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Abstract 
In this paper, we consider an integral basis for affine vertex algebra 

( )2kV sl  when the level k is integral by a direct calculation, then use the 

similar way to analyze an integral basis for Virasoro vertex algebra 
( )2 ,0VirV k . Finally, we take the combination of affine algebras and Virasoro 

Lie algebras into consideration. By analogy with the construction of Lie al-
gebras over   using Chevalley bases, we utilize the  -basis of avL  
whose structure constants are integral to find an integral basis for the uni-
versal enveloping algebra of it. 
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1. Introduction 

While vertex algebras are usually assumed to be vector spaces over  , the most 
important formula Jacobi identity makes sense over any commutative ring, so it 
is natural to consider vertex algebras over  . An integral basis of a vertex alge-
bra could be considered an analogue of the Chevalley basis in a Lie algebra. Sim-
ilar to the construction of Lie algebras over   using Chevalley bases, we can 
create vertex algebras over  . Integral bases for vertex operator algebras asso-
ciated with lattices have been studied in [1] [2]. In this paper, we are going to 
investigate integral basis for affine vertex algebras and Virasoro vertex algebra. 
Let g  be a simple Lie algebra over   and ĝ  be the corresponding affine 
Kac-Moody algebra. The vacuum module ( )ˆ , 0V kg  at level k has a vertex alge-
bra structure [3] [4] [5], we call it affine vertex algebra. We want to find an 
integral basis for it when 2=g sl  and k  is an integer in Section 3. 
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Next, we consider the Virasoro vertex algebra. Among the most important 
vertex algebras are those associated with the Virasoro Lie algebra. It has been 
studied in [6] [7] [8]. They show that it is generated by the conformal vector ω  
and is minimal in the sense that it does not have any proper vertex operator sub-
algebra. Besides, any minimal vertex operator algebras of the same central 
charge are isomorphic. The study of Virasoro vertex algebras is the algebraic 
foundation of the study of the “minimal modules” in conformal field theory [9]. 
We use the similar way to analyze an integral basis for Virasoso vertex algebra 

( )2 ,0VirV k  when the level is 2k, where k  is an integer. 
We know that affine Lie algebra and Virasoro Lie algebra have close relation-

ship in physics, so we consider them simultaneously, i.e., as one algebraic struc-
ture. Then the definition of affine-Virasoro was introduced [10] [11], which is 
the semidirect product of the Virasoro algebra and an affine Kac-Moody Lie al-
gebra with a common center. In the last section, we get an integral basis for the 
universal enveloping algebra of it. 

In this paper, we observe that the  -basis of affine vertex algebra ( )2kV sl  
and Virasoro vertex algebra ( )2 ,0VirV k  may be integral basis for them in cer-
tain conditions. We create the conditions and confirm that they are exactly the 
integral bases. Then we utilize the analogue of Chevalley bases for finite dimen-
sional Lie algebras to get an integral basis for the universal enveloping algebra of 
affine-Virasoro algebra. 

2. Preliminaries 

We assume that the readers are familiar with the theory of vertex operator alge-
bras [3] [6] [12] [13].  

Given an (untwisted) affine Lie algebra 1ˆ ,t t− = ⊗ ⊕  k g g  equipped 
with the bracket relation, 

[ ] ,0, , ,m n m n
m na t b t a b t m a b δ+
+ ⊗ ⊗ = ⊗ +  k  

for ,a b∈g  and ,m n∈ , together with the condition that k  is a nonzero 
central element of ĝ . Let k ∈ , ( )ˆ −g  and g  act trivially on   and let k  
act as the scalar k, making   a ( )0ˆ ≤g -module, which we denote by  

( ) ( )
( )( )0

ˆ ˆ
ˆ,0 kU

V k U
≤

= ⊗ g g
g .  

