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Abstract 
In this paper, we introduce the study of the general form of stochastic Van 
der Pol equation (SVDP) under an external excitation described by Gaussian 
white noise. The study involves the use of Wiener-Chaos expansion technique 
(WCE) and Wiener-Hermite expansion (WHE) technique. The application of 
these techniques results in a system of deterministic differential equations 
(DDEs). The resulting DDEs are solved by the numerical techniques and 
compared with the results of Monte Carlo (MC) simulations. Also, we intro-
duce a new formula that facilitates handling the cubic nonlinear term of van 
der Pol equations. The main results of this study are: 1) WCE technique is 
more accurate, programmable compared with WHE and for the same order, 
WCE consumes less time. 2) The number of Gaussian random variables 
(GRVs) is more effective than the order of expansion. 3) The agreement of 
the results with the MC simulations reflects the validity of the forms obtained 
through theorem 3.1. 
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1. Introduction 

In recent years, vibration systems represented by oscillations have received con-
siderable attention. One of these systems is the van der Pol (VDP) oscillator [1] 
[2] [3]. In 1920, the Dutch scientist named Van der Pol found stable oscillation 
in the electric circuit employing a vacuum tube [1]. This oscillation was modeled 
mathematically by a second-order differential equation. This differential equa-
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tion is used for modeling many biological and physical phenomena such as the 
oscillation of atoms, the contraction and the expansion of the human heart [4], 
etc. Furthermore, van der Pol discovered a new type of oscillation called the re-
laxation oscillation [5]. The relaxation oscillator is used in many applications 
such as an electronic beeper, blinking lights and others [6]. It is applied also to 
the nonlinear oscillation system such as gene activation systems [4] and earth-
quakes [3].  

As it is known, accurate analytical solution of the VDP system is not obtained 
until now. So, the interest in studying the approximate solution of this system 
has increased lately, where the dynamic properties of such system have been in-
vestigated in [7]-[12], and the references therein. Using Liénard’s theorem [13], 
it was proved that the deterministic VDP (DVDP) system has a unique limit 
cycle. The efforts made to study of this system are not just for the deterministic 
case, but also the stochastic case. Since the VDP system can be affected by an ex-
ternal force, this external force can be described by the Gaussian white noise. 
Therefore, the stochastic system can be modeled by a mathematical model and 
called the SVDP system. This system has been studied by many authors such as 
using the stochastic averaging method with the Fokker-Planck equation to find 
the probability density function of the stationary solution [14] [15] [16]. So, it is 
appropriate for studying this system using other numerical techniques such as 
the spectral decomposition techniques. The spectral decomposition techniques 
have been used for solving nonlinear stochastic differential equations (NSDEs). 
One of those techniques is the WHE technique which was suggested by Norbert 
Wiener [17]. The WHE was used by Meecham et al. [18] to study turbulence so-
lution of Burger equation. Also, WHE was combined with the perturbation 
theory to solve the perturbed NSDE by El-Tawil, M. and his co-workers [19] 
[20] [21]. Also, El-beltagy et al. used this technique to study the higher order so-
lution for many NSDEs [20] [21] [22] [23]. For, the second technique, it is called 
the WCE technique; it was developed by Cameron and Martin [24] in 1947. This 
technique is based on a discretization of the Gaussian white noise by using the 
Fourier expansion [25]. After applying the WCE to the stochastic differential 
equations (SDEs), a system of DDEs is obtained which is called the propagators 
[25] [27] [28]. Finally, using a simple deterministic numerical method such as 
the 5th order Rung Kutta [29] is an appropriate method for solving these prop-
agators. 

The aim of the current work is to study the dynamic behavior of SVDP equa-
tion and SVDP-Duffing equation using the stochastic spectral expansions; WCE 
and WHE. Some important theoretical results are deduced. The paper also stu-
dies the influence of the coefficients on the oscillatory motion and dynamic be-
havior limitation. The outline of this paper is: 

In Section 2 we investigate the mathematical equation of SVDP system and 
some basic theorems that are quite useful to deal with non-linear differential 
equations. In Section 3 we introduce the WCE method, its application on the 
SVDP equation and the error bound of the method, in addition to the analytic 
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formula for the WCE of polynomial nonlinear term. In Section 4 we introduce 
the WHE method and its application on the SVDP equation. The numerical si-
mulation for the results of the WCE method is shown in Section 5. The simula-
tion of the comparison between the numerical results of WCE method, the WHE 
method and those of the MC simulations are shown in Section 6. In Section 7 
the conclusions are summarized.  

