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Abstract 
A three-dimensional system is presented with unknown parameters that em-
ploys two nonlinearities terms. The basic characteristics of the system are stu-
died. The stability is measured by Characteristic equation roots, Routh stability 
criteria, Hurwitz stability criteria and Lapiynov function, all show that the sys-
tem unstable. Then, Chaoticity is measured by maximum Lapiynov exponent 
of ( max 2.509426L = ) and “Kaplan-Yorke” dimension ( 2.22349544LD = ). The 
system is controlled effectively and synchronized by designed adaptive con-
trollers. Furthermore, the theoretical and graphic results of the system before 
and after control are compared.  
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1. Introduction 

Researches in recent years on chaotic phenomena have increased a lot, because of 
the increasing frontiers of applications of chaos in engineering and non-engineering 
systems. “Chaos is a phenomenon which results from the exhibits sensitivity to 
perturbation in the structural parameters and initial conditions of some classes 
of dynamical systems” [1]. “Chaotic signals have a random-like nature and broad-
band spectrum and are non-periodic” [2]. “For a system to be chaotic, the fol-
lowing conditions must be satisfied. Firstly, it must be sensitive to perturbation in 
its initial conditions which should lead to unpredictability of its future trajecto-
ries, secondly, it is not topologically transitive and thirdly, the chaotic orbits are 
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dense in the phase space” [3]. “Among some evolved chaotic attractors in the li-
terature are the Chen’s” [4], “3-D, 4-wing attractor” [5], “Sundarapandian-Pehlivan” 
[6], “Morphous one parameter attractor” [7], “Rabinovich system” [8]. “When 
chaotic attractors possess one positive Lapiynov exponent, then the system is chao-
tic. However, the system which has two or more positive Lapiynov exponents it 
is a highly chaotic system and becomes hypersensitive to small perturbations in 
its system dynamics” [9] [10]. “Chaos Control subject has received widespread 
attention of research because controllability and synchronizability of chaotic at-
tractors are index of utility in different designs such as in secure communica-
tions and robotics” [11] [12] [13]. 

“In the context of stability and stabilization, the principle of Lapiynov stability 
continued to enjoy large applications; it can effectively stabilize the dissipative 
systems” [14] [15]. 

This paper is organized as: Section 2, present a description of 3-d system. Sec-
tion 3, basic analysis such as stability, dissipativity, Lapiynov dimension ‘‘Kap-
lan-Yοrke dimension’’. Section 4, we designed adaptive control law of the chao-
tic system. Section 5, a comparison of the analysis results before and after con-
trol. Section 6, we derive results for the adaptive synchronization of identical 
highly chaotic system. Finally Section 7, summarization of the main results.  

2. System Description 

A three-dimensional dynamical system [16] consist of three ordinary differential 
equations with state variables ix , (i = 1, 2, 3) and four unknown parameters (ρ, 
α, δ and φ), employs six terms include two quadratic cross-product nonlinear 
terms. Given by: 

( )1 2 1

2 1 1 3

3 1 2 3

x x x
x ax x x
x x x x

ρ
δ

ϕ

−

−

=

= −
=







                        (1) 

The parameters values are taken as 
10, 40, 296.5, 10aρ δ ϕ= = = =                   (2) 

3. System Analysis 

In this section essential, the system (1) is invested and has the following charac-
teristics. 

3.1. Equilibrium Points 

The first step to analyze a system is to find its equilibrium points, so we need to 
solve the nonlinear equations as follows 

1 210 10 0x x− + =  

1 1 3296.5 40 0x x x− =  

1 2 310 0x x x− =  

We get the following equilibrium points: 
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( )0 0,0,0E = , 1

593 593
5932 2, ,

20 20 80
E

 
 
 =
 
 
 

, 2

593 593
5932 2, ,

20 20 80
E

 
 
 = − −
 
 
 

 

3.2. Stability Analysis 
3.2.1. Characteristic Equation Roots 
“A necessary and sufficient condition for the system to be stable is that the real 
parts of the characteristic equation have negative real parts”. 

