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Abstract 
The asymptotic solution to the scattering problem on a set of small particles, 
supplemented into homogeneous material, is used for modeling the materials 
with the desired refractive index. The consideration concerns the case of 
acoustic scalar scattering and the solution to initial scattering problem is built 
using an asymptotic approach. The closed form solution is reduced for the 
scattering problem. This is significant advantage of approach because there is 
no need to solve the respective system of boundary integral equations. High 
accuracy of solving the scattering problem is achieved by choosing the optim-
al parameters of the domain with small particles. The approach allows ob-
taining an explicit formula for the refractive index of the resulting inhomo-
geneous material. The numerical calculations show the possibility to get the 
specific values of refractive index including its negative values. 
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1. Introduction 

The materials with the specific physical properties, in particular with negative 
refractive index play a significant role in the process of improving the radiation 
performances of the different IC and radio electronic devices. Such materials are 
used widely for improving the directivity characteristics of microstrip antennas 
of the different types, microwave filters and field transformers. There are differ-
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ent approaches to form the specific properties of the medium (material) by em-
bedding into it a series of particles; this leads to forming the physical properties 
of resulting material that are different from those inherent to properties of the 
initial one. The theoretical prediction of existence of such materials was made in 
the pioneering work [1] and starting from this time such materials were de-
signed by the various recipes. As early as the eighties of the last century, these 
materials got the name “chiral” and began to be used in various areas of antenna 
technology [2], the manufacture of electronic devices [3] [4], and telecommuni-
cations equipment [5]. 

The usual approach for solving the scattering problems for the acoustic and 
electromagnetic applications foresees the use of the integral equation method 
with the subsequent adaptation of different projection methods. In the main, 
such combination is used for the bodies and domains with the coordinate sur-
faces. The approaches noted above were used effectively for solving the problems 
of elastostatics and elastodynamics [6] [7], electrodynamics [8], as well as for a 
series of applied problems related to engineering and industry [9]. A compre-
hensive description of these approaches was made in monograph [10], where the 
problems of both a theoretical nature and examples of specific applications in 
the various fields of science and technology are considered. But the disadvantage 
of the above methods is that they can be effectively used for the bodied/domains 
with the coordinate surfaces if the analytical approach is used or a huge compu-
tational resource is needed if the problem is solved for the complex geometry. 
Therefore, application of the asymptotic method that allows obtaining an expli-
cit solution to the considered problem, which does not depend on the form of 
scattering object, is very promising. 

The goal of this paper is to propose the numerical approach (based on [11] 
and [12]) for creating the material with the specific refractive index including its 
negative values. The approach foresees reducing an explicit asymptotic solution 
to the respective acoustic scattering problem, and the explicit formula for the 
resulting refractive index based on the asymptotic solution to acoustic wave 
scattering problem on a set of a big number of embedded particles of small size. 

The paper is organized as follows. Section 2 is devoted to statement of diffrac-
tion problem and outline of application limits of geometrical and physical para-
meters of the material under consideration. The analytical form of solution will 
be derived in Section 3; and the numerical aspects of solving the respective sys-
tem of linear algebraic equations (SLAE) will be presented. In Section 4, the ex-
plicit formula for the refractive index of resulting inhomogeneous material will 
be derived. The numerical results, related to exactness of asymptotic solution to 
the initial diffraction problem and properties of obtained refractive index will be 
presented in Section 5. A short conclusion finalizes the discussed topic under 
consideration. 

2. Statement of Scattering Problem 

A combination of both the asymptotic method and numerical simulation is used 
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to solve the problem of creating a material with specific scattering characteristics, 
particularly, with a given refractive index. The initial diffraction problem is 
solved by assumption: 1ka  , and d a , a is the characteristic size of the 
particle, d is the distance between adjacent particles, 2k λ= π  is the wave 
number. 

An asymptotic solution to the problem of scattering on many particles by as-
sumptions: ( )3d O a= , and ( )1M O a−=  was obtained in [11]; M is the total 
number of particles contained in a given domain 3RD ⊂ . 

The impedance boundary conditions 

( )m mq x aκζ =                              (1) 

are prescribed on the boundary mS  of m-th particle, where mζ  is boundary 
impedance, m mx D∈ , ( )m mq q x= ; ( )q x  is arbitrary function, continuous in 

D ; Im 0q ≤ , and ( )( )3 2d O a κ−= , where ( )21M O a κ−= , and ( )0,1κ ∈ . 

The incident field satisfies Helmholtz equation in the whole 3R , by this the 
scattered field satisfies the radiation conditions. We assume that a small particle 
is sphere of radius a with center in point mx , 1 m M≤ ≤ . 

