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Abstract 
In this paper, we show how Murty’s ranked linear assignment algorithm can 
be applied to exactly solve the symmetric Traveling Salesman Problem (TSP). 
To increase the Murty algorithm’s computational efficiency in solving the 
TSP, we develop a simple algorithm that determines whether a node that is 
generated in Murty’s sequential node partitioning process contains a 
sub-cycle of length less than n, where n is the number of cities to be visited. 
Each such node cannot generate a genuine solution, which must be a full 
n-cycle, and can thus be eliminated from further partitioning. In exactly, 
solving the TSP Murty’s ranking process continues, discarding all such nodes, 
terminating in a finite number of rankings when the first such ranked solu-
tion is encountered that is a full n-cycle. This first ranked n-cycle is the exact 
solution to the given TSP problem. 
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1. Introduction 

The NP-hard Traveling Salesman Problem (TSP) is a paradigm of computational 
complexity. It continues to be one of the most intensively investigated problems 
in Operations Research. The famed Irish mathematician William Rowan Ham-
ilton first formulated the TSP problem in the 1800’s. Merrill Flood, the Ameri-
can mathematician, popularized the TSP as a worthy object for investigation in 
the 1940’s [1]. The Rand Corporation, in the 1950’s was a focal point for re-
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search on the TSP. At Rand Richard Bellman, George Dantzig, Ray Fulkerson 
and Selmer Johnson made fundamental contributions to the solution of the TSP. 
Bellman in [2] proposed a dynamic programming approach to solving the TSP 
that was limited to a small number of cities. Bellmans’s algorithm was redisco-
vered and improved by Held and Karp in [3]. Their approach provides both 
sharp bounds for the solution as well as the computational complexity for at-
taining an approximate solution and was able to find an exact solution for the 
TSP problem of 64 cities. 

Bellman’s and the Held-Karp’s algorithms are based on a branch and bound 
approach. The branch and bound approach is based on the principle that the to-
tal set of feasible solutions can be partitioned into smaller subsets of solutions. 
Branch and bound-based TSP algorithms are not exact. Mathematicians and 
Computer Scientists have since worked to improve their computational effi-
ciency, even at the margins, of the best available of these algorithms. Gutin and 
Punnin summarized the state of the art of TSP algorithms as of 20,002 in [4]. 
The record for the solved-for number of cities is 85,900 at Bell laboratories in 
2006. 

Branch-and-cut is a second general technique to solve the symmetric TSP 
problem. It requires an exponential number of cut-set elimination constraints. 
David P. Williams has compiled a very accessible overview of progress on the 
TSP in [5] which includes a section on branch and cut methods in conjunction 
with linear programming algorithms. To complete the picture, there is an exten-
sive literature on heuristic TSP solvers [6]. 

In this paper, we adapt Murty’s ranked linear assignment algorithm [7] to the 
symmetric TSP application. The Murty algorithm solves the ranked linear as-
signment problem in a sequence of stages. In the first stage, it uses, say, the 
Jonker-Volgenant (JV) [8] fast 0 - 1 integer linear assignment algorithm to find 
the exact minimizing solution on the original assignment problem matrix. The 
first stage solution then generates a set of n nodes from the initial solution by 
partitioning this first stage solution. Each such node specifies which matrix ele-
ments in the first stage solution are to be included in the next solution and 
which are to be excluded. For each node, the included elements specify which 
rows and columns are to be struck out of the original first stage matrix to pro-
vide the assignment matrices in the next stage while the excluded elements spe-
cify which elements in the original matrix are to be replaced by machine infinity. 
This produces a set of node-correspondent square matrices of decreasing order. 
Each such node-specific matrix is subjected to the JV algorithm thus producing 
an assignment value; the smallest of these values is then the second ranked value. 
The method proceeds recursively from one stage to the next to generate the third 
ranked solution, the fourth, etc. Our TSP-specific implementation continues the 
ranking until the first full n-cycle is found, thus making our proposed algorithm 
exact. 

To further adapt the Murty ranked linear assignment algorithm to the TSP for 
computational efficiency, we construct a simple algorithm that determines 
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whether a node contains a sub-cycle of length < n. Such nodes cannot generate a 
full cycle. We will show that most nodes contain sub-cycles of length 
,2l l n≤ < . We can thus expect that the Murty algorithm, equipped with this 

node sub-cycle identification and elimination algorithm along with a core fast JV 
0 - 1 integer linear assignment problem solution algorithm, which is ( )3O r  in 
complexity, 2 r n≤ ≤ , will compare well in speed with the currently best availa-
ble symmetric TSP algorithms but in contrast with them always provide exact 
answers. 