When the parameters values are taken as in (2), the Jacobian matrix of system 
(1) at ( )0 0,0,0E =  is: 

10 10 0
296.5 0 0

0 0 1
J

− 
 =  
 − 

 

( )det 0J Iλ− =  

3 211 2955 2965 0λ λ λ⇒ + − − =                  (3) 

By using Horner’s Ruffini method [17] we get: 

1 1λ = − , 2 49.68089λ = , 3 59.68089λ = −  

Similarly, we find Jacobian matrix at 1E  and 2E , then we obtain the eigen-
values, as shown in Table 1. 

So the system (1) is unstable. 

3.2.2. Routh Stability Criteria 
“The system is considered stable by the Routh stability states (all poles in OLHP 
(Open Loop Half plane)) if and only if all elements of the first column in the 
Routh array are positive. In addition, number of poles not in the OLHP is equal 
to the number of sign changes in the first column” [18]. 

0 2965a = −  

1 2955a = −  

2 11a =  

3 1a =  

3 0
1 1

2

2685.4545a ab a
a

= − = −  

Since, there are two negative elements in the first column. Therefore, the sys-
tem (1) is unstable. 

3.2.3. Hurwitz Stability Criteria 
“This criterion is applied using determinants formed from coefficients of the 
characteristic equation. If the small minors of the square matrix J of the system 
(1) are all positive then the system (1) is stable, otherwise it’s unstable” [18]. 

If n = 3 (n denote the degree of the square matrix) 
From Equation (3) we find: 
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1 2 11 0a= = >∆  

2 0
2 2 1 3 0

3 1

29.540 0
a a

a a a a
a a

∆ = = − = − <  

2 0
2

3 3 1 2 1 0 0 3

2 0

0
0 87586100 0

0

a a
a a a a a a a

a a
∆ = = − = >  

Since the values of one minors is less than zero, so the system (1) is unstable. 

3.2.4. Lapiynov Function 
We can use quadratic function for system (1). 

We assume that 

( ) ( )1 2
2 2 2
1 2 33

1, ,
2

x x x x x xV = + +  

( )1 2 3 1 1 2 2 3 3, ,V x x x x x x x x x= + + 



                   (4) 

If ( )1 2 3, , 0V x x x <  then the system is stable. 
By substituting (1) in Equation (4) we get: 

( ) 2 2
1 2 3 1 1 2 1 2 3 3, , 10 306.5 30V x x x x x x x x x x= − + − −  

Since ( )1 2 3, , 0V x x x >  therefore the system (1) is unstable. 

3.3. Dissipativity 

Let 1
1

d
d
xf
t

= , 2
2

d
d
xf
t

=  and 3
3

d
d
xf
t

=  in the system (1). 

Then we get for the vector field 

( ) ( )T T
1 2 3 1 2 3, , , ,x x x f f f=    

thus the divergence of the vector field V on 3R  yields to: 

( ) ( )T 1 2 3
1 2 3

1 2 3

, , 1f f fx x x f
x x x

ρ∂ ∂ ∂
∇ ⋅ = + + = − + =

∂ ∂ ∂
    

Note that ( )1 11f ρ= − + = − , so the systеm (1) is dissipative for all positive 
values of ρ , and an exponential rate is: 

( ) 11
0 0

d e e
d

ft tV fV V t V V
t

−= ⇒ = =  

From above equation, the volume element 0V  is contracted by the flow into a 
volume element 11

0e
tV −  at the time t. 

3.4. Numerical and Graphical Results 
For the numerical solution, we use Runge-Kutta method of order 5th to solve 
system (1). With initial states ( ) ( ) ( ) [ ]

1 2 30 , 0 , 0 2,7,12x x xx = −  

3.4.1. Wave Form of the System (1) 
The wave-form ( ) ( ) ( )1 2 3, ,x t x t x t  for the system (1) is characteristic with 
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non-periodic shape, shown in Figures 1(a)-(c) which is one of the basic charac-
teristic behaviors of chaotic dynamical system.  

3.4.2. Phase Portrait of the System (1) 
Figures 2(a)-(d) and Figures 3(a)-(c) are shows chaotic attractor for system (1) 
in ( )1 2 3, ,x x x , ( )1 3 2, ,x x x , ( )2 1 3, ,x x x , ( )3 1 2, ,x x x  space, and 2-D attractor of 
system (1) in ( )1 3,x x , ( )1 2,x x , ( )2 3,x x  plane.  