The full field Mu  satisfies equation 

( )2 2 2
0 0Mk n x u ∇ + =   in the domain 3

1\ UM
m mR D=           (2) 

and boundary conditions 

M m Mu N uζ∂ ∂ =  in mS , where 1 m M≤ ≤                (3) 

and full field is 

0M Mu u v= + ,                          (4) 

0u  is solution to problem (2)-(4) at 0M = , (namely, when D contains no par-
ticles), 0 eik xu α⋅=  is incident field, and field Mv  satisfies the radiation condi-
tions. 

Let ( )q x  belong to ( )C D , and p D∆ ⊂  is arbitrary subdomain of D; 

( )pΝ ∆  is number particles in p∆  determined by 

( ) ( ) ( )21 d 1 1 at 0
p

p a N x x o aκ−

∆

Ν ∆ = ⋅ + →  ∫            (5) 

where function ( ) 0N x ≥  is prescribed and continuous in domain D. 
It was substantiated in [11] that there exists some specific field ( )eu x  (li-

miting field), which satisfies the next condition 

( ) ( )0lim 0a eu x u x→ − =                      (6) 

and solution to the initial diffraction problem (2)-(4) can be sought for from the 
equation 

( ) ( ) ( ) ( ) ( ) ( )0 4 , d
D

u x u x G x y q y N y u y y= − π∫             (7) 

where ( ),G x y  is the Green function for Helmholtz Equation (2) for the case of 
absence the particles. This fact allows us to use the approximate solution ( )eu x  
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instead of exact solution ( )u x  and to obtain an explicit formula for refractive 
index of the constructed inhomogeneous material. 

3. The Closed Form Solution to Scattering Problem 

In order to derive the explicit formula for approximate field, we introduce the 
concept of limiting (effective) field ( )eu x . In paper [11] it was proved that the 
exact solution to problem (2)-(4) can be presented in form 

( ) ( ) ( ) ( )0
1

, d
m

M

M m
m S

u x u x G x y y yυ
=

= + ∑ ∫ .              (8) 

Despite the fact that the last presentation contains an unknown function 
( )m yυ  in the integrand, in contrast to formula (7), where all functions in the 

integrands are known, it is used to obtain an approximate solution to the origi-
nal scattering problem. For this goal, we define the effective field 

( ) ( ) ( ), m
e eu x a u x= , which acts on the m-th particle as: 

( ) ( ) ( ) ( ): , d
m

e M m
S

u x u x G x y y yυ= − ∫ , 3Rx∈                (9) 

and the next relation for the neighboring points is valid mx x a−  . We 
present the exact formula (8) in form 

( ) ( ) ( ) ( ) ( ) ( )0
1 1

, , , d
m

M M

M m m m m
m m S

u x u x G x x R G x y G x x y yυ
= =

= + + −  ∑ ∑ ∫    (10) 

where the values mR  are 

( )d
m

m m
S

R y yυ= ∫                        (11) 

Using the known relation for function ( ),G x y  from [13], and the asymp-
totic representation for values mR  [11], we obtain the next formula for ( )Mu x  

( ) ( ) ( ) ( )0
1

, 1
M

M m m
m

u x u x G x x R o
=

= + +∑  at 0a →  for mx x a− ≥    (12) 

The values mR  are defined by the asymptotic formula 

( ) ( ) ( )24π 1 1 , 0m m e mR q x u x a o aκ−= − + →              (13) 

and the asymptotic formula for function mυ  is 

( ) ( ) ( ) ( )1 1 1 , if 0m m e mq x u x a o aκυ = − ⋅ ⋅ + →             (14) 

Using last two formulas, we obtain the asymptotic representation of the effec-
tive field in the vicinity of particles 

( ) ( ) ( ) ( ) ( ) ( ) ( )2
0

1,
4π , 1 1

M
j

e m m e m
m m j

u x u x G x x q x u x a oκ−

= ≠

= − +  ∑     (15) 

which is valid in the domains jx x a− ≤ , where 1 j M≤ ≤ . 
In order to calculate the values of the effective field everywhere using formula 

(15), we should know the values ( )e mu x . They can be easy obtained as the solu-
tions to the following system of linear algebraic equations (SLAE): 
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( ) ( ) 2
0

1,
4π , for 1, ,

M

j j j m m m
m m j

u u G x x q x u a j Mκ−

= ≠

= − =∑       (16) 

where ( )j ju u x= , and 1, ,j M=  . The matrix of SLAE (16) is diagonally do-
minant; therefore it is convenient for numerical solving. It was proven in [14] 
that this SLAE has unique solution for sufficiently small a. 

