up to 
fifth degree terms) but linear in temperature θ . The constitutive theory for the 
heat vector q  is also based on integrity and is a non linear constitutive theory 
containing up to third degree terms of the temperature gradients. These balance 
laws are derived for evolutions (IVPs) but naturally reduce to mathematical 
models for BVPs including linear constitutive theories for σ  and q  if so de-
sired. When the deformation process is isothermal, θ  is no longer a dependent 
variable, energy equation is not needed and we only have BLM. 

A finite element formulation is constructed using this mathematical model 
based on CCM for BVPs in which the constitutive theory is linear and the de-
formation process is isothermal so that the results from this formulation can be 
compared with CPT and FSDT. The finite element formulation is based on 
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GM/WF in which the integral form is variationally consistent [28] [29], hence 
the resulting computations are unconditionally stable. The local approximation 
for displacements in constructed in ( ),k p eH Ω  space with 1k =  i.e., solutions 
of class 0C  but with higher p-levels (p) in all three directions ( ), ,ξ η ζ . In this 
approach, local approximations with different p-levels choices result in the cor-
responding kinematic descriptions, hence these vary depending on the choice of 
the p-levels. The formulation presented here is based on CCM in 3 . It ad-
dresses physics of deformation of extremely thin as well as thick plates/shells as 
demonstrated in the model problem studies. Extension of this formulation for 
plates/shells with dissipation and memory mechanism 3  is consistent and 
systematic through entropy inequality and free of any phenomenological con-
siderations. 

It is worth remarking that the new formulation for plates/shells is a truly a 
formulation in 3 . 33σ  in all plate/shell mathematical models is generally zero, 
but this is not physical. The new formulation presented here simulates 33σ  for 
thin as well as thick plates without any difficulty as shown in the model prob-
lems. We remark that even though we have considered a flat square plate as a 
model problem, the formulation is naturally valid for curved shells with curved 
geometry. This is obvious from the geometric description of the shell and the use 
of conservation and balance laws in 3  constituting the mathematical model. 
Lastly, we point out that this single formulation presented in this paper ad-
dresses all plate/shells deformation physics regardless of their thickness or geo-
metry. Studies for curved shells will be presented in a subsequent paper. 
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Appendix 

Strains, rotations and their gradients, conjugate pairs and constitutive 
theories 

In this appendix we present the conservation and balance laws of CCM as well 
as NCCM, some details of the strain tensor, rotation tensor, gradients of the ro-
tation tensor and its decomposition, the conjugate pairs and linear constitutive 
theories for classical as well as non-classical continuum mechanics based on in-
ternal rotations and the non-classical continuum mechanics incorporating in-
ternal and the Cosserat rotations. The material presented here considers small 
deformation, small strain, linear as well as non linear reversible mechanical de-
formation. 

A.1. Classical Continuum Mechanics (CCM) 

A material point has only three translational degrees of freedom. The symmetric 
part of the displacement gradient tensor constitutes strain measures and the an-
tisymmetric part of the displacement gradient tensor (a measure of internal ro-
tations) is neglected in the derivation of the conservation and balance laws. We 
have conservation of mass, balance of linear momenta (BLM), first law of ther-
modynamics (FLT), the second law of thermodynamics (SLT) and considera-
tions for constitutive theories [30]. 

( ) ( ) ( )0 , CMJ tρ ρ=x x                     (A1) 

( )0 0 0 BLMjibi
i

j

Dv F
Dt x

σ
ρ ρ

∂
− − =

∂
                (A2) 

( )T BAM=σ σ                        (A3) 

( )0 0 FLTji ij
De
Dt

ρ σ ε+ ∇ ⋅ − =q                  (A4) 

( )0 0 SLTji ij
D D
Dt Dt
φ θρ η σ ε

θ
⋅ + + − ≤ 

 

q g
             (A5) 

In which 0ρ  is the mass density in the reference configuration, 1
bF , 2

bF  
and 3

bF  are body force per unit mass in 1 2,x x  and 3x  directions, ijσ  is 
Cauchy stress tensor, ijε  is linear strain tensor, e is specific internal energy, q  
is heat flux vector, g  is temperature gradient vector, φ  is Helmholtz free 
energy density, η  is entropy density and θ  is temperature.  

From the conjugate pairs ,ij ijσ ε  and 
θ
⋅q g , we can conclude that at the very 

least the following must hold (thermoelastic solid continua) 

( ),θ=σ σ ε                         (A6) 

( ),θ=q q g                         (A7) 

Choices of the argument tensors for φ  and η  are discussed in section 4 in 
conjunction with the derivation of the constitutive theories for σ  and q . 
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A.2. Non-Classical Continuum Theory Incorporating Internal  
Rotations 

Displacement gradient tensor d J    and its decomposition into symmetric and 
antisymmetric tensors can be written as  

