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ABSTRACT 
Detecting remote homology proteins is a challenging problem for both basic research and 
drug development. Although there are a couple of methods to deal with this problem, the 
benchmark datasets based on which the existing methods were trained and tested contain 
many high homologous samples as reflected by the fact that the cutoff threshold was set at 
95%. In this study, we reconstructed the benchmark dataset by setting the threshold at 40%, 
meaning none of the proteins included in the benchmark dataset has more than 40% pairwise 
sequence identity with any other in the same subset. Using the new benchmark dataset, we 
proposed a new predictor called “dRHP-GreyFun” based on the grey modeling and functional 
domain approach. Rigorous cross-validations have indicated that the new predictor is supe-
rior to its counterparts in both enhancing success rates and reducing computational cost. The 
predictor can be downloaded from https://github.com/jcilwz/dRHP-GreyFun. 

 

1. INTRODUCTION 
Detecting remote homology relationship among proteins plays one of the fundamental and central 

roles in computational proteomics. It is particularly useful for drug development [1, 2]. With the ava-
lanche of protein sequences generated in the post-genomic age, it is highly desired to timely detect the re-
mote homology proteins. Although X-ray crystallography is a powerful tool in determining protein 3D 
structures, it is time-consuming and expensive. Particularly, not all proteins can be successfully crystal-
lized, particularly for membrane proteins. Membrane proteins are difficult to crystallize and most of them 
will not dissolve in normal solvents. Therefore, so far very few membrane protein structures have been 
determined. Although NMR is indeed a very powerful tool in determining the 3D structures of membrane 
proteins (see, e.g., [3-7]), it is also time-consuming and costly. To acquire the structural information in a 
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timely manner, a series of 3D protein structures have been developed by means of structural bioinformat-
ics tools (see, e.g., [8-20]). Meanwhile, facing the explosive growth of biological sequences discovered in 
the post-genomic age, to timely use them for drug development, a lot of important sequence-based infor-
mation, such as PTM (posttranslational modification) sites in proteins [21, 22], protein-drug interaction 
in cellular networking [23], DNA-methylation sites [24], recombination spots [25], and sigma-54 promo-
ters [26], have been deducted by various sequential bioinformatics tools such as PseAAC approach [27] 
and PseKNC approach [28]. Actually, the rapid development in sequential bioinformatics and structural 
bioinformatics have driven the medicinal chemistry undergoing an unprecedented revolution [29], in 
which the computational biology has played increasingly important roles in stimulating the development 
of finding novel drugs. In view of this, the computational methods were also utilized in this study for de-
tecting remote homology. 

To acquire the structural information in a timely manner, one has to resort to various structural bio-
informatics tools based on the sequence similarity principle (see, e.g., [30]). Unfortunately, such principle 
cannot cover the cases of remote homology proteins. In view of this, considerable efforts [31-35] have been 
made to detect remote homology proteins. 

Although these methods each had their own merits and did play a stimulating role in this area, fur-
ther work is needed. Firstly, the benchmark datasets used in their studies had high similarity. For instance, 
the benchmark dataset in [33, 34] contains 7329 proteins from 1070 different super families, with pairwise 
sequence identity cutoff set at 95%. In other words, it would allow those proteins with higher than 80% 
similarity in the benchmark dataset. Secondly, the ranking algorithm used in those studies would spend a 
lot of time to train or learn the model. For example, if the training dataset had 𝑁𝑁 proteins, the Lambda-
MART would need to deal with N2 proteins pair samples. 

As demonstrated by a series of recent publications [23, 25, 26, 36-71], to develop a really useful pre-
dictor for a biological system, one needs to follow Chou’s 5-step rule to go through the following five steps: 
1) select or construct a valid benchmark dataset to train and test the predictor; 2) represent the samples 
with an effective formulation that can truly reflect their intrinsic correlation with the target to be pre-
dicted; 3) introduce or develop a powerful algorithm to conduct the prediction; 4) properly perform 
cross-validation tests to objectively evaluate the anticipated prediction accuracy; 5) establish a us-
er-friendly web-server for the predictor that is accessible to the public. Papers presented for developing a 
new sequence-analyzing method or statistical predictor by observing the guidelines of Chou’s 5-step rules 
have the following notable merits: 1) crystal clear in logic development, 2) completely transparent in oper-
ation, 3) easily to repeat the reported results by other investigators, 4) with high potential in stimulating 
other sequence-analyzing methods, and 5) very convenient to be used by the majority of experimental 
scientists. Below, let us elaborate on how to deal with these five steps one by one. 

2. MATERIALS AND METHOD 
2.1. Benchmark Dataset 

According to Chou’s 5-step rules [72], the first prerequisite in establishing a new predictor is to con-
struct or select an effective benchmark dataset. 

In this study, the benchmark dataset was taken from Liu et al. [33]. It contains 7329 proteins from 
1070 different super families and 1824 families derived from SCOP database. To reduce the redundancy 
and homology bias, the program CD-HIT [73] was adopted to remove those proteins that had ≥40% pair-
wise sequence identity to any other in the same subset. Meanwhile, removed were also those families that 
only had one protein sequence. Finally, we obtained 3128 proteins from 540 super-families and 777 fami-
lies. 