In order to justify the exactness of solution to SLAE (16), which is used for 
determination of the effective field, we derive some different SLAE, correspond-
ing to limiting Equation (7). Let us divide the domain D, where the small par-
ticles are located, into an union of the small non-intersecting cubes p∆  with 
centers in points py ; the diameter of such cubes can be chosen as ( )1 2O d . 
Because the limited quantity of cubes cannot give whole D, we consider their 
smallest fragmentation that contains D, and define values 2

0 1n =  in the cubes, 
which do not belong to domain D. 

In order to determine the solution to Equation (7), we apply for it the colloca-
tion method proposed in [14] and applied successfully to solving the similar 
SLAR in [15] [16]. In accordance with this method, we obtain such SLAE 

( ) ( ) ( )0
1,

4π , , 1, ,
P

j j j p p p p p
p p j

u u G x x q y N y u j P
= ≠

= − ∆ =∑         (17) 

where P is number of cubes that form a partition of D, py  is a center of p-th 
cube, p∆  is its volume. Since the value of d is small, then diameter p∆  can 
be of an order larger than distance d between particles. Since P M , then 
solving SLAE (17) is much easier than solving SLAE (16) in terms of the number 
of calculations. 

As a result, we have two different SLAE (16) and (17). Solving both the SLAE, 
we can compare their solutions and to evaluate the area of accuracy of asymp-
totic solution (15). This evaluation has also the practical importance because it 
allows to find the optimal parameters of the domain D, which provide the possi-
bility to create the refractive index that is the closest to the desired one. 

4. Refractive Index of Resulting Material 

The explicit formula (7) for the effective field opens the way to determination of 
the refractive index of the obtained material. It is important from the practical 
point of view how the calculated refractive index ( )2

Mn x  differs from that is 
obtained from the theoretical assumptions. We confine here by the real refrac-
tive index ( )2n x  and formulate the constructive algorithm to obtain desired 
refractive index. It consists of three steps. 

Step 1. Using known ( )2
0n x  and unknown ( )2n x , we calculate function 

( ) ( ) ( ) ( )2 2 2
0p x k n x n x p x = − =  . 

Step 2. Using the relation ( ) ( ) ( )4πp x q x N x=  we determine 

( ) ( ) ( )1

4π
p x

N x q x =                         (18) 

Equation (18) for two unknown functions ( )q x  and ( )N x  has infinite 

https://doi.org/10.4236/jamp.2020.83029


M. I. Andriychuk 
 

 

DOI: 10.4236/jamp.2020.83029 380 Journal of Applied Mathematics and Physics 
 

number of solutions ( ) ( ){ },q x N x , for which the conditions ( ) 0N x ≥  are ful-
filled. 

In this connection, the solution to (18) we determine as: 

( ) ( )1

4π
p x

q x
N

=                         (19) 

Calculation of ( )N x  and ( )q x  by (19) finalizes Step 2 of our procedure. 
Step 3 is completely constructive and its goal is the following  

 to create on the small particle of radius a the necessary impedance 
( )mq x aκ ; 

 to embed the particles that satisfies the properties (19) into domain D with 
the initial properties. 

Let the domain D consists of a set of small nonintersecting cubes p∆  with 
center in the points py , and we place in each cube p∆  the quantity 

( ) ( ) ( )21 d
p

p a N x xκ −

∆

Ν ∆ = ∫                    (20) 

the small spheres mD  with radius a in center with point mx . Here value [ ]s  
defines the nearest integer to 0s > . Let us distribute the balls with the distance 
of ( )( )2 3O a κ− , and prescribe the boundary impedance of spheres with the value 
( )mq x aκ , where function ( )mq x  is calculated by (19). It was proven in [11] 

that the modeled material, which is obtained by such embedding of small par-
ticles into domain D, has the desired refractive index ( )2n x , and its error tends 
to zero at 0a → . This theoretical result justifies the numerical procedure, 
which is applied to calculating the values of refractive index for the resulting 
material and determination of the relative error of new refractive index. Numer-
ical calculations performed allow us to study in more details the role of the do-
main D parameters ( , , ,M a d ζ ) in the process of forming the resulting refractive 
index of new inhomogeneous material. 

The application of the above algorithm was considered in [17] for the case of 
complex function ( )p x , the above algorithm can be applied if material is loss-
less. 