We assume the assignment matrix of distances between the cities to be visited 
is symmetric and positive except for zeros along the main diagonal. We use the 
device of replacement of each diagonal zero entry with a positive number that is 
greater than any other matrix entry. This trick guarantees that no ranked solu-
tion contains a 1-cycle. Importantly we show that eliminating all such permuta-
tions containing a 1-cycle asymptotically shrinks the number of possible permu-
tations that must be processed by Murty’s ranked linear assignment algorithm 
by a factor of ≈0.6321. The sub-cycle node elimination algorithm removes the 
remaining ( )0.3679 1 1 !n n−  possible permutations as n →∞ . The space of 
solutions is thus reduced to the set of ( )1 !n −  full n-cycles. 

Section 2 Contains our definitions and notation. 
Section 3. Provides our key proofs and a computational example 
Section 4. Supplies our conclusions 
Section 5. Sketches a map for future research. 
Section 6. Lists references. 

2. Definitions and Notation 

We closely follow the definitions and notation found in [7] in which: 
n = the number of cities along the traveling salesman’s route. 

( ) , 1,2, ,ij i j n
C c

=
=



 is the assignment matrix of inter-city distances such that 
0, , , , 1,2, ,ij ji ii ijc c i j c d c i j n= > ≠ = > ≤  . 

Paraphrasing Murty in [7] and specializing the general ranked assignment 
problem down to the TSP we can define it as the 0 - 1 integer linear program-
ming problem with an additional full n-cycle constraint (4): 

Minimize 
1 1

n n

ij ij
i j

Z c x
= =

= ∑∑  

Subject to: 1) 
1

1, 1,2, ,
n

ij
j

x i n
=

= =∑                                  (1) 

2) 
1

1,  1,2, ,
n

ij
i

x j n
=

= =∑   

3) 1 or 0,  , 1,2, ,ij ijx x i j n= = =   
4) If ( ) ( ) ( )1 21, , 2, , , , nj j n j  are the indices of the variables ijx  taking on 

the value 1 then the corresponding group element that is contained in the sym-
metric group of permutations on n letters, nS , is a full cycle of length n. 

A node, M, that is generated on the kth stage of the ranking process is given by: 
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( ) ( ) ( ) ( ) ( ) ( ){ }1 1 2 2 1 1 2 2, , , , , , ; , , , , , , ,r r n r n rM i j i j i j m p m p m p− −=    

( ) ( ) ( )1 1 2 2, , , , , ,r ri j i j i j  specify which original matrix entries are to retained 
in the solution and ( ) ( ) ( )1 1 2 2, , , , , ,n r n rm p m p m p− −  specify which original ma-
trix entries are to be excluded from the solution by inserting machine ∞ into the 
entries ( ), , 1,2, , ,i im p i n r r n= − < . 

3. Derivations 
3.1. Node Rejection and Solution Identification 

The basic idea is to sequentially form the node-correspondent product of 
2-cycles, ( ) ( ) ( )1 1 2 2, , , , , ,r r ri j i j i j S∈ , into a product of disjoint cycles. A ne-
cessary condition for the node to generate a genuine solution to the TSP is that 
this product must not contain a single cycle of length ≤ r. We have constructed a 
simple algorithm to determine whether this necessary condition is met. It re-
quires ( )2O r  integer comparisons. The MATLAB code implementation of this 
algorithm is shown below. The input variables are defined as the integer vectors: 

[ ]
[ ]

1 2

1 2

, , ,

, , ,
r

r

I i i i

J j j j

=

=





 

 

 
 

The output variable is: 
0 if the node does not contain a sub-cycle

test
1 if the node contains a sub-cycle


= 


. 
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An important consequence of sub-cycle identification and rejection is that the 
node partitioning process for a given ranked assignment solution stops whenev-
er a sub-cycle is encountered. The same algorithm can be exploited to determine 
whether a node-partitioning solution is a genuine n-cycle and is a solution can-
didate, depending on whether its Z value is smallest among those from the set of 
eligible nodes—those whose two-cycle products do not contain sub-cycles in 
their representation as products of disjoint sub-cycles. 

3.2. Diagonal ∞’s and Node Elimination Algorithm Probabilities  
and Statistics 

The efficiency advantage that the Murty ranked assignment approach confers to 
the TSP problem derives from two essential features: 1) The large fraction of the 

!n  possible permutation solutions that are eliminated by the machine ∞’s main 
diagonal entries and 2) the elimination of candidate nodes by the node rejection 
algorithm. 

Table 1 below shows the number of permutations that keep at least 1 of the n 
letters fixed and are thus eliminated by the node identification and rejection al-
gorithm. Table 2 shows the result of a set of Monte Carlo sampling experiments 
with a sample number of 1000 per each case of the number of cities.  

Examination of Table 1 motivates the key ansatz: 
The number of permutations, nR , eliminated because of diagonal ∞’s is given 

by the recursion: 
 
Table 1. Diagonal ∞ permutation elimination. 