2. The Proposed Stochastic VDP Model 

The van der Pol equation is a non-conservative system, where adding and sub-
tracting energy from the system is done in the periodic motion called the limit 
cycle [12]. So the nonlinear oscillatory motion of a unit mass particle under ex-
ternal stochastic force is described by the following mathematical model: 

( ) ( )( ) ( ) ( ) ( ) ( )2 , 0 0, 0 .x t x t x x t W t x x bζ ε β λ− − + = = =

         (2.1) 

where the oscillation behavior of the SVDP Equation (2.1) is affected by three 
forces:  

1) The damping force ( )2x xζ ε−  . 
2) The external (stochastic) force ( )W tλ  . 
3) The spring force xβ− . 
Since ( )x t  is the displacement; ζ  is the coefficient of the linear damping, 

ε  is the coefficient of the nonlinear damping; λ  is the forcing intensity, 
( )W t  is the Gaussian white noise and ,b β  are deterministic coefficients. The 

three forces act in the opposite direction of the displacement. 
Equation (2.1) can be converted into a system of first order stochastic diffe-

rential equations as follows: 

( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( )2

,

, 0 0, 0 .

x t y t

y t x t y t x t W t x y bζ ε β λ

=

− − + = = =







    (2.2) 

Existence and Uniqueness Theorem  
Suppose we have the following stochastic differential equation system, 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1

2 2

, ,

, , , , , 0 0, 0 .

x t f t x y

y t f t x y g t x y W t x y b

=

= + ⋅ = =







 

where tW  is a one dimensional Wiener process b is constant. If the 2R -valued 
functions ( ), ,if t x y  and the real valued functions ( ), , , 1,2ig t x y i =  are de-
fined and measurable on [ ] 2

0,t T R×  and have the following properties [30] 
[31]. There exist a constant   such that, 

a) (Lipschitz condition) for all [ ]0 1 2 1 2, , , , ,t t T x x R y y R∈ ∈ ∈  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 2 1 1 1 2 1 2

2 1 2 2 2 1 2 2 1 2

, , , , , , , , ,

, , , , , , , , ,

f t x y f t x y g t x y g t x y x x

f t x y f t x y g t x y g t x y y y

− + − ≤ −

− + − ≤ −




  (2.3) 

b) Restriction on the growth for all [ ]0, , ,t t T x y R∈ ∈  

( ) ( ) ( )
( ) ( ) ( )

2 2 22
1 1

2 2 22
2 2

, , , , 1 ,

, , , , 1 ,

f t x y g t x y x

f t x y g t x y y

+ ≤ +

+ ≤ +




               (2.4) 
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then the system has a unique 2R -valued solution on [ ]0,t T  with probability 
one. Then by checking the applicability of the conditions (2.3) and (2.4) on 
functions ( ), ,if t x y  and ( ), , , 1,2ig t x y i =  with respect to the variables ,x y  
for the system (2.2) then we will get: for 1i = , the conditions (2.3) and (2.4) are 
satisfied. 

By checking the condition (2.3) for 2i =  then for

 

( ) ( )2 1 2 2 1 2, , , , ,f t x y f t x y y y− ≤ −
 

we get, ( ) ( ) ( ) ( )2 2 2
1 2 1 2 1 2x y x x y x y y x y yζ ε β ζ ε β ζ ε− − − − + = − − − , and, 

( ) ( )2 2
1 2 1 2 1 2 1 2y y x y y y y x y yζ ε ζ ε− − − ≤ − − ≤ − , then the condition is 

satisfied and results in  
2 ,xζ ε− ≤                         (2.5) 

which means that ( )x t  should be a second-order (finite-variance) process. 
Furthermore, the derivatives of the functions ,f g  are: 

21 1 2 2

1 1 2 2

0, 1, 2 , ,

0.

f f f fxy x
x y x y
g g g g
x y x y

ε β ζ ε∂ ∂ ∂ ∂
= = = − − = −

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

       (2.6) 

Then the functions , 1,2i if =  are locally Lipchitz continuous in ( ),x y .  
By checking the growth condition (2.4), for 2i = , consider the following: 