5. Numerical Modeling 
5.1. Checking the Applicability of Asymptotic Solution 
5.1.1. Exactness of Solution of the Limiting Equation (7) 
The computational checking for determination of the exactness of solution to (7) 
foresees carrying out the calculations with a set of different problem’s parame-
ters. We calculate the absolute and relative errors in the process of growth of 
number of the collocation points. The dependence of error of the parameter p 
( 3p P= ), where P is total amount of the small domains in D for 11.0 cmk −= , 

0.5 cmDl = , and 0.01 cma =  for the different values of function ( )q x  are 
shown in Figure 1 and Figure 2. The solution, which corresponds to 20p =  
( 320P = ), is considered as benchmark one. 

The relative error of solution to (7) is equal to 1.05% and 0.053% for the real 
and imaginary parts if 5p =  (53 collocation points), it diminishes to 0.72% and  
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Figure 1. The relative error versus parameter p, ( ) ( )2 0.0080 0.0027q x k i≡ − . 

 

 
Figure 2. The relative error versus parameter p, ( ) ( )2 0.0080 0.0011q x k i≡ − . 

 
0.023% respectively at 6p =  (63 collocation points), and to values 0.29% and 
0.018% at 8p =  (83 collocation points), (see Figure 1). This error is less than 
0.009% for the real part of solution if 12p = ; it tends to zero if value p grows. 
The error depends of the values of function ( )q x  too; it diminishes if the im-
aginary part of ( )q x  decreases (see Figure 2); the error of real part of solution 
if 19p =  is equal to 0.009%, and error of imaginary part is thousandths of a 
percent. The obtained results confirm that calculation of the values of approx-
imate field can be carried out with the high enough accuracy, and this accuracy 
is attained in a wide range of the geometrical and physical parameters of the 
material under investigation. 
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The results of computations show that the relative error depends of the para-
meter k to a large extent. In Figure 3 and Figure 4, the error is shown at 

12.5 cmk −=  and 10.75 cmk −=  respectively, ( ) ( )2 0.0080 0.0027q x k i≡ − . 
One can see that the error is of one order larger at 12.5 cmk −= . The maximal 
error (if 5p = ) at 10.75 cmk −=  is less on 27% than those for 12.5 cmk −= . 

5.1.2. Comparison of Solutions to Limiting Equation (7) and Asymptotic 
SLAE (16) 

In the previous Subsection, we consider the solution to SLAE (17) with 20p =  
as benchmark solution to Equation (7). The maximal value of relative error for 
this p does not exceed 0.009% for wide range of the problem’s parameters. 

The numerical calculations are presented for the different sizes of D and dif-
ferent functions ( )N x . The obtained results for the small values of m are 
shown in Table 1 for 1.0 cmDl = , 11.0 cmk −= , and ( ) 40.0N x =  (linear siz-
es of parameters a, d, and Dl  in the text and tables below are measured in cm). 
The values of esta , which are received by formula (21), when the expected 
number ( )pΝ ∆  of particles is changed by M. For this case, the radius of par-
ticle is determined as 

( )
( )1 2

d
p

esta M N x x
κ−

∆

 
 =
 
 

∫                  (21) 

The values of opta  in the third row correspond to the optimal values of ra-
dius a, which guarantees the minimal error for module of solution to Equation 
(7) and system (16). In the fourth row, the values of distance d between particles 
are shown. The error’s maximal value is attained at 8m = ; the error diminishes, 
if m grows. The difference between the optimal value opta  and estimated value 

esta  of particle’s radius depends on the parameter m to a large extent. So, this 
difference is equal to 26.09%, 5.15%, and 4.61% at 8m = , 12m = , and 16m =  
respectively. The distance d between particles decreases if m grows because 
 

 
Figure 3. The relative error versus parameter p, 12.5 cmk −= . 
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Figure 4. The relative error versus parameter p, 10.75 cmk −= . 

 
Table 1. The optimal parameters of domain D at small m, ( ) 40.0N x = . 

 Values of m 

m 8 10 12 14 16 

esta  0.1397 0.0682 0.0388 0.0247 0.0152 

opta  0.1054 0.0603 0.0369 0.0252 0.0159 

d 0.1329 0.1099 0.0917 0.0787 0.0679 

Rel. error 2.47% 0.42% 0.41% 1.09% 0.77% 

 
diameter Dl  of domain D remains constant. The relative error for solution to 
SLAE (16) is big enough but it does not exceed 1% already at 16m = . 

The numerical results for large m with the same initial data are shown in Ta-
ble 2. If to compare the difference between the parameters opta  and esta , one 
can see that the difference between them is small enough, namely difference is in 
fourth character after the dot, although the relative difference is equal to 3.95% 
at 25m =  for example. Similarly to the results presented in Table 1, the dis-
tance d between particles diminishes if m grows and it is an order of magnitude 
higher than the values of a. The minimal error of solution is attained at 65m =  
(the total number M of particles is equal to 27.4625 × 104), and it is equal to 
0.20%. 