2.2. Sample Formulation 

Most biological systems have two remarkable features: one is of evolution and the other is of com-
plexity. All biological species have developed beginning from a very limited number of ancestral species. It 
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is true for protein sequence as well [30]. Their evolution involves changes of single residues, insertions and 
deletions of several residues, gene doubling, and gene fusion [9, 74]. With these changes accumulated for a 
long period of time, many similarities between initial and resultant amino acid sequences are gradually 
eliminated, but the corresponding proteins may still share many common attributes, such as having basi-
cally the same biological function, subcellular location and similar binding site. To take into account the 
evolution information, many investigators used the PSSM (Position-Specific Scoring Matrix) approach 
[75], as done in a series of previous publications (see, e.g., [76-81]). On the other hand, biological systems 
are extremely complicated with a lot of uncertainties. According to the grey system theory [82], if the in-
formation of an investigated system is fully known, it is called a ‘‘white system;’’ if completely unknown, a 
‘‘black system;’’ if partially known, a ‘‘grey system.’’ Actually, most biological systems belong to the grey 
systems, and hence it is particularly effective to treat them with the grey model approach [83-86]. 

2.2.1. Grey Incidence Analysis of Proteins Formulated by Grey-PSSM 
Given a protein with L amino acid residues, it is usually expressed by 

1 2 3 i LR R R R R=P                                   (1) 

where ( )1,2, ,iR i L= 
 is the i-th residue in the protein. Because all the existing machine-learning algo-

rithms (such as “Optimization” algorithm [87], “Covariance Discriminant” or “CD” algorithm [88, 89], 
“Nearest Neighbor” or “NN” algorithm [90], and “Support Vector Machine” or “SVM” algorithm [90]) 
can only handle vectors as elaborated in a comprehensive review [29]. However, a vector defined in a dis-
crete model may completely lose all the sequence-pattern information. To avoid completely losing the se-
quence-pattern information for proteins, the pseudo amino acid composition [27] or PseAAC [91] was 
proposed. Ever since then, it has been widely used in nearly all the areas of computational proteomics (see, 
e.g., [92-95] as well as a long list of references cited in [96]). Because it has been widely and increasingly 
used, four powerful open access soft-wares, called “PseAAC” [97], “PseAAC-Builder” [98], “propy” [99], 
and “PseAAC-General” [100], were established: the former three are for generating various modes of 
Chou’s special PseAAC [101]; while the 4th one for those of Chou’s general PseAAC [72], including not 
only all the special modes of feature vectors for proteins but also the higher level feature vectors such as 
“Functional Domain” mode (see Eqs.9-10 of [72]), “Gene Ontology” mode (see Eqs.11-12 of [72]), and 
“Sequential Evolution” or “PSSM” mode (see Eqs.13-14 of [72]). Encouraged by the successes of using 
PseAAC to deal with protein/peptide sequences, the concept of PseKNC (Pseudo K-tuple Nucleotide 
Composition) [28] was developed for generating various feature vectors for DNA/RNA sequences [102, 
103] that have proved very useful as well. Particularly, recently a very powerful web-server called 
“Pse-in-One” [104] and its updated version “Pse-in-One2.0” [105] have been established that can be used 
to generate any desired feature vectors for protein/peptide and DNA/RNA sequences according to the 
need of users’ studies. 

According to the general PseAAC [72], the protein of Equation (1) can be formulated as 

[ ]T1 2 u Ω= Ψ Ψ Ψ ΨP                                (2) 

where T is the transposing operator, the subscript Ω is an integer, and its value and the components 
( )Ψ 1,2,u u = 

 will depend on how to extract the desired features and properties from the protein se-
quence. 

In this study, the model, Grey-PSSM proposed by Lin et al. [85, 86] is adopted. It has extracted the 
sequential evolution information by the Position Specific Scoring Matrix (PSSM). After the Grey-PSSM 
treatment, we have finally got a 60-D PseKNC vector for Equation (2); i.e., its subscript parameter Ω = 
60and each of the 60 components therein has been uniquely defined below. Suppose the set of protein 
samples is 

1 2 3 i NP P P R R=                                    (3) 
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where ( )1iP i N≤ ≤  is the i-th protein. According to Eqs.6-11 in Lin et al. [106], the distance ( ),i jP PΓ  
is defined as the grey incidence degree between iP  and jP . The larger the value of ( ),i jP PΓ , the more 
similar between iP  and jP  will be. 