( ) ( )22 2 21 ,x y x yζ ε β λ − − + ≤ +    

then we get ( ) ( )
1

2 2 2 21x y x yζ ε β λ   − − ≤ + −    , which results in  

( )
1

2 2 2

2

1
,

y x
y

x

λ β

ζ ε

 + − + ≤
−


                  (2.7) 

where x represents the solution of the stochastic Van der Pol Equation (2.1) and 
y x=   is the velocity. The inequality (2.7) means that the velocity should be 

bounded and the bound is inversely proportional to the displacement. In fact, 
the existence and boundedness of the solution depend on the damping coeffi-
cients ζ  and ε . Also, the solution is expected to be restricted in a local area 
respected by condition (2.7). Furthermore, it is found that if x is larger than  
ζ
ε

, the nonlinear term will be dominant and the damping force will be posi-

tive. If x is smaller than 
ζ
ε

, the damping force will be negative because the  

nonlinear term will become negligible. On the other hand, to prove the unique-
ness and stability of the limit cycle for the mean solution of system (2.2), we 
need to check the satisfaction of Lineard’s theorem [13]. This theorem is used to 
prove that the mean solution of the SVDP equation has unique and stable limit 
cycle.  

Theorem 2.3 
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The second order differential equations are called Lineard’s equations and 
take the form: 

( ) ( ) 0,x Z x x Q x+ + =                       (2.8) 

this equation is a generalization of the van der Pol equation  

( )2 0x x x xζ ε β− − + =  , where ( ) ( )2Z x xζ ε= − −  and ( )Q x xβ= ; it is 
equivalent to the system 

( ) ( )
,

,
x

Z x Q x
υ

υ υ
=

= − −





                    (2.9) 

Lineard’s theorem states that system (2.9) has a unique, stable limit cycle under 
the following conditions on Z and Q. 

i) ( )Z x  and ( )Q x  are continuously differentiable for all x. 
ii) ( )Z x  is an even function; ( ) ( )Z x Z x− =  for all x. 
iii) ( ) 0Q x >  for all x. 
iv) ( )Q x  is an odd function; ( ) ( )Q x Q x− = −  for all x. 

v) ( ) ( )
0

d
x

H x Z u u= ∫  is an odd function and has exactly one positive zero at 

x c= , is positive for x c>  and negative when 0 x c< <  and ( )H x →∞  as 
x →∞ . Then the system (2.9) has unique and stable limit cycle in the phase 

plane. Then for deterministic system of Equation (2.1) at 0λ = , the conditions 

(i - iv) are satisfied whereas, the condition (v) satisfies at 
3c ζ
ε

= . So, the mean  

solution of the SVDP system (2.2) has unique and stable limit cycle in the phase 
plane surrounding the origin point. This result will be shown in Section 5. 

3. The Wiener-Chaos Expansion Technique 

The WCE is applied to the SVDP Equation (2.1). Referring to [25] [26] [27] [28], 
we can assume that the solution of Equation (2.1) can be expanded as: 

( ) ( ) ( ) ( ); , ,x t w x t T x E xTα α α α
α

ξ ξ
∈ℑ

= =   ∑               (3.1)  

where the multi-index set ( ) { }
1

, 1 , 0,1,2, ;n n n
n

nα α α α α
∞

=

 ℑ = = ≥ ∈ = < ∞ 
 

∑ ;

( ) ( )
1

i i
i

T Hα αξ ξ
∞

=

=∏  and Tα  are called Wick polynomials of order α ; iξ  are  

the standard Gaussian random variables (GRVs)and ( )nH x  is the normalized 
nth order Hermite polynomial. The expansion of the Wiener process ( )W t  will be: 

( ) ( )
1 0

d ,
t

i i
i

W t m s sξ
∞

=

= ∑ ∫                       (3.2) 

where ( )im t  are an orthnormal basis in Hilbert space [ ]( )2 0, ,L T T < ∞ . The 
mean square error of this expansion for all t T≤  [25] [26] [27] is: 

( ) ( )
2

1 0

d .
tK

i i
i

TE W t m s s
K

ξ
=

 
− ≤  π 
∑ ∫                 (3.3) 
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The basis function ( )im t  can be chosen as the trigonometric functions [26] 
[27]: 

( ) ( ) ( )
1

11 2, cos , 1, 0 .i
i t

m t m t i t T
T T T

− π 
= = > ≤ ≤ 

 
 

The application of WCE on the linear problem is rather easy than the nonli-
near problem. So, the following theorem enables us to handle the cubic term in 
the Equation (3.1) using WCE. 