Table 3 contains the comparable results for ( ) 4.0N x =  with the same set of 
initial data. One can see that the relative error diminishes if the number M of 
particles increases (one should note that the relative error depends of parameters 
a and Dl  too). This error tends to relative error of solution to Equation (7) if 
the value of m becomes larger than 80, namely 55.12 10M = × . If to compare 
the results presented here with those are given in Table 1 and Table 2, one can  
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Table 2. The optimal parameters of domain D at large m, ( ) 40.0N x = . 

 Values of m 

m 25 35 45 55 65 

esta  0.0079 0.0024 0.00121 6.45*10−4 3.96*10−4 

opta  0.0076 0.0022 0.0010 6.31*10−4 3.89*10−4 

d 0.0514 0.0329 0.0241 0.0198 0.0171 

Rel. error 0.53% 0.31% 0.34% 0.23% 0.20% 

 
Table 3. The optimal parameters of domain D at large m, ( ) 4.0N x = . 

 Values of m 

m 25 35 45 55 65 

esta  9.98*10−4 3.30*10−4 1.51*10−4 8.19*10−5 4.98*10−5 

opta  1.02e−003 3.32*10−4 1.51*10−4 8.20*10−5 4.99*10−5 

d 0.0526 0.0345 0.03 0.0204 0.0169 

Rel. error 0.19% 0.09% 0.11% 0.06% 0.02% 

 
see that the relative difference between values opta  and esta  is small in abso-
lute values, and the relative error for solution to SLAE (16) is less by an order of 
magnitude. This testifies that the value of function ( )N x  greatly affects the 
accuracy of the results. 

5.1.3. Investigation of Difference between Solutions to SLAE (16) and 
(17) 

The comparison of solutions to SLAE (16) and (17) was carried out for the dif-
ferent values of a at the different p and m. The relative error of SLAE (16) dimi-
nishes if p increases while m remains constant. For example, if p increases on 
50%, then the relative error diminishes on 11.7% (if 8p =  and 10p = , 

15m = ). 
The difference of solutions to SLAE (16) and (17) in the real part, imaginary 

part, and module is shown in Figure 5 and Figure 6 if 8p =  and 15m = . By 
this, the difference of real parts does not exceed 3.9% at 0.01a = , it is less than 
3.3% at 0.007a = , and it is less than 1.85% if 0.004a = , 9d a= , and 

( ) 20.0N x = . Respectively, this difference is less than 0.075% if 12p = , 
0.001a = , and ( ) 30.0N x = , 15d a=  (m is the same). 

The numerical results, obtained for a wide range of d, show that its optimal 
value exists; and starting from this value, the deviation of solutions begins to in-
crease again. Such optimal values of d are presented in Table 4 for the different 
constant ( )N x . The results obtained testify at the optimal distance d between 
particles increases if the number of particles grows. For the small number of par-
ticles, the optimal distance is of the same order that a, for the set number of par-
ticles ( 315M = , namely 15m = ), this distance is of order larger. The optimal  

https://doi.org/10.4236/jamp.2020.83029


M. I. Andriychuk 
 

 

DOI: 10.4236/jamp.2020.83029 385 Journal of Applied Mathematics and Physics 
 

 
Figure 5. Dependence of difference of the solution’s components of dis-
tance d between particles, ( ) 10.0N x = . 

 

 
Figure 6. Dependence of difference of the solution’s components of dis-
tance d between particles, ( ) 30.0N x = . 

 
Table 4. Optimal values of d for the different constant ( )N x . 

 
Value of ( )N x  

10.0N ≡  20.0N ≡  30.0N ≡  40.0N ≡  50.0N ≡  

0.002a =  0.07107 0.04678 0.04679 0.04691 0.03806 

0.004a =  0.08642 0.05594 0.05947 0.05936 0.04957 

 
distance d between particles depends also of the value of radius a; if a increases, 
this distance grows, so at 10.0N ≡  the difference between optimal values of d 
is equal to 21.13%. The similar relation remains and for other values of N. 

The values of the minimal and maximal errors, which are attained for the op-
timal d, are shown in Table 5. 
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Table 5. The relative error of solution to SLAE (16) in % (min/max) for the optimal d. 

 
Value of ( )N x  

10.0N ≡  20.0N ≡  30.0N ≡  40.0N ≡  50.0N ≡  

0.002a =  0.69/0.09 5.17/0.48 0.48/0.109 0.95/0.121 0.28/0.06 

0.004a =  2.39/0.19 1.67/0.29 0.51/0.09 2.4/0.41 1.47/0.17 

 
The obtained results allow to conclude that the optimal value of d diminishes 

slower, when function ( )N x  grows, what is more this decreasing is more sig-
nificant for the smaller a. For those, who are interested in a more detailed study 
of accuracy of the obtained asymptotic results related to solving the limiting Eq-
uation (7) and the corresponding SLAE, author refers to monograph [18]. 