The orbit is dense in each graph which means the system exhibit two-scroll 
hyper chaotic attractor. 
 

 
Figure 1. Two-dimension phase planes exhibit chaotic attractor. (a): Time versus 1x ; (b): 
Time versus 2x ; (c): Time versus 3x . 
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Figure 2. 3-D Attractor of the system (1). 

https://doi.org/10.4236/oalib.1106075


M. M. Aziz, D. M. Merie 
 

 

DOI: 10.4236/oalib.1106075 7 Open Access Library Journal 
 

 
Figure 3. 2-D Attractor of the system (1). 

3.5. Lapiynov Exponent and Lapiynov Dimension 

“As a rule the Lapiynov exponents refer to the average exponential rates of diver-
gence or convergence of nearby trajectories in the phase space. The system is chaotic 
if there is at least one Lapiynov exponent greater than zero”. The values of la-
piynov exponents are: ( 1 2.509426L = , 2 0.132019L =  and 3 11.818787L = − ). 
Therefore, the Lapiynov dimension ‘‘Kaplan-Yοrke dimension’’ is: 

1 2

3

2 2.22349544L
L LD

L
+

= + =  

So the system (1) is Highly Chaotic System, as shown in Figure 4. 
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Figure 4. Lapiynov exponent of system (1). 

4. Adaptive Control Strategy 
4.1. Theoretical Results 

To stabilize highly chaotic system (1), an adaptive control law is designed with 
unknown parameter α. 

As follows: 

( )1 2 1 1

2 1 1 3 2

3 1 2 3 3

40
1

10

0

x x x
x ax x x
x x x x

α
α
α

=

=
=

− +

− +
− +







                        (5) 

when 1 2 3, ,α α α  are the feedback controllers. 
The adaptive control functions are: 

( )1 2 1 1 1

2 1 1 3 2 2

3 1 2 3 3 3

10
ˆ 40
10

x x x
ax x x x

x x x x

α µ
α µ
α µ

= − − −

= − + −
= − + −

                      (6) 

where the constants iµ , (i = 1, 2,3) are positive , â  is the parameter estimate 
of α. 

Substituting (6) into (5), we get 

( )
1 1 1

2 1 2 2

3 3 3

ˆa a
x x
x x x
x x

µ
µ

µ

=

=

=

−

− −

−







                        (7) 

Let the parameter estimation error 

ˆae a a= −                              (8) 

Using (8), the dynamics (7) can be written compactly as  

1 1 1

2 1 2 2

3 3 3

a

x x
x e x x
x x

µ
µ

µ

=
=
=

−
−

−







                         (9) 

The Lapiynov approach is used for derivation of update law for adjusting the 
parameter estimate â . 
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Consider the lapiynov function  

( ) ( )2 2 2 2
11 2 32 3

1, ,
2 ax x x x x xV e= + + +                 (10) 

Notice V is positive-definite on 4R . 
Also 

ˆae a= −                              (11) 

Differentiating V with substituting (9) and (11), we get: 
2

1 2 3
2 2

1 2 3 1 2 ˆaV x x x e x x aµ µ µ  = − − − + − 


                (12) 

In Equation (12), we update estimated parameter by: 

1 2 4ˆ aa x x eµ= +                          (13) 

where the constant 4µ  is a positive. 
Now, we substitute (13) into (12), we obtain 

2 2 2
1 22 3

2
1 3 4 aV x x x eµ µ µ µ= − − − −                   (14) 

Notice V  is negative definite on 4R . 
Thus, by lapiynov stability, Routh-array criteria, Eigenvalues and Hurwitz sta-

bility criteria we get the below result. 
Proposition 1. The chaotic system (5) with unknown parameter is stabilized 

for every initial value by adaptive control (6), where the estimated parameter is 
obtained by (13) and 1 2 3 4, , ,µ µ µ µ  are greater than zero.  

4.2. Numerical Results 

To simulate the controlled highly chaotic system (7) we take the initial values 

( ) ( ) ( ) [ ]
1 2 30 , 0 , 0 12,9,17x x xx =  and [ ] [ ]1 2 3, , 30,50,30µ µ µ = . 
Figure 5 shows Controlled trajectories of system (1). 

5. System Comparison Tables before & after Control 

See Tables 1-6. 
 