Theorem 3.1. Assume X and Y are two processes, they have Wiener chaos 
expansion (3.1), then if 

22E X Y  < ∞  
 then the product 2X Y  has the 

Wiener chaos expansion 

( ) ( )2

0 0
, , , , ,r r

r
X Y C r C x x y Tθ µ β β γ θ µ γ

γ θ γ β θ µ µ
θ µ β γ θ µ + − + + − +

∈ℑ ≤ ≤ ∈ℑ ≤ ≤ + ∈ℑ

= +∑ ∑ ∑ ∑ ∑  

where ( )
1
2

, ,C
γ θ µ γ θ µ

γ θ µ
θ µ µ

+ − +    
=     

      
Proof: 
From [25], we start with ( ) ( ) ( ) ( )2

0
, , r r

r
X t C r u t u t Tθ β β θ

θ β θ
θ β − + +

∈ℑ ∈ℑ ≤ ≤

= ∑∑ ∑  

and let Y y Tα α
α∈ℑ

= ∑ , then we have 
 

( ) ( ) ( )

( ) ( )

2

0

2
0

, ,

, , , , ,

r r
r

r r
r

X Y C r x t x t T y T

C r x x y B T

θ β β θ α α
θ β θ α

θ β β α θ α µ
θ β θ α µ θ α

θ β

θ β θ α µ

− + +
∈ℑ ∈ℑ ≤ ≤ ∈ℑ

− + + + −
∈ℑ ∈ℑ ≤ ≤ ∈ℑ ≤ ∧

=

=

∑∑ ∑ ∑

∑∑ ∑ ∑ ∑
 

where ( )
1
2

, ,B
θ α µ θ α µ

θ α µ
α µ µ

+ − +    
=     

    
, then  

( )
1
2

2
2

0

2 !, , ! .
! ! r r

r
X Y C r x x y Tθ β β α θ α µ

α θ β θ µ θ α

θ α θ α µ
θ β µ

µ µ θ α − + + + −
∈ℑ ∈ℑ ∈ℑ ≤ ≤ ≤ ∧

 + −  
=    

    
∑ ∑∑ ∑ ∑

 
Let ,α µ α θ µ θ′ ′− = − =  then , 0β θ β θ µ′≤ ≤ + ≥ , the above summation 

can be rewritten as: 

( )
1
2

2

0

!, , ! .
! ! r r

r
X Y C r x x y Tθ µ β β α µ θ α

α θ β θ µ µ

θ µ α µ θ αθ µ β µ
µ µ θ µ α µ ′ ′ ′ ′+ − + + + +

′ ′ ′∈ℑ ∈ℑ ∈ℑ ≤ ≤ + ∈ℑ

′ ′ + + ′ ′   +′= +     ′ ′+ +    
∑ ∑ ∑ ∑ ∑  (3.4) 

For simplicity, we denote , ;α α θ θ α θ γ′ ′= = + =  then 0, 0α γ θ θ= − ≥ ≥ ; 
so, the formula (3.4) will be: 

( )
1
2

2

0 0

!
, , ! ,

! ! r r
r

X Y C r x x y Tθ µ β β γ θ µ γ
γ θ γ β θ µ µ

θ µ γ θ µ γ
θ µ β µ

µ µ θ µ γ θ µ + − + + − +
∈ℑ ≤ ≤ ∈ℑ ≤ ≤ + ∈ℑ

 + − +  
= +     + − +    
∑ ∑ ∑ ∑ ∑

 
which can be written as: 

( ) ( )2

0 0
, , , , .r r

r
X Y C r C x x y Tθ µ β β γ θ µ γ

γ θ γ β θ µ µ
θ µ β γ θ µ + − + + − +

∈ℑ ≤ ≤ ∈ℑ ≤ ≤ + ∈ℑ

= +∑ ∑ ∑ ∑ ∑  

This completes the proof. 
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From theorem (3.1), it follows that: 

( ) ( )3

0 0
, , , , .r r

r
X C r C x x x Tθ µ β β γ θ µ γ

γ θ γ β θ µ µ
θ µ β γ θ µ + − + + − +

∈ℑ ≤ ≤ ∈ℑ ≤ ≤ + ∈ℑ

= +∑ ∑ ∑ ∑ ∑ (3.5) 

Plugging formula (3.5) into Equation (2.1), we arrive at  

( ) ( ) ( ) ( )

( ) ( ) { } ( ) ( )

0 0

1

, , , ,

0,
, 0 0, 0

0 0.j ij

p p
p

i
i

x t x t C p C x x x

b
x t m t I x x

α α θ µ β β α θ µ
θ α β θ µ µ

α α αα δ

ζ ε θ µ β α θ µ

α
β λ

α

+ − + + − +
≤ ≤ ∈ℑ ≤ ≤ + ∈ℑ

∞

=
=

 
− − + 
 

=
+ = = =  ≠

∑ ∑ ∑ ∑

∑

  