By the Poincaré-Birkhoff-Witt theorem, we have that, 

( ) ( )( ) ( )( )ˆ ˆ ˆ,0V k U S+ += g g g                 (2.1) 

as a  -graded vector space. Set 

( )ˆ1 ,0 .V k= ∈ ⊂1  g  

Then 

( ) ( )( )ˆ ˆ
0

,0 ,0 .n
n

V k V k
≥

=
g g  

( )( )ˆ , 0 nV kg  is spanned by the vectors 
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( ) ( ) ( ) ( )1
1

r
ra m a m− − 1  

for ( )0, , 1i
ir a m≥ ∈ ≥g , with 1 rn m m= + + . It can be proved that this is a 

vertex algebra, more detail can be found in [5]. The vertex algebra structure is 
determined by 

( )( ) ( ) ( ) 11 , .n

n
Y a x a x a n x− −

∈

− = = ∑1


 

Now we have that, 

( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )1

(1) ( )
1

11 1

1

,

1 1 : :
1 ! 1 !

r

r
r

rm m
z z

r

Y a m a m z

a z a z
m m

− −

− −

= ∂ ∂
− −



 

1
 

where 0, 1rr m≥ ≥  for 1, ,i r=  . 
In the next section, we will consider the integral basis of it when 2=g sl  and 

k  is an integer. 

3. Integral Basis of ( )kV sl2  

In this section shall find an integral basis for ( )2kV sl . We consider the case 
when k  is an integral number. Firstly, we recall the definition of integral basis 
of a vertex algebra. 

Definition 3.1. Suppose that V  is a vertex algebra (over  ), an integral 
basis of it is its  -basis whose  -span can form a vertex algebra over  . 

In order to find an integral basis for ( )2kV sl , we may firstly find an integral 
basis for g . That is, we need to find a basis of g  whose  -span g  is closed 
under the bracket. When 2=g sl , it is easy to see that the standard basis ele-
ments , ,x y h  satisfy the condition. Now let , ,x y h  be the standard basis of 

2sl , we choose an ordered basis of  ( )2 +sl , that is 

1 2 1 2 1 2
,

k s tn n n m m m l l ly y y h h h x x x  

 
where ( ), , 1, 1, 2, , ; 1, 2, , ; 1, 2, ,p q rn m l p k q s r t∈ ≤ − = = =   . Then by 
(2.1), we get that  

1 2 1 2 1 2k s tn n n m m m l l ly y y h h h x x x   1               (3.1)  

is a  -basis of ( )2kV sl . 
For convenience, we denote ( )2kV sl  by V, denote the  -span of a  -basis 

of V  by V . 
Theorem 3.2. The formula (3.1) is an integral basis of ( )2kV sl . 
Proof. It is known that formula (3.1) is a  -basis of ( )2kV sl . To check that 

V  is a vertex algebra, we need to prove that the coefficients are still in V  of 
any 

( ),Y u x v                          (3.2) 

for ,u v V∈  . Since V  is spanned by (3.1) over  , we just need to check 
formula (3.2) for (3.1). So 
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( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 1

1 1

1 1 1

1 1

1
1

1 1 1

1 11 1

11

,

1
1 ! 1 ! 1 ! 1 ! 1 ! 1 !

: , , , ,

, , :

s p q

p

k t r

k

t
rq

s

n n m l l n n m m l l

k s t

n mn m
z z z z

ll
z z n n m m l

m

l

Y y y h h x x z y y h h x x

n n m m l l

Y y z Y y z Y h z Y h z

Y x z Y x z y y h h x x

′ ′ ′ ′ ′ ′

− − − −− − − −

− −− −
′ ′ ′ ′ ′ ′

=
− − − − − − − − − − − −

∂ ∂ ∂ ∂

∂ ∂

     

  

 

   

1 1

1

 

       

1 1 1
1 1 1

1

1

1

1 1 1

1 1 1 1 1

1

1

1 1

1 1 11 1 1
1 1 1 1 1 1

, ,
, ,

, ,

: :

k s t
k s t

k

s

t

k s t r

k s t

p

k s t

q

n m ln m l
a a b b c c

a a
b b

c c

a a b b c c n n m m l l

n n m m l l a a b b c c

C C C C C C

y y h h x x y y h h x x

z

− − − − − −− − − − − −
− − − − − − − − − − − −

∈

′ ′ ′ ′ ′ ′

+ + + + + + + + − − − − − − − −

= ∑






     

  

      1


 

Since [ ],x y h= , [ ], 2h x x= , [ ], 2h y y= − , k ∈ , the expression 

1 1 1
: : ,

k s ta a b b c cy y h h x x   1  

where 1 1 1, , , , , , , ,k s ta a b b c c ∈    , is a  -linear combination of (3.1), we 
get that (3.1) is an integral basis of ( )2kV sl . 

4. Integral Basis of Virasoro Vertex Algebra ( )VirV k2 ,0  

In this section we shall find an integral basis for the Virasoro vertex algebra 
( )2 ,0VirV k  when the level is 2k, where k  is an integer. 