 
Figure 5. Controlled state trajectories of system (1). 
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Table 1. Eigenvalues of the system (1) before and after control. 

Equilibrium point Before control After control 

( )0,0,0  
1 1λ = −  

2 49.68089λ =  

3 59.68089λ = −  

1 30λ = −  

2 50λ = −  

3 30λ = −  

593 593
5932 2, ,

20 20 80

 
 
 
 
 
 

 
1 1.39097λ =  

2 42.622λ =  

3 55.013λ = −  

1 30λ = −  

2 50λ = −  

3 30λ = −  

593 593
5932 2, ,

20 20 80

 
 
 − −
 
 
 

 
1 1.39097λ =  

2 42.622λ =  

3 55.013λ = −  

1 30λ = −  

2 50λ = −  

3 30λ = −  

 
Table 2. Hurwitz criteria of the system (1) before and after control. 

Equilibrium point Before control After control 

( )0,0,0  
1 11∆ =  

2 29.540= −∆  

3 87586100=∆  

1 110∆ =  

2 384000=∆  
10

3 1728 10×∆ =  

593 593
5932 2, ,

20 20 80

 
 
 
 
 
 

 
1 11∆ =  

2 29243.5= −∆  

3 95377675.25∆ = −  

1 110∆ =  

2 384000=∆  
10

3 1728 10×∆ =  

593 593
5932 2, ,

20 20 80

 
 
 − −
 
 
 

 
1 11∆ =  

2 29243.5= −∆  

3 95377675.25∆ = −  

1 110∆ =  

2 384000=∆  
10

3 1728 10×∆ =  

 
Table 3. Routh array criteria of the system (1) before and after control. 

Equilibrium point λ Before Control After Control 

( )0,0,0  

3λ  1 −2955 1 3900 
2λ  11 −2965 110 45,000 
1λ  −2685.5 0 3490.9 0 
0λ  −2965 0 45,000 0 

593 593
5932 2, ,

20 20 80

 
 
 
 
 
 

 

3λ  1 −2362 1 3900 
2λ  11 3261.5 110 45,000 
1λ  −5634.5 0 3490.9 0 
0λ  3261.5 0 45,000 0 

593 593
5932 2, ,

20 20 80

 
 
 − −
 
 
 

 

3λ  1 −2362 1 3900 

2λ  11 3261.5 110 45,000 

1λ  −5634.5 0 3490.9 0 

0λ  3261.5 0 45,000 0 
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Table 4. Lapiynov function of system (1) before and after control. 

( )1 2 3, ,x x x  ( )1 2 3, ,V x x x  

Before control After control 

( )0.6815,1.3625,6.7879  44.79278685 −1486.699813 

( )2,7,12−  565 −6925 

 
Table 5. Lapiynov exponent of system (1) before and after control. 

Before control After control 

  

 
Table 6. Of phase portrait of the system (1) before and after control. 

After control Before control 
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6. Adaptive Synchronization Technique 
6.1. Theoretical Results 

We apply adaptive synchronization technique of highly chaotic system with un-
known parameter α. 

The drive system is 

( )1 2 1

2 1 1 3

3 1 2 3

40
10

10

x x x
x x x x
x x x

a
x

=

=
=

−

−
−







                        (15) 

where ix , (i = 1, 2, 3) are state variables. 
As the response system, the controlled highly chaotic dynamics given by 

( )1 2 1 1

2 1 1 3 2

3 1 2 3 3

40
10

10

y y y
y y y y
y y y

a
y

α
α
α

=

=
=

− +

− +
− +







                     (16) 

where 1 2 3, ,α α α  are nonlinear controllers to be designed, and the state variables 
are iy , (i = 1, 2, 3).  

The synchronization error is defined by  

( ), 1,2,3i i ie y x i= − =                       (17) 

then the error dynamics is obtained as  

( )
( )

( )

1 2 1 1

2 1 1 3 3 1 1 3 2

3 1 2 2 1 1 2 3 3

40

10

10

e e e

e e e e x ea x e

e e e x e x e e

α

α

α

− +

− + + +

+ + −

=

= +

=







               (18) 

The adaptive control functіοns ( ) ( ) ( )1 2 3, ,t t tα α α  define as 

( )
( )

( )

1 2 1 1 1

2 1 1 3 3 1 1 3 2 2

3 1 2 2 1 1 2 3 3 3

ˆ

10

40

10

e e e

e e e x e x e e

e e x e e e e

a

x

α µ

α µ

α µ

− − −

− + + + −

−= + + −

=

+

=

             (19) 

where the constants 1 2 3, ,µ µ µ  greater than zero, and â  is the estimated value 
of the parameter α. 