(3.6) 

Consequently, Equation (3.6) can be rewritten as the following system: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) { } ( ) ( )

0 0

1

,

, , , ,

0,
, 0 0, 0

0 0.j ij

p p
p

i
i

x t y t

y t y t C p C x x y

b
x t m t I x y

α α

α α θ µ β β α θ µ
θ α β θ µ µ

α α αα δ

ζ ε θ µ β α θ µ

α
β λ

α

+ − + + − +
≤ ≤ ∈ℑ ≤ ≤ + ∈ℑ

∞

=
=

=

 
− − + 
 

=
+ = = =  ≠

∑ ∑ ∑ ∑

∑



 (3.7) 

By truncating the system (3.7) for N order of polynomial chaos and K GRVs; 
then the set ℑ  can be truncated as the multi-index set ,K Nℑ  which can be de-
fined as: 

( ) { },
1

,1 , 0,1, ; .
K

K N n n n
n

n K Nα α α α α
=

 ℑ = = ≤ ≤ ∈ = ≤ 
 

∑

 
Therefore, the number of the propagators can be calculated as [25]: 

( )
0

1 !
.

! !

N

n

K n K N
n K N

χ
=

+ − + 
= = 

 
∑  

Accordingly, the number of propagators for system (3.7) equals 2χ . So, for 
( ) ( ) ( ) ( ), 2,5 , 2,8 , 3,3N K =  and ( )3,5 , the number of DDEs (propagators) for 
system (3.5) will be 42, 90, 40 and 112 respectively. Those DDEs can be solved 
using the fifth order Rung kutta. Thus, the error of the truncated WCE for sys-
tem (2.2) which satisfies the Lipchitz conditions (2.3) and (2.4), can be estimated 
depending on both K and N similar to [27] as 

( )
( )

12 4

1 !

N
B T T
N K

+ 
 Ο +
 +
 

                     (3.8) 

where B depending only on K. Since N regulates the quality of the actual chaos 
expansion and the number K of used basis functions characterize the approxi-
mation within each chaos. Furthermore, the estimated error of the technique 
depends on the time interval [ ]0,T  and the coefficient of the random forcing 
λ  as it depends on the coefficients of the damping force. Also, we found that 
the smaller the time interval, the faster the convergence. For the equations of the 
long time simulation such as the vander Pol equation, we can divide the time inter-
val into small subintervals of size t∆ . Therefore, the error for each step becomes  

( )
3
2tο ∆ . The mean and the variance of the random solution using WCE can be 
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calculated as:  

( ) ( )

( ) ( )
,

0

2

, 0

,

var .
K N

E x t x t

x t x t

α

α
α α

=

∈ℑ ≠

=  

=   ∑                   (3.9) 

4. The Wiener-Hermite Expansion Technique 

The solution of Equation (2.1) can be expanded in terms of second order Wien-
er-Hermite functionals as, [17] [18] [19]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 2
1 1 1 1 2 1 2 1 2; ; d ; , , d d ,x t x t x t t H t t x t t t H t t t tω

∞
∞ ∞

−∞ −∞
−∞

= + +∫ ∫ ∫ (4.1) 

where ( ) ( )1, ,i
iH t t  is the ith order Wiener-Hermite time-independent func-

tional. The zero and first order terms ( )0x  and ( )1x  represent the Gaussian 
part of the solution and are suitable only in the case of Gaussian processes. The 
second order term ( )2x  will account for the non-Gaussian part of the solution. 
Higher order terms will be less dominant than the second order one and hence, 
can be neglected as in the current work. 

Apply the second order WHE to Equation (2.1) to get: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

2

0 1 1 2 2 0 1 1 2 2
1 2 1 2

2

0 1 1 2 2 0 1 1 2 2
1 2 1 2

0 1 1 2 2
1 2

d d d d

d d d d

d d .

