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Abstract 
In this paper, a linear delay model in astronomy, called as Ambartsumian 
equation, is investigated by two different approaches. The first is the ap-
proximate homotopy perturbation method (HPM), while the second is a new 
closed-form solution for this equation. The results are presented through a 
table and several plots and have been compared with the relevant literature. It 
is revealed that the present HPM is of higher accuracy than those approx-
imate techniques used in previously published works, when compared with 
the obtained analytic solution. The convergence of the new analytic solution 
has been also discussed. 
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1. Introduction 

The Ambartsumian equation is used in the theory of surface brightness in the 
Milky Way [1]. It is a linear delay differential equation given by [2] 

( ) ( ) 1 , 1,tz t z t z q
q q

 ′ = − + > 
 

                    (1) 

where q is a constant and 

( )0 ,z λ=                              (2) 

where λ  is also a constant. Existence and uniqueness were discussed in [3]. 
Although the Adomian decomposition method (ADM) was effective to deal with 
various types of equations [4]-[18], the HPM55 [19] [20] is preferred here to 
analyze (1-2). Details of the HPM were introduced by Ayati and Biazar [20]. 
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Moreover, it will be shown that the present analysis posses more accuracy over 
the previous method in the literature. 

2. Application of the HPM 

First, Equation (1) is rewritten as 

( ) ( ) 1 ,tz t z t p z
q q
  ′ = − +   

  
                      (3) 

where 

( ) ( )
0

.n
n

n
z t p z t

∞

=

= ∑                           (4) 

On substituting (4) into (3), we have 

( ) ( ) ( ) ( )1
0 0 1 1

0

1 0,n
n n n

n

tz t z t p z t z t z
q q

∞
+

+ +
=

  ′ ′+ + + − =  
  

∑             (5) 

which yields 

( ) ( ) ( )0 0 00, 0 ,z t z t z λ′ + = =                      (6) 

and 

( ) ( ) ( )1 1 1
1 , 0 0, 0.n n n n

tz t z t z z n
q q+ + +

 ′ + = = ≥ 
 

            (7) 

Hence, 

( )0 e .tz t λ −=                           (8) 

From (7) and (8), the 1st-order system is given as 

( ) ( ) ( )1 1 1 e , 0 0.t qz t z t z
q
λ −′ + = =                   (9) 

Therefore 

( ) ( )1 e e .
1

t q tz t
q
λ − −= −
−

                    (10) 

The 2nd-order system is given by 

( ) ( ) ( ) ( ) ( )2

2 2 1 2
1 e e , 0 0.

1
t q t qtz t z t z z

q q q q
λ − − ′ + = = − =  − 

      (11) 

By solving the system (11) for ( )2z t , we have 

( ) ( )( )
( )2

2 2
e 1 e e .

1 1
t q t q tz t q q

q q
λ − − − = − + + − +

            (12) 

Proceeding as above we obtain the 3rd-order system as 

( ) ( ) ( )3 3 2 3
1 , 0 0,tz t z t z z
q q

 ′ + = = 
 

                  (13) 

with the corresponding solution 
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( ) ( )( ) ( ) ( )3 23 3 2 2
3 3

e e 1 e e .
1 1

t q t q t q tz t q q q q q q
q q

λ − − − − = − + + + + + − − +
(14) 

The calculated higher-order solutions are obtained by MATHEMATICA and 
then implemented to producing the results in Section 5. From Equation (4), the 
HPM gives the series solution of Equation (1) as 1p →  (see Ayati and Biazar 
[20]) by ( ) ( )

0
n

n
z t z t

∞

=

= ∑ . This infinite series is approximated by replacing infin-
ity with n-term, hence, the approximate solution, denoted by ( )n tψ , is given by 
[19] [20]: 

( ) ( )
1

0
.

n

n i
i

t z tψ
−

=

= ∑                          (15) 

The residual ( )nRE t  is given as 

( ) ( ) ( ) 1 , 1,n n n n
tRE t t t n

q q
ψ ψ ψ  ′= + − ≥ 

 
            (16) 

and the approximate solution in Ref. [2] is 

( ) ( )
1 1

1 1 .
!

im i
k

m
i k

tt q
i

χ λ −

= =

  = + −  
  

∑ ∏                 (17) 