Number of cities 
Number of permutations 

eliminated by diagonal ∞’s 
Probability of diagonal 

entry elimination 

2 1 0.5 

3 4 0.66667 

4 15 0.625 

5 76 0.63333 

6 455 0.61394 

 
Table 2. Node rejection fractions. 

Number 
of cities 

Fraction of nodes 
eliminated by 

machine ∞ 
diagonals 

3σ uncertainty 
in fraction of 

nodes eliminated by 
diagonal ∞’s 

Fraction of 
nodes eliminated 
by node rejection 

algorithm 

3σ uncertainty 
in fraction of nodes 

eliminate by 
rejection algorithm 

10 0.6130 0.0462 0.2780 0.0425 

20 0.6350 0.0457 0.3170 0.3170 

50 0.6470 0.0453 0.3370 0.0448 

100 0.6400 0.0455 0.3470 0.0452 

200 0.6160 0.0461 0.3750 0.0459 

500 0.6170 0.0461 0.3820 0.0461 

https://doi.org/10.4236/oalib.1106159


R. Danchick 
 

 

DOI: 10.4236/oalib.1106159 6 Open Access Library Journal 
 

1

1

1 if  is even
,  3,4,5,

1 if  is odd
n

n
n

nR n
R n

nR n
−

−

−
= = +

                 (2) 

If (2) holds for all 3n ≥  then the corresponding diagonal ∞’s permutation 
rejection probability recursion is given by: 

1

1

1 ! if  is even
,  3,4,5,

1 ! if  is odd
n

n
n

p n n
p n

p n n
−

−

−
= = +

                (3) 

If the recursion (2) above holds for all 3n ≥  we can expand recursion (3) to 
obtain 

( ) 1
1 2

3
1 !

n i
n

k
p p k−

+
=

= + −∑                       (4) 

From (4) it is easy to see that 

( )lim 1 exp 1 0.6321nn
p

→∞
= − − ≈                     (5) 

which is agreement with what Table 1 and Table 2 show. 
We will use the four California cities: 1) Los Angeles, 2) San Diego, 3) San 

Jose, and 4) San Francisco, to pose a “toy problem” that nevertheless captures 
the essential features and potential effectiveness of our approach. The corres-
ponding assignment matrix, with entries rounded to the nearest mile, is: 

120 340 382
120 466 508
340 466 48
382 508 48

C

∞ 
 ∞ =
 ∞
 ∞ 

 

By inspection the optimal stage 1 solution is: 

( ) ( ) ( ) ( )1,2 , 2,1 , 3,4 , 4,3 , 336.Z =  

Note that this stage 1 solution is not a solution of the TSP problem because it 
contains two sub-cycles of length 2. 

The stage 2 nodes that are partitioned by the optimal solution of stage 1 are: 

( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

4

1,2 ,

1,2 , 2,1 ,

1,2 , 2,1 , 3,4 ,

1,2 , 2,1 , 3,4 , 4,3 .

M

M

M

M

=

=

=

=

 

The node rejection test tells us that only 1M  and 2M  need be processed. 
The optimal stage 2 solution on 1M  is the 4-cycle:  

( ) ( ) ( ) ( )1,4 , 4,3 , 3,2 , 2,1 , 966Z =  
The optimal stage 2 solution on 2M  is the 4-cycle  

( ) ( ) ( ) ( )1,2 , 2,3 , 3,4 , 4,1 , 1010Z = . 
Thus the solution to the given TSP problem is the solution is on 1M . 

4. Conclusions 

We have proposed an exact algorithm for the solution the symmetric traveling 
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salesman problem that exploits Murty’s ranked linear assignment algorithm. We 
have shown how the Murty algorithm can be equipped with a simple test that 
eliminates from further processing any node that cannot generate a full n-cycle. 
We have proved that if the recursion (2) holds that the device of inserting ma-
chine ∞’s down the main diagonal asymptotically reduces the number of candi-
date permutations by a factor of ( )1 exp 1 0.6321− − ≈ . The remaining  

( )0.3679 1 1 !n n−  permutations, each of which corresponds to a sub-cycles of 
length < n, are eliminated by the node rejection test. Exploiting the fast JV algo-
rithm as the core 0 - 1 integer linear assignment problem solution method gives 
the proposed algorithm the potential for great efficiency in exactly solving large 
problems with 1n . 

5. Directions for Future Research 

Our first objective would be to prove the conjecture that the recursion (2) holds 
for all 3n ≥ , say, by mathematical induction. 

Second would be the derivation of the computational complexity of our pro-
posed algorithm.  

Finally, we would either acquire reliable Murty and JV codes or program them 
from scratch, equip the Murty code with the node rejection algorithm and run 
the Murty + JV + node rejection combination on sample problems in the litera-
ture. We would then compare run times for our proposed algorithm with those 
of the best current symmetric TSP codes. 
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