Firstly we recall the definition of Virasoro vertex algebra [6] [14] [15]. As we 
know, any vertex operator algebra V  has the vertex subalgebra ω  generat-
ed by the conformal vector ω , and this is in fact the smallest vertex operator 
subalgebra of V ; it is exactly the submodule of V  for the Virasoro algebra 
generated by 1 : 

( ) ( ){ }1span | 0, .r jL n L n r n≥ ∈ 1                (4.1) 

The Virasoro algebra   is the Lie algebra with basis { } { }|mL m∈  c  
equipped with the bracket relations, 

[ ] ( ) ( )3
,0

1, ,
12m n m n m nL L m n L m m δ+ += − + − c          (4.2) 

together with the condition that c  is a central element of  . The Virasoro al-
gebra   equipped with the  -grading 

( ) ,nn∈
=
                          (4.3) 

where 

( ) ( )00 and for 0,nnL L n−= ⊕ = ≠c              (4.4) 

is a  -graded Lie algebra, and this grading is given by 0ad L -eigenvalus. For 
the Virasoro algebra  , we have the graded subalgebras 

( ) ( )1 1
.nnn n

L± ±≥ ≥
= =



 

                  (4.5) 

We also have the graded subalgebras 
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( ) ( ) ( )

( ) ( ) ( )

0 11 1

2 2 2

,

.
nn

nnn n

L L

L
−≤ −≤

−≥ +≥ ≥

= = ⊕ ⊕ ⊕

= = ⊂

c


 

  



  

  
            (4.6) 

Let   be any complex number. Consider   as an ( )1≤ -module with c  
acting as the scalar   and with ( ) 0 1L L−− ⊕ ⊕   acting trivially. Denote this 

( )1≤ -module by 


 . Then we form the induced module 

( ) ( )
( )( )1

,0 .Vir
U

V U
≤

= ⊗


 


                   (4.7) 

From the Poincaré-Birkhoff-Witt theorem, as a vector space, 

( ) ( )( ) ( )( )2 2,0 .VirV U S≥ ≥=                  (4.8) 

Set 

( )1 ,0 .VirV= ∈ ⊂ 1   

Then 

( ) ( )( )0
,0 ,0 ,Vir Vir nn

V V
≥

= 



                 (4.9) 

where ( )( ),0Vir nV   has a basis consisting of the vectors 

( ) ( )1 rL m L m− − 1                      (4.10) 

for 0r ≥ , 1 2 2rm m m≥ ≥ ≥ ≥ , with 1 rm m n+ + = . It can be proved that 
this is a vertex operator algebra, details can be found in [3]. The vertex algebra 
structure is determined by 

( )( ) ( ) ( ) 22 , ,n

n
Y L z L z L n z− −

∈

− = = ∑1


 

and we have 

( ) ( )( ) ( ) ( ) ( ) ( )1 22
1

1

1 1, : :
2 ! 2 !

mjj
m z z

m

Y L j L j z L z L z
j j

−−− − = ∂ ∂
− −

  1  

where 1 20, 2rm j j j≥ ≥ ≥ ≥ ≥ . 
Next, we will consider the integral basis of it when c  acts as 2k and k is 

integral. We know that 

( ) ( )1 rL m L m− − 1  

is a basis of ( )( ),0Vir nV  . Then 

( ) ( )1 rL m L m− − 1  

with 0r ≥ , 1 2 2rm m m≥ ≥ ≥ ≥ , with 1 1, 2,rm m+ + =  , is a  -basis of 
( )2 ,0VirV k . We want to check that it is a  -basis of ( )2 ,0VirV k . When c  acts 

as 2k, we get that, 

( ) ( ) ( ) ( ) ( )3
,0

1,
6 m nL m L n m n L m n m m kδ += − + + −  1 1  

for any ,m n∈ . 
Just like the affine case, we have that, 

( ) ( )( ) ( ) ( )1 1,m tY L j L j z L k L k− − − − 1 1  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 1 1
1

1

22
1

1

22
1 12 2

, ,

1 1 : :
2 ! 2 !