3. Analytic Solution 

Equation (1) can be written as 

( ) ( ) ( ) 1 , .z t z t z t
q

β β β′ = − + =                   (18) 

Assume that 

( )
0

e .
nt

n
n

z t c β
∞

−

=

= ∑                          (19) 

Accordingly, we have 

( )
0

e ,
nn t

n
n

z t c ββ
∞

−

=

′ = −∑                        (20) 

and 

( ) 1

0
e .

n t
n

n
z t c ββ

+∞
−

=

= ∑                         (21) 

Inserting Equations (19)-(21) into Equation (18), we get 

1

0 0 0
 e e  e ,

n n nn t t t
n n n

n n n
c c cβ β ββ β

+∞ ∞ ∞
− − −

= = =

− = − +∑ ∑ ∑               (22) 

i.e., 

( ) 11
1

0
1 e 0,

nn t
n n

n
c c ββ β

+∞
+ −

+
=

 − − = ∑                  (23) 

and this yields 

( )1
11  0.n

n nc cβ β+
+− − =                     (24) 
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The last equation implies that 

1 1 , 0.
1n nnc c nβ

β+ +

 
= ≥ − 

                     (25) 

Accordingly, 
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                    (26) 

Hence 

( )
( )

0
1

1

e e .
1

n
n

t t
n
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k

z t c ββ

β

∞
− −

=

=

  
  
  = +
  −    

∑
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                 (27) 

The initial condition (2), gives 0c  by 

( )
0

1

1

1 .
1

n

n
kn

k

c βλ
β

∞

=

=

 
 

=  + 
 − 
 

∑
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                    (28) 

Thus 
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=
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 +
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∑
∏

∑
∏

                   (29) 

and the convergence of series in (29) is discussed in the next section in detail. 

4. Convergence Analysis 

Definition 1: Let ( ){ }nf x  be a sequence of real functions, each function of 
which is defined for all x on a real interval a x b≤ ≤ . For each particular x such 
that a x b≤ ≤  consider the corresponding sequence of real numbers ( ){ }nf x . 
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Suppose that the sequence ( ){ }nf x  converges for every x such that a x b≤ ≤ , 
and let ( ) ( )limn nf x f x→∞=  [ ],x a b∀ ∈ . Then we say that the sequence of real 
functions ( ){ }nf x  converges pointwise on the interval a x b≤ ≤ , and the 
function ( )f x  thus defined i called the limit function of the sequence 

( ){ }nf x . 
Definition 2: Let ( ){ }nf x  be a sequence of real functions, each function of 

which is defined for all x on a real interval a x b≤ ≤ . The sequence ( ){ }nf x  is 
said to converge uniformly to ( )f x  on a x b≤ ≤  if, given any 0ε > , there 
exists 0N >  (which depends only upon ε ) such that ( ) ( )nf x f x ε− <  

[ ], ,n N x a b∀ > ∀ ∈ . 
Theorem 1: Let ( ){ }nf x  be a sequence of real functions converges uniform-

ly to ( )f x  on a x b≤ ≤  and suppose that each function ( ) ( )1,2,3,nf x n =   
is continuous on a x b≤ ≤ , then the limit function ( )f x  is continuous on 
a x b≤ ≤ . 

Theorem 2: Weierstrass M-Test 
1) Let { }nM  be a sequence of positive constants such that the series of con-

stants 
1 nn M∞

=∑  converge. 
2) Let ( )1 nn u x∞

=∑  be a series of real functions such that ( )n nu x M≤  
[ ],x a b∀ ∈  for each 1,2,3,n =  . 

Then the series ( )1 nn u x∞

=∑  converges uniformly on [ ],x a b∈ . 

Theorem 3: From (29), Let 
( )1 1

n

n n k
k

M β
β

=

=
−∏

, then { }nM  is a sequence 

of positive constants and the series 
1 nn M∞

=∑  converges. 