2.2.2. Domain Similarity Analysis 
In addition to the PseAAC [27, 91] approach, the functional domain [107-112] can also be used to 

characterize protein sample, iP ∈ , according to the following steps. 
Step 1. Searching UniProt release 2018_08 Swiss-Prot FASTA format flatfile by HMMER [113-115] 

for the homology set of protein iP , we have obtained homo
i . If the outcome has more than 10 protein se-

quences, only the top 10-ranking ones are used. 
Step 2. For the protein in homo

i , ( )homo 1 10i
k iP k∈ ≤ ≤ , annotate its functional domains by running 

hmmscan program against Pfam-A database (Pfam release 32.0). The Pfam-A contains 17,929 functional 
domains and 688 clans, as defined by 

{ }
{ }

1 2 3 17929

1 2 3 688

, , ,

, , ,

,

,

f f f f

c c c c

 =


=



 


                               (4) 

where ( )1 17929if i≤ ≤  denote the i-th functional domain in  , and ( )1 688ic i≤ ≤  the i-th clan in  . 
Some functional domains may have the same clan. For example, the domains of “PF15884” and “PF17050” 
have the same clan “CL0683”. Thus, the functional domain set of protein i

kP , the k-th homology protein 
iP , is denoted as a set 

{ }|i
k i kD f f= ∈                                   (5) 

meaning that all functional domains of i
kP  contains the set i

kD . 
Step 3. The protein iP  can be expressed by the following domains set 

10
1

i i
kkD D

=
=


                                    (6) 

where   denotes union in the set theory. 
As we can see from Equations ((5), (6)) the distance (Dis) between iP  and jP  is within the range 

( )0 Dis , 1i jP P≤ ≤ . 

2.3. Operation Engine or Algorithm 

In this study, the Grey Relational Analysis [82, 116] and the Domain Similarity Index was utilized to 
rank the relationship of proteins. Given a query protein, the system will search the benchmark dataset for 
it and return the top-ranking similar proteins. The predictor thus formed is called “dRHP-GreyFun”. Illu-
strated in Figure 1 is a flowchart to show how the proposed predictor is working. In this paper, w(1) and 
w(2) are equal to 0.5. 

3. RESULTS AND DISCUSSION 
Among the independent dataset test, sub-sampling (e.g., 5 or 10-fold cross-validation) test, and jack-

knife test, which are often used for examining the accuracy of a statistical prediction method [117], the 
jackknife test was deemed the least arbitrary that can always yield a unique result for a given benchmark 
dataset [118, 119], as clearly elucidated in a comprehensive review paper [72] and demonstrated by 
Eqs.28-32 therein. Therefore, the jackknife test has been increasingly recognized and widely adopted by 
investigators to test the power of various prediction methods (see, e.g., [120-123]). However, to reduce the 
computational time, we adopted the 5-fold and 10-fold cross-validation in this study as done by many in-
vestigators with SVM as the prediction engine. This is also because the LambdaMART ranking algorithm 
used in preview studies [33, 34] would consume a lot of training time and computer memory. As a com-
promise, the 5-fold cross-validation test was adopted there. But, now we employed the operation engine  
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Figure 1. A flowchart to show how the proposed predictor “dRHP-GreyFun” is working by following the 
guidelines of Chou’s 5-steps rule. 
 
Table 1. A comparison of the jackknife test results for protein remote homology detection on the bench-
mark dataset. 

Methods ROC1 ROC50 

PSI-BLAST 0.7113 0.7647 

GRA (Grey-PSSM) 0.8937 0.7149 

Jaccard Index 0.8196 0.8070 

Domain Similarity Index (DSI) 0.9053 0.8454 

GRA and Jaccard Index 0.9301 0.8533 

dRHP-GreyFun 0.9620 0.8861 
 
based on the grey modeling and functional domains to detect the remote homology proteins, significantly 
reducing the computing time and memory. Therefore, it would be feasible to use the most rigorous jack-
knife test to examine the prediction quality. The outcomes thus obtained are given in Table 1, where we 
can see that dRHP-GreyFun achieved the best performance in both the score of ROC1 and the score of 
ROC50. 

4. CONCLUSIONS 
Protein remote homology detection is vitally important for studying protein structures and functions. 

It is anticipated that the proposed method may become a useful high throughput tool for both basic re-
search and drug design. 
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As pointed out in [124] and demonstrated in a series of recent publications (see, e.g., [40, 125-144]), 
user-friendly and publicly accessible web-servers represent the future direction for developing practically 
more useful prediction methods and computational tools. Actually, many practically useful web-servers 
have significantly increased the impacts of bioinformatics on medical science [29], driving medicinal che-
mistry into an unprecedented revolution [96]. Accordingly, we have also provided a web-server for the 
prediction method presented in this paper, by which users can easily get their desired results without the 
need to go through the complicated math equation involved. Also, all the programs can be downloaded 
from https://github.com/jcilwz/dRHP-GreyFun. 

It is illuminating that using graphic approaches to study biological and medical systems can provide 
an intuitive vision and useful insights for helping analyze complicated relations therein, as indicated by 
many previous studies on a series of important biological topics, (see, e.g., [145-158]), particularly what 
happened is for the topics of enzyme kinetics, protein folding rates [153, 159-161], and low-frequency in-
ternal motion [162, 163]. 

For the remarkable and awesome roles of the “5-steps rule” in driving proteome, genome analyses 
and drug development, see a series of recent papers [139, 164-188], where the rule and its wide applica-
tions have been very impressively presented from various aspects or at different angles. 
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