R R

R R

R

x x H t x H x x H t x H

x x H t x H x x H t x H

x x H t x H W t

τ ζ τ

ε τ τ

β τ λ

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

∞

−∞

 
+ + − + +  

 
   
 + + + + +        
 

+ + + =  
 

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫

     

  



(4.2)

 

where 1 2d d d di it t tτ =   and 
iR
∫  is a i-dimensional integral over the disposable  

variables 1 2, , , it t t , 1i ≥ . Taking the ensemble averages together with the sta-
tistical properties of WHE functionals for Equation (4.2), a set of deterministic 
integro-differential equations are obtained in the deterministic kernels  

( ) ( )1; , , , 0,1,2l
lx t t t l = . From the orthognality of Hermite functionals [17] [18], 

we can get the following deterministic differential equations:  

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

2 2

3

2 2 20 0 0 0 0 1 0 2
1 2

0 1 1 1 1 2
1 1 2 2

1 1 2 0 2 2
1 2 1 2 2 2

2 2 2
1 2 2 3 1 3 3

0 0 0

d 2 d

2 d 4 d

2 , d 4 d

8 , , , d

0, 0 0, 0 .

R R

R R

R R

R

x x x x x x t x x

x x x t x t x t x

x t x t x t t x x x

x t t x t t x t t

x x x b

ζ ε τ

τ

τ τ

τ

β


− + + +



+ +

+ +


+ 



+ = = =

∫ ∫

∫ ∫

∫ ∫

∫

    

 

 





     (4.3) 

https://doi.org/10.4236/am.2020.113016


M. Hamed et al. 
 

 

DOI: 10.4236/am.2020.113016 192 Applied Mathematics 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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2 2
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  
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(4.4)  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2 2 0 1 1 0 2 2
1 2 1 3 2 3 3

0 0 2 0 1 1 0 1 1 2 1 1
1 2 2 1 1

21 1 2 2 1 1 1 2
2 2 1 1 1

1 1 2 1 1 2 1 1 2
2 2 1 1 1 1

1 (

2 2 2 8 , , d

4 2 2 4 d

4 d 2 d 4 d

4 d 4 d 4 d

4

R

R

R R R

R R R

x x x x t x t x x t t x t t t

x x x x x t x t x x t x t x x x t

x t x x t x x t x t x x t

x t x x t x t x x t x t x x t

x x

ζ ε


− + +


+ + + +

+ + +

+ + +

+

∫

∫

∫ ∫ ∫

∫ ∫ ∫

   

   

  

  

( ) ( ) ( )( ) ( ) ( ) ( )( )2

2

22 0 2 2 21)
1 2d 2 4 d

R R

x t x t x x x τ+ +∫ ∫  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2 2 2 2 2 2
2 3 4 1 4 2 3 3 4

2 2 2
3 4 2 4 1 3 3 4

2 2 2
1 3 3 4 2 4 3 4

0 2 2 0 2 2
1 3 2 3 3 2 3 1 3 3

2 2 2
1 2 1 2

8 d 16 , , , d d

16 , , , d d

16 , , , d d

8 , , d 8 , , d

2 ; , 0, 0; , 0;

RR

R

R

R R

x x x x t t x t t x t t t t

x t t x t t x t t t t

x t t x t t x t t t t

x x t t x t t t x x t t x t t t

x t t t x t t x t

τ

β

+ +

+

+


+ + 



+ = =
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∫

∫

∫ ∫

   

 

 

 

 ( )1 2, 0.t =

         (4.5) 

For solving the deterministic differential Equations (4.3)-(4.5), we can use a nu-
merical method such as the modified Euler method or the perturbation theory 
[19]. The perturbation technique has the disadvantage of small convergence in-
terval and hence is not will applicable to many problems. Furthermore, the per-
turbation method is sensitive for the problems of the long time integral and 
needs complicated computations for higher order equations. So it is a bad me-
thod for solving the results of WHE for SVDP equation although it is appropri-
ate for solving many other NSDEs. Consequently, we will solve the WHE result-
ing system using the modified Euler with ( )2tο ∆ . 

5. Numerical Simulation Using WCE Technique 

In this section, we analyze the results using WCE technique. Hence, we com-
pare the results using different number of propagators and using MC simula-
tions. For comparison, we will solve system (2.2) by MC simulations using 
10,000 realizations and the time step 0.001. The initial conditions are chosen as 
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0 00, 0.1x x= =  and the time interval will be [ ]0,T , T < ∞ . As it is known, the 
WCE method and the WHE method are both sensitive to the time intervals [19] 
[25]. So, we will choose a moderate intervals 50T =  and 30T = . Accordingly, 
the oscillatory properties of SVDP system will be shown in these intervals 
through its statistical properties such as mean and variance. 

From the comparison, we find that increasing the number of GRVs is more 
effective than increasing the order of polynomial. Also, the parametric values af-
fect the dynamic behavior of the approximate solution through its statistical 
properties. The influence of the external force on the dynamic behavior of the 
system is greater than the influence of the damping force.  