Substitute (19) into (18), to obtain the error dynamics as 

( )
1 1 1

2 1 2 2

3 3 3

â
e e
e a e e
e e

µ
µ

µ

−

− −

−

=

=

=







                       (20) 

Now, the parameter estimation error is 
ˆae a a= −                            (21) 

By substituting (21) into (20), the error dynamics simplifies to 

1 1 1

2 1 2 2

3 3 3

a

e e
e e e e
e e

µ
µ

µ

=
=
=

−
−

−







                         (22) 

From Lapiynov approach we derive the updated law to adjust the estimation 
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of the parameter.  
The quadratic lapiynov function is 

2 2 2 2
1 2 3 aV e e e e= + + +                        (23) 

which be a positive definite on 4R . 
Note that 

ˆae a= −

                            (24) 

Differentiating V and substituting (22) & (24) in it, we get: 
2 2 2

1 1 2 2 3 3 1 2 ˆaV e e e e e e aµ µ µ  = − − − − − 


              (25) 

update the estimated parameter in Equation (25) by the following 

1 2 4ˆ aa e e eµ= +                         (26) 

where the constant 4µ  is greater than zero. 
From (25) and (26), we obtain: 

2 2 2 2
1 1 2 2 3 3 4 aV e e e eµ µ µ µ= − − − −                  (27) 

We note that (27) is negative definite on 4R . 
Hence, by Lapiynov stability [14], “it is immediate that the parameter error 

and synchronization error decay exponentially to zero with time for all initial 
values”. 

Thus, we proved the results below. 
Proposition 2. The drive and response identical chaotic systems (15) and (16) 

with unknown parameter α are synchronized for all initial values by adaptive 
control law (19), where the estimated parameter given by (26) and 1 2 3 4, , ,µ µ µ µ  
are constants greater than zero.  

6.2. Numerical Results 

To get the results numerically, we used the 4th-order Runge-Kutta method to 
solve systems (15) & (16), and solve system (18) with adaptive control law (19). 

We take ( ) ( ) ( ) [ ]
1 2 30 , 0 , 0 2,15,10x x xx =  and ( ) ( ) ( ) [ ]

1 2 30 , 0 , 0 18,6,4y y yy =  as initial states 
of the drive system (15) and the response system (16) respectively. Also take α = 
296.5 and 8iµ =  for i = 1, 2, 3, 4. 

Figure 6 shows adaptive synchronization of the highly chaotic system. 
Figure 7 shows the convergent for system (18) with controller (19).  

7. Conclusion 

A three-dimensional dynamical system is dealt in this paper, it has quadratic 
cross-product nonlinear terms. The basic characteristics are analyzed by equili-
brium points, stability analysis (such as characteristic equation roots, Routh cri-
terion, Hurwitz criterion and Lapiynov function) all methods of stability shows 
that the system is unstable. Then, dissipativity analysis indicates system (1) is 
dissipative for positive values of the parameter ρ . Lapiynov exponent, lapiynov 
dimension and wave-form analysis present the hyper chaos behavior when the  
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Figure 6. The synchronization trajectories for system (15) and (16). 
 

 
Figure 7. The convergent for system (18) with adaptive control (19). 

 
parameters taken as 10, 296.5, 40, 10aρ δ ϕ= = = = , and the maximum values of 
lyapenov exponents are: 1 2.509426L = , 2 0.132019L =  and 3 11.818787L = − , 
lapiynov dimension “Kaplan-Yοrkе dimension” of the system is 2.22349544LD = , 
which means that the system is highly chaotic system. Moreover, to stabilize the 
highly chaotic system, we produced an adaptive control strategy. Finally, we pro-
posed adaptive synchronization scheme for identical highly chaotic system with 
upadate law for the estimiation of system parameter. Synchronization schemes 
are established by Lapiynov stability. Furthermore, we compared theoretical and 
graphical results of the system before and after control. 
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