5.2. Modeling the Material with the Desired Refractive Index 

Numerical calculations are conducted for the case if ( ) constN x ≡ . For the 
simplicity, we consider the case when a given domain D consists of the same 
subdomains p∆ . This limitation is not essential for numerical modeling. Nu-
merical calculations were performed for the case when 1UP

p pD == ∆ , and 
320P = , D is some cube with side 0.5 cmDl =  and particles are placed un-

iformly in domain D (the relative error of the solution to system (16) does not 
exceed 0.01% for this P). Let the initial domain D be the material with the initial 
refractive index ( )2

0 1n x = , and the desired refractive index be ( )2 2.0n x = , 
namely constant. Then the values ( )pΝ ∆  can be calculated by formula (20). 
On the other hand, we can choose the number m such that 3M m=  is closest to 
number ( )pΝ ∆ . It is easy to see that the corresponding ( )2n x  for such M is 
calculated by such formula 

( ) ( )2 2
02

4πMq x
n x n

k
= − +                    (22) 

that is, the obtained value of the refractive index differs on ( )2n x . To obtain the 
minimum difference, we choose two numbers 1m  and 2m  that satisfy the in-
equality ( )1 2pM M< Ν ∆ <  where 3

1 1M m=  and 3
2 2M m= . Therefore, if we 

have the value ( )pΝ ∆  for the fixed a, we can obtain the numbers 1M  and 

2M , and to calculate also the nearest to the ( )2n x  values by the formula (22). 
The dependence of the maximal relative error for the calculated values of 
( )2n x  on radius a of a particle is shown in Figure 7 for ( ) 5.0N x ≡  for com-

plex function ( )q x  (in Figures 7-9, the solid and dashed lines correspond to 
the imaginary part and real part). 

The obtained results testify that the relative error considerably depends of the 
parameters 1M , 2M , and ( )pΝ ∆ . This error is smallest if the value of num-
bers 1M  and 2M  are much close to value ( )pΝ ∆ . The error has periodic 
character that is defined by the properties of functions ( )pΝ ∆  and by the val-
ues of parameters 1M  and 2M . The mean of error in the period grows if a in-
creases. The comparable results are shown in Figure 8 and Figure 9 at 

20.0N ≡  and 50.0N ≡  respectively. 
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Figure 7. The maximal relative error of the modeled refractive 
index ( )2n x , ( ) 5.0N x ≡ . 

 

 
Figure 8. The maximal relative error of the modeled refractive 
index ( )2n x , ( ) 20.0N x ≡ . 

 

 
Figure 9. The maximal relative error of the calculated refractive 
index ( )2n x , ( ) 50.0N x ≡ . 
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The minimal value of error 0.79% is attained for 0.015a =  and it is equal to 
0.51% if 0.008a = , and 0.26% if 0.006a =  for ( ) 5.0N x ≡ . 

The uniform placement of particles in domain D is simplest from the engi-
neering point of view. Using the data, given in Figures 7-9, we can evaluate the 
number M of particles, which is necessary to obtain the refractive index more 
closest to the desired one (at given parameter Dl  of domain D). The respective 
results are shown for 0.5 cmDl =  in Figure 10. The values 3m M=  are 
shown in the y axis. The solid, dashed and dot-dashed lines correspond to values 

( ) 5.0,20.0,50.0N x ≡  respectively. The knowledge about the optimal number 
of particles in the domain D is the subsequent step to creating a material with 
the given refractive index. 

The data shown in Figure 10 testify that the optimal number of particles di-
minishes if their radius grows. The estimation ( )3 2a κ−  determines the distance 
d between particles. This distance differs from that is determined by uniform 
placement of particles in D. For example, for ( ) 5.0N x ≡ , 0.0107a =  it is 
equal to 0.1361, and the calculated d is equal to 0.119 and 0.159 for 5m =  and 

4m =  respectively. The computations show that the relative difference between 
these two values of d is almost proportional to the relative error of the refractive 
index. 

Since this value d does not depend on size of D in accordance with estimation 
( )3 2d a κ−= , it can be applied as the additional parameter for optimization while 

choosing the alternative values of m. On the other hand, we can evaluate the 
number of particles in D by formula (20). Having ( )pΝ ∆ , we can easily calcu-
late the quantity M of particles if they are distributed uniformly in D. The dis-
tance d between particles is calculated easily too if Dl  is prescribed. 