This influence needs to reduce the error (3.3) of ( )W t  by increasing the 
number of GRVs (basis functions) of the expansion. Furthermore, it is found 
that a good agreement between the results of WCE and those of MC simulations 
in the mean solutions, but with some divergence in the variance with longer time 
intervals. To reduce the divergence, we need higher number of GRVs (see Fig-
ure 1(b)). 

Figures 1-3 show a good agreement between the results of WCE using 
2, 8N K= = and those of MC simulations. Also, the figures show the influence 

of the damping parameters ζ  and ε  on the behavior of the solution. De-
pending on conditions (2.5) and (2.7), we found that reducing the values of ζ  
and ε  makes the damping term ( )2x xζ ε−   tends to zero. Consequently, the 
oscillations of system (2.2) converge to the harmonic oscillation. Accordingly, 
the mean solution makes a periodic motion with a self-sustained limit cycle with 
quasi-absence of the external force. While the variance increases linearity with 
time. Furthermore, magnifying the value of ε  reduces the amplitude x  of 
the system and that makes the motion converges from the nature of damping 
with time. This is one of advantage of generalized the damping term, using two 
different coefficients for the linear damping term and non-linear damping term. 

 

 
Figure 1. Mean (a) and variance (b) using MC simulations and WCE method for 0.001ζ = , 0.001ε = , 1β = , 0.001λ = . 
(a) The mean solution for 50T =  and (b) The variance for 10T = . 
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Figure 2. Mean (a) and variance (b) using MC simulations and WCE (N = 2, K = 8) for 0.001ζ = , 3ε = , 1β = , 0.001λ = . (a) 
The mean solution for 50T =  and (b) The variance for 10T = . 
 

 
Figure 3. Phase plane of the mean solution computed by MC simulations and WCE (N = 2, K = 8) for 0.001ζ = , 1β = , 

0.001λ = , 50T = . (a) for 0.001ε =  and (b) for 3ε = . 
 

Figures 4-6 show the convergence of WCE to MC results as the number K of 
GRVs increases. We can note that, it is more effective to use WCE with higher 
number K of random variables than to increase the polynomial order N. Fur-
thermore, they show the dynamic behavior of the oscillations at large value of 
linear damping coefficient ζ . With quasi-absence of the external force, the 
mean solution reacts as a negative damping system. Where, the system starts 
outside of the limit cycle and acquires energy. 

But, for 1ζ   the system acts as a relaxation oscillator system as result of 
the sudden increase and decrease of the velocity x , (see Figure 5(a), Figure 
6(b)). 

Also, Depending on conditions (2.5) and (2.7), we found that reducing the 
value of ε  makes the nonlinear damping term 2x xε   tends to zero. Thence, the  
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Figure 4. Mean (a) and variance (b) using MC simulations and WCE method for 1ζ = , 0.001ε = , 3β = , 0.001λ = , 30T = . 

 

 
Figure 5. Mean (a) and variance (b) using MC simulations and WCE method for 3ζ = , 0.001ε = , 1β = , 

0.001λ = . (a) The mean solution for 50T =  and (b) The variance for 30T = . 
 

 
Figure 6. Phase plane of the mean solution computed by MC simulations and WCE method for 0.001ε = , 3β = , 

0.001λ = , 50T = . (a) for 1ζ =  and (b) for 3ζ = . 
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approximate solution of the SVDP equation converges to the solution of the 
damping harmonic oscillation. For this reason, the mean solution of the WCE 
for different number of propagators will converge to the form 0x x xζ β+ + = 0 0 0 , 
where ( )0,0, ,0= 0 . So, Figure 1(a) to Figure 6(a) have the same variation 
tendencies. 

In Figures 7-9, the system acts as a positive damping system due to increase 
the influence of the external force. Therefore, the system dissipates the energy 
and converges to the origin. Depending on condition (2.7) where 2 21 0x λ+ − ≥ , 
we get 2 2 1x λ≥ − .  

Furthermore, increasing the value of 1λ   produces a deviation between 
the results of WCE and those of MC simulations. This deviation can be reduced 
by increasing MC samples, but at the other side, the computing time will in-
crease and also the memory required. Especially we handle a second order diffe-
rential equation. So, the oscillation of the results of MC simulations is been  
 

 
Figure 7. Mean (a) and variance (b) using MC simulations and WCE (N = 2, K = 8 and N = 3, K = 5) for 0.001ζ = , 

1ε = , 1β = , 1λ = , 30T = . 
 