{ }
{ } [ ]d d d i

s a a
u

J J J r
x

ε
 ∂

       = = + = +         ∂ 
              (A8) 

in which d
s J    and d

a J    are symmetric and antisymmetric tensor, thus [ ]ε  
and i

a r    are strain and rotation tensors. i
a r    contains rotations 

1i xΘ , 
2i xΘ  

and 
3i xΘ  about 1x , 2x  and 3x  axes. Alternatively  

( ) ( ) ( )1 2 31 2 3i x i x i x× = Θ + Θ + Θu e e e∇                (A9) 

with this definitions of 
1i xΘ , 

2i xΘ  and 
3i xΘ  in (9), we have 

3 2 112 13 23

21 12 31 13 32 23

; ;

; ;

i i i
a i x a i x a i x

i i i i i i
a a a a a a

r r r

r r r r r r

= Θ = − Θ = Θ

= − = − = −
              (A10) 

all others are zero. The rotations 
1i xΘ , 

2i xΘ  and 
3i xΘ  are about the axes of 

the triad located at a material point. If we define the rotations as a vector { }iΘ , 
{ }

1 2 3

T , ,i i x i x i x Θ = Θ Θ Θ  , the gradient of { }iΘ  i.e. i JΘ    and its decomposi-
tion into symmetric and skew-symmetric tensor i

s JΘ    and i
a JΘ    can be 

written as  

{ }
{ }

i i ii
s aJ J J

x
Θ Θ Θ ∂ Θ

     = = +       ∂ 
              (A11) 

We have the following conservation and balance laws [31] [32] [36] 

( ) ( ) ( )0 , CMJ tρ ρ=x x                (A12) 

( )0 0 0 BLMjibi
i

j

Dv F
Dt x

σ
ρ ρ

∂
− − =

∂
            (A13) 

( ), 0 BAMmk m ijk ijm σ+ =                (A14) 

( ) ( )0 0 FLTi
s ij ij ij s ij

De m J
Dt

ρ σ ε Θ+ ∇ ⋅ − − =q          (A15) 

( ) ( )0 0 SLTi
s ji ij ij s ij

D D m J
Dt Dt
φ θρ η σ ε

θ
Θ⋅ + + − − ≤ 

 

q g
     (A16) 

Additionally we have used decomposition of Cauchy stress tensor σ  into 
symmetric tensor sσ  and antisymmetric tensor aσ   

s a= +σ σ σ                        (A17) 

The Cauchy moment tensor m  is symmetric due to balance of moment of 
moments balance law, an additional balance law needed in non-classical conti-
nuum theories [31] [32] [36] due to new physics associated with rotations. From 
the conjugate pairs in the entropy inequality, at the very least, the following must 
hold (thermoelastic solid continua)  
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( ),s s θ=σ σ ε                       (A18) 

( ),i
s θΘ=m m J                       (A19) 

( ),θ=q q g                         (A20) 

Choice of the argument tensors for φ  and η  can be based on the principle 
of equipresence [30]. The derivation of the constitutive theory for sσ  is same 
as for σ  in case of CCM (section). A linear constitutive theory for m  can be 
written as 

( )2 i
ij s ijm Jµ Θ=



                     (A21) 

where µ


 is the material coefficient related to the constitutive theory for the 
Cauchy moment tensor. 

A.3. Non-Classical Continuum Theory Incorporating Internal  
Rotations and Cosserat Rotations 

Let eΘ  be external or Cosserat rotations (unknown) about the axes of the same 
triad at a material point about which internal rotations iΘ  act, then the total 
rotations tΘ  are given by  

t i e= +Θ Θ Θ                       (A22) 

and 
t i e

a a ar r r     = +                         (A23) 

Gradient of tΘ , t ΘJ  and its decomposition into symmetric and antisym-
metric tensors gives  

{ }
{ }

t t t tt i
s a s aJ J J J r

x
Θ Θ Θ Θ ∂ Θ

         = = + = +          ∂ 
       (A24) 

( )T1
2

t t t
s J J JΘ Θ Θ     = +                      (A25) 

( )T1
2

t t t
a J J JΘ Θ Θ     = −                      (A26) 

The CM, BLM, BAM and BMM balance laws in this case are same as in Sec-
tion A.2. The FLT and the SLT [33] [34] are given by 

( ) ( ) ( )0 0 FLTit
s ij ij a ij a ij ij s ij

De r m J
Dt

ρ σ ε σ Θ+ ∇ ⋅ − − − =q       (A27) 

( ) ( ) ( )0 0 SLTit
s ji ij a ij a ij ij s ij

D D r m J
Dt Dt
φ θρ η σ ε σ

θ
Θ⋅ + + − − − ≤ 

 

q g
    (A28) 

The decomposition of s a= +σ σ σ  (Section A.2) is used here as well. The 
Cauchy moment tensor is symmetric in this case also (balance of moment of 
moments balance law [37] [38]). From the conjugate pairs in the entropy in-
equality (28), at the very least the following must hold (thermoelastic solid con-
tinua) 

( ),s s θ=σ σ ε                       (A29) 
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( ),t
s θΘ=m m J                       (A30) 

( ),t
a a a θ= rσ σ                      (A31) 

Argument tensors for Φ  and η  at this stage can be established using prin-
ciple of equipresence. Constitutive theories for m  and aσ  in the absence of 
θ  reduce to [33] [34] 

( ) ( )( )2 trt t
s sµ λΘ Θ= +m J J I





                (A32) 

( )2 t
a aβ= r



σ                       (A33) 
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