The analysis of formula (22) for calculation of the resulting refractive index 
shows that its value does not depend of the radius a of particles, but this 
 

 
Figure 10. The optimal value of m versus radius a of particles for the 
different ( )N x . 
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parameter has significant role when determination of error of the desired ( )2n x  
and calculated ( )2

1n x  refractive index. The results, presented in Figures 7-9 
demonstrate that there are optimal values of a, which provide the minimal value 
of relative error. For example, the minimal value of this error for ( ) 5.0N x ≡  
(see Figure 7) is equal to 0.46%, 0.63%, and 0.86% for 0.005a = , 0.009a = , 
and 0.015a =  respectively; at the same time the maximal value of error is equal 
to 12.16%, 14.12%, and 19.25% for 0.006a = , 0.011a = , and 0.02a =  re-
spectively. This means that size of particles has a decisive role at the creating the 
refractive index ( )2n x  closest to the desired one. One can see from the results, 
presented in Figures 7-9 that the relative error of the created refractive index 
diminishes if the radius a of particles decreases (this is especially evident in the 
values of the maximum error) that confirms the theoretical prediction obtained 
in [11]. 

The opportunity to obtain the negative values of resulting refractive index 
clearly follows from (22), namely one can choose such parameters M, 2k , and 
function ( )q x  that the first term will be larger than the second one, and the 
resulting refractive index will be negative. 

6. Conclusions 

An asymptotic approach has been developed to solve the problem of acoustic 
scattering on a set of small size particles (bodies) placed in a homogeneous ma-
terial. The scattering problem is reduced to solving a corresponding SLAE whose 
dimension is equal to the number of particles. The solutions of this system are 
used in the formula of explicit representation of the scattered field. Numerical 
calculations are performed that determine the accuracy of the obtained solution 
depending on the physical parameters of the problem. 

The obtained numerical results demonstrate the possibility of applying the 
proposed technique to create materials with specified acoustic properties, in par-
ticular the refractive index. A constructive algorithm for modeling the material 
with the desired refractive index is proposed. 

The results of numerical modeling open up the possibility of engineering so-
lutions for practical applications. For example, uniform placement of particles is 
the easiest way to engineering design, and the answer to how many particles 
should be placed in a given domain is given by the numerical simulation results. 

The engineering problems regarding the placement of a large number of small 
particles into a given domain D and creating on their surface of the necessary 
impedance ( )q x aκζ =  require the separate technological solutions. 

Acknowledgements 

Author thanks to Prof. Alexander Ramm from Kansas State University, USA, for 
the continuous interest for the topic under investigation what made it possible to 
obtain a series of new physical results. 

https://doi.org/10.4236/jamp.2020.83029


M. I. Andriychuk 
 

 

DOI: 10.4236/jamp.2020.83029 390 Journal of Applied Mathematics and Physics 
 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Veselago, V.G. (1967) The Electrodynamics of Substances with Simultaneously 

Negative Values of ε and μ. Soviet Physics Uspekhi, 10, 509-514. 
https://doi.org/10.1070/PU1968v010n04ABEH003699 

[2] Ogier, R., Fang, Y.M. and Svedendahl, M. (2015) Near-Complete Photon Spins 
Electivity in a Metasurface of Anisotropic Plasmonic Antennas. Physical Review X, 
5, 041019-1-041019-8. https://doi.org/10.1103/PhysRevX.5.041019 

[3] Pendry, J.B., Schurig, D. and Smith, D.R. (2006) Controlling Electromagnetic Fields. 
Science, 312, 1780-1782. https://doi.org/10.1126/science.1125907 

[4] Yang, Y., Da Costa, R.C., Fuchter, M.J. and Campbell, A.J. (2013) Circularly Pola-
rized Light Detection by a Chiral Organic Semiconductor Transistor. Nature Pho-
tonics, 7, 634-638. https://doi.org/10.1038/nphoton.2013.176 

[5] Chalabi, H., Schoen, D. and Brongersma, M.L. (2014) Hot-Electron Photodetection 
with a Plasmonic Nanostripe Antenna. Nano Letters, 14, 1374-1380.  
https://doi.org/10.1021/nl4044373 

[6] Lachat, J.C. and Watson, J.O. (1976) Effective Numerical Treatment of Boundary 
Integral Equations: A Formulation for Three-Dimensional Elastostatics. Interna-
tional Journal for Numerical Methods in Engineering, 10, 991-1005.  
https://doi.org/10.1002/nme.1620100503 