 
Figure 8. Mean (a) and variance (b) using MC simulations and WCE (N = 2, K = 8 and N = 3, K = 5) for 0.001ζ = , 

1ε = , 1β = , 1.5λ = , 30T = . 
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Figure 9. Phase plane of the mean solution computed by MC simulations and WCE method for 0.001ζ = , 1ε = , 1β = , 

30T = . (a) for 1λ =  and (b) for 1.5λ = . 
 
chaotic. Figure 9 shows the limit cycles of the mean solution of the system (2.2). 
Where the limit cycles dissipate the energy and converge rapidly to the origin 
point when the value of λ  increases. 

6. Comparison between the Results of WCE Technique and  
WHE Technique for SVDP Equation (2.1) 

The following results discussed the comparison between the results of WCE 
method, WHE method with those of MC simulations.  

Although the existence of a small deviation of the results of WHE from the 
other methods, Figure 10 & Figure 11 show a good agreement with both MC 
simulations and WCE This deviation is due to using the numerical Euler method 
to solve the deterministic system of the WHE. This numerical method becomes 
better by using a very small time step by increasing the number of discretization 
of time. And, this is in some times impossible with the ability of the used ma-
chinery. In addition to, increasing the value of ζ  makes the results of WHE 
deviate from the results of the others both techniques as in Figure 12. So, we 
need complicated computations for higher accuracy results of the WHE method. 
Therefore, we can deduce that the WCE gives good results than the WHE me-
thod. Also, we found that the dynamic behavior of the oscillation for the results 
of the three methods has the same parametric effect. 

Figure 13 shows the phase plane of the mean solution of the three methods 
for different values of ζ . 

Figure 14 shows the positive damping motion of the results of using both 
WCE and WHE as a result of increasing the effect of the stochastic external force. 
As it known, WCE method, MC simulations and WHE method are handling 
differently with the external force. Therefore, the deviation between the results 
of the three methods appears when λ  is large. 
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Figure 10. Mean (a) and variance (b) using MC simulations and WCE (N = 2, K = 8) and 2nd order WHE for 

0.001ζ = , 0.001ε = , 1β = , 0.001λ = . (a) The mean solution for 30T =  and (b) the variance for 10T = . 
 

 
Figure 11. Mean (a) and variance (b) using MC simulations and WCE (N = 2, K = 8) and 2nd order WHE for 

1ζ = , 0.001ε = , 1β = , 0.001λ = . 
 

 
Figure 12. Mean (a) and variance (b) using MC simulations and WCE (N = 2, K = 8) and 2nd order WHE for 

3ζ = , 0.001ε = , 1β = , 0.001λ = . 
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Figure 13. Phase plane of the mean solution computed by MC simulations, WCE method and 2nd order WHE method for 

0.001ε = , 1β = , 0.001λ = . (a) for 0.001ζ =  and (b) for 1ζ = .  
 

 
Figure 14. Mean (a) and variance (b) using MC simulations and WCE (N = 2, K = 8) and 2nd order WHE for 0.001ζ = , 1ε = , 

1β = , 1.7λ = . 

7. Conclusions  

In this paper, we investigated the SVDP equation under an external excitation 
described by Gaussian white noise. The accurate analytical solution of the SVDP 
oscillator was not obtained until now. Therefore we needed to use numerical 
techniques such as the spectral decomposition techniques to obtain an effective 
approximate solution. The dynamic behavior of this solution was studied 
through its statistical moments. Furthermore, depending on the study, it was 
found that:  
• WCE technique was more accurate if it is compared with WHE technique for 

the same order. 
• WCE technique was programmable if it is compared with WHE technique 
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and for the same order, WCE consumed less time on the same processor. 
• The accuracy of the WCE technique increases by increasing the number of 

Gaussian random variables (GRVs), much more than the order of the expan-
sion. Hence, in creasing the number of GRVs makes the propagators capture 
more information about the stochastic solution. Especially, for equations 
need a long interval time. 

• Depending on the growth condition, the solution of the SVDP system was 
locally existence as long as the values of both the linear damping coefficient 
and the external force coefficient were small.  

Furthermore, we deduced that as long as the influence of the external force is 
negligible, the results of the three techniques are converged. But, increasing the 
influence of the external force refers to the efficiency of each method in dealing 
with the randomness of external force. In that study, we found that the WCE 
method was more efficient since it depends on the discretization of the white 
noise using the Fourier expansion. This discretization was missed in the WHE 
method. For the MC simulations, it was based on the number of realizations, the 
increasing of this number may be exceeded the capacity of the used machinery.   
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