Proof: Since 1 qβ =  and 1q > , then β  is a positive constant and 
0 1β< < . Also, the expression ( )1 kβ−  is always positive, where 0 1kβ< < . 
Therefore, { }nM  is a sequence of positive constants. To prove convergence of 
the series 

1 nn M∞

=∑ , we have from the ratio test that 

( )

( )1
1 1

1 1

1

1

1
lim lim lim ,

11

1lim 1 1
1

n
k

n
n k

n n nn n nkn

k

nn

M
M

β
β β

β ββ

β β
β

+
+ =

+ +→∞ →∞ →∞

=

+→∞

−
= × =

−−

= × = × <
−

∏

∏         (30) 

which proves the convergence of the series 
1 nn M∞

=∑ . 
Theorem 4: The solution ( )z t  given by (29) converges uniformly on the 

whole domain 0 t≤ < ∞ . 
Proof: From the previous theorem, it we showed that { }nM  is a sequence of 

positive constants and the series 
1 nn M∞

=∑  converges. This meets the first re-
quirement of the Weierstrass M-Test in theorem 2 above. Since 

1 nn M∞

=∑  con-
verges, we suppose that its sum equals *M , i.e., *

1 nn M M∞

=
=∑ . In order to sa-

tisfy the second requirement of theorem 2, we rewrite the solution (29) in terms 
of a new variable x, where e tx −= , as: 
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( ) *
1

, 0 1.
1

n

n
n

z x x M x x
M

βλ ∞

=

 = + < ≤ +  
∑               (31) 

To prove convergence of ( )z x  in (31), it is sufficient to prove the conver-

gence of the series 
1 1

n

n nn nu M xβ∞ ∞

= =
=∑ ∑ . At this stage, we have from 

n

n nu M xβ=  that 

,
n n

n n n nu M x M x Mβ β= = ≤                  (32) 

where 1
n

xβ ≤  1,2,3,n∀ =  , and this completes the proof. 

5. Validation of Numerical Results 

The HPM and another direct approach have been applied in the previous sec-
tions to obtain the approximate solutions and the analytic solution, respectively, 
in terms of exponential functions with negative powers. The convergence of the 
analytic solutions was discussed in Section 4. The obtained approximate solu-
tions by the HPM are to be analyzed here in view of the analytic solution (29) to 
stand on their accuracy. This can be achieved via performing comparisons with 
the results in the literature. The comparisons between the present results and 
those of Ref. [2] and [21] are presented in Table 1. The present HPM is of high-
er accuracy as observed from Table 1. This indicates the advantages of the cur-
rent approach over those in the literature when analyzing the Ambartsumian 
equation. 

The behavior of 11RE  is displayed in Figure 1 (1.1 1.4q≤ ≤ ), Figure 2 
( 1.4 2.0q≤ ≤ ), Figure 3 ( 2.0 3.0q≤ ≤ ), and Figure 4 ( 3.0 10q≤ ≤ ) for 

[ ]0,100t∈ . It can be seen from these figures that the maximum values of 11RE  
are 26 10−× , 36 10−× , 92 10−× , and 161.5 10−× , respectively. This proves the ef-
ficiency of the HPM over the previous ones in [2] and [21]. 

6. Conclusion 

The HPM was applied to solve the Ambartsumian equation in terms of expo-
nential functions. The obtained solution was valid in the whole domain, while 
the corresponding solution in the literature [2] was only valid in sub-domains. 
 

Table 1. Comparison of the present results with the corresponding results in the literature. 

t Ref. [2] HATM [21] 

Present 

HPM 
(4-term) 

HPM 
(7-term) 

HPM 
9-term) 

Analytic solution 
(Equation (29)) 

0.0 1 1 1 1 1 1 

0.5 0.8727825992 0.8727825992 0.8728718032 0.8729409264 0.8729409265 0.8729409265 

1.0 0.7694328044 0.7694328044 0.7709321110 0.7717847777 0.7717847885 0.7717847885 

1.5 0.6788327993 0.6788327993 0.6865930139 0.6899347736 0.6899349261 0.6899349261 

2.0 0.5898647673 0.5898647673 0.61449731667 0.6227074556 0.6227083998 0.6227083998 
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Figure 1. Residual for 1.1 1.4q≤ ≤ . 

 

 
Figure 2. Residual for 1.4 2q≤ ≤ . 

 

 
Figure 3. Residual for 2 3q≤ ≤ . 
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Figure 4. Residual for 3 10q≤ ≤ . 

 
Moreover the obtained residual tends to zero as the q increases. In view of ref-
erences [2] and [21], the present HPM is of higher accuracy when compared 
with the obtained exact solution. 
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