: ,:

m

m m m
m

m

jj
z z t

m

jj n n j j
m tn n

n n

L z L z L k L k
j j

C C L n L n L k L k z

−−

−− − − − + + +
− − − −

∈

= ∂ ∂ − −
− −

= − −∑  



  

  

1

1


 

where 1 2 1 2, 0, 2, 2m tm t j j j k k k≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥  . Since 

( ) ( ) ( ) ( ) ( )3
,0

1, ,
6 m nL m L n m n L m n m m kδ += − + + −  1 1  

and 

( )31 ,
6

m m− ∈  

the expression 
( ) ( ) ( ) ( )1 1: :m tL n L n L k L k− −  1  

is a  -linear combination of ( ) ( )1 rL m L m− − 1 , where 0r ≥ ,  

1 2 2rm m m≥ ≥ ≥ ≥ , with 1 1, 2,rm m+ + =  , so ( ) ( )1 rL m L m− − 1  is an 
integral basis of ( )2 ,0VirV k . 

5. Integral Basis for the Universal Enveloping Algebra of  
Affine-Virasoro Algebra 

In this section we take the combination of affine algebras and Virasoro Lie alge-
bras into consideration. By analogy with the construction of Lie algebras over 
  using Chevalley bases, we utilize the  -basis of it whose structure constants 
are integral to find an integral basis for the universal enveloping algebra of af-
fine-Virasoro algebra ( )avU L  when 2L = sl . 

Firstly we recall the definition of the affine-Virasoro algebra [15]. 
Definition 5.1. Let L be a finite-dimensional Lie algebra with a non-degenerated 

invariant normalized symmetric bilinear form ( ), , then the affine-Virasoro Lie 
algebra is the vector space 

1,av i
i Z

L L t t C d−

∈

 = ⊗ ⊕ ⊕  ⊕    

with Lie bracket: 

[ ] ( )

( ) ( )
[ ]

,0

3
,0

, , , ,

1, ,
12

, , , 0,

m n m n
m n

i j i j i j

m m i
i av

x t y t x y t m x y C

d d j i d j j C

d x t mx t C L

δ

δ

+
+

+ +

+

 ⊗ ⊗ = ⊗ + 

  = − + − 

 ⊗ = ⊗ = 

         (5.1) 

where , , , , ,x y L m n i j∈ ∈ . 
Now we consider the case of 2L = sl . Then by Definition (5.1), we get that 

the corresponding affine-Virasoro algebra { }, , , , |av i i i iL e f h d C i= ∈  , with 
Lie bracket: 

( ) ( )

,0

3
,0

, ,

, 2 , , 2 ,

1, ,
12

i j i j i j

i j i j i j i j

i j i j i j

e f h i C

h e e h f f

d d j i d j j C

δ

δ

+ +

+ +

+ +

  = + 
   = = −   

  = − + − 
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[ ]
,0, , , 2 ,

, , , , , 0,

i j i j i j i j

i j i j i j i j

d h jh h h i C

d e je d f jf C

δ+ +

+ +

   = =   
   = = =    

 

where ,i j∈ . 
Lemma 5.2. If { }|ia i∈  is a  -basis of g , then 

{ }1 1|
mk k ma a k k≤ ≤ ∈    

is an integral basis of ( )U g . 
Proof. Since { }|ia i∈  is a  -basis of g , we can get that all of the struc-

ture constants are integral, then we get the conclusion. 
Corollary 5.3. Let 2L = sl , the integral basis for the universal enveloping al-

gebra of affine-Virasoro algebra is 

1 1 1 1

1
2 r s t mi i j j k k l lCe e f f h h d d 

 
 

     

where 1 1 1 1, , ,r s t mi i j j k k l l≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ∈     . 

Proof. We only need to check that 
1, , , , |
2i i i ie f h d C i ∈ 

 
  is a  -basis of 

avL . By relations (5.1), all coefficients of these brackets are integral except 

,i jd d   . Now we use 1
2

C  to replace C, we can get, 

( ) ( )3
,0

1 1, .
6 2i j i j i jd d j i d j j Cδ+ += − + −    

Since 

( )31 ,
6

j j− ∈  

we conclude that 
1, , , , |
2i i i ie f h d C i ∈ 

 
  is a Chevalley basis of avL , then we 

have proved this corollary. 

6. Conclusion 

In this paper, we get the integral basis for ( )2kV sl , ( )2 ,0VirV k  and ( )avU L . 
The constructions of affine vertex algebra and Virasoro vertex algebra are key to 
our proof. Lemma (5.2) is essential in finding integral basis for ( )avU L . Ap-
proaches used here can be easily generalized to tensor product of vertex algebras 
and universal enveloping algebras. We can also generalize ( )2kV sl  to general 

( )ˆ , 0V g . 
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