[7] Bouchon, M. and Sánchez-Sesma, F. (2007) Boundary Integral Equations and 
Boundary Elements Methods in Elastodynamics. Advances in Geophysics, 48, 
157-189. https://doi.org/10.1016/S0065-2687(06)48003-1 

[8] Kleinman, R.E. and Roach, G.F. (1974) Boundary Integral Equations for the 
Three-Dimensional Helmholtz Equation. SIAM Review, 16, 214-236. 
https://doi.org/10.1137/1016029   

[9] Chapko, R. and Johansson, T. (2018) A Boundary Integral Equation Method for 
Numerical Solution of Parabolic and Hyperbolic Cauchy Problems. Applied Nu-
merical Mathematics, 129, 104-119. https://doi.org/10.1016/j.apnum.2018.03.004   

[10] Constanda, C., Doty, D. and Hamill, W. (2016) Boundary Integral Equation Meth-
ods and Numerical Solutions. Springer International Publishing, Bern, Switzerland. 
https://doi.org/10.1007/978-3-319-26309-0   

[11] Ramm, A.G. (2008) Wave Scattering by Many Small Particles Embedded in a Me-
dium. Physics Letters A, 372, 3064-3070.  
https://doi.org/10.1016/j.physleta.2008.01.006 

[12] Ramm, A.G. (2013) Electromagnetic Wave Scattering by Small Impedance Particles 
of an Arbitrary Shape. Journal of Applied Mathematics and Computing, 43, 
427-444. https://doi.org/10.1007/s12190-013-0671-3 

[13] Ramm, A.G. (2007) Many Body Wave Scattering by Small Bodies and Applications. 
Journal of Mathematical Physics, 48, 1035-1-1035-6. 
https://doi.org/10.1063/1.2799258 

[14] Ramm, A.G. (2009) A Collocation Method for Solving Integral Equations. Interna-
tional Journal of Computing Science and Mathematics, 3, 122-128. 
https://doi.org/10.1504/IJCSM.2009.027874 

https://doi.org/10.4236/jamp.2020.83029
https://doi.org/10.1070/PU1968v010n04ABEH003699
https://doi.org/10.1103/PhysRevX.5.041019
https://doi.org/10.1126/science.1125907
https://doi.org/10.1038/nphoton.2013.176
https://doi.org/10.1021/nl4044373
https://doi.org/10.1002/nme.1620100503
https://doi.org/10.1016/S0065-2687(06)48003-1
https://doi.org/10.1137/1016029
https://doi.org/10.1016/j.apnum.2018.03.004
https://doi.org/10.1007/978-3-319-26309-0
https://doi.org/10.1016/j.physleta.2008.01.006
https://doi.org/10.1007/s12190-013-0671-3
https://doi.org/10.1063/1.2799258
https://doi.org/10.1504/IJCSM.2009.027874


M. I. Andriychuk 
 

 

DOI: 10.4236/jamp.2020.83029 391 Journal of Applied Mathematics and Physics 
 

[15] Ramm, A.G. and Andriychuk, M.I. (2012) Scattering of Electromagnetic Waves by 
Many Thin Cylinders: Theory and Computational Modeling. Optics Communica-
tions, 285, 4019-4026. https://doi.org/10.1016/j.optcom.2012.06.017 

[16] Andriychuk, M.I. (2018) Solving the Problem of Electromagnetic Wave Scattering 
on Small Impedance Particle by Integral Equation Method. Progress in Electro-
magnetics Research C, 81, 211-223. https://doi.org/10.2528/PIERC17120204 

[17] Andriychuk, M.I. and Ramm, A.G. (2010) Scattering by Many Small Particles and 
Creating Materials with a Desired Refraction Coefficient. International Journal of 
Computing Science and Mathematics, 3, 102-121. 
https://doi.org/10.1504/IJCSM.2010.033929 

[18] Andriychuk, M.I. (2019) Antenna Synthesis through the Characteristics of Desired 
Amplitude. Cambridge Scholars Publishing, Newcastle, UK.  
http://www.cambridgescholars.com/antenna-synthesis-through-the-characteristics-
of-desired-amplitude 

 
 

https://doi.org/10.4236/jamp.2020.83029
https://doi.org/10.1016/j.optcom.2012.06.017
https://doi.org/10.2528/PIERC17120204
https://doi.org/10.1504/IJCSM.2010.033929
http://www.cambridgescholars.com/antenna-synthesis-through-the-characteristics-of-desired-amplitude
http://www.cambridgescholars.com/antenna-synthesis-through-the-characteristics-of-desired-amplitude

	Asymptotic Solution to Scattering Problem on a Set of Small Particles and Application to Creating the Materials with a Peculiar Refractive Index
	Abstract
	Keywords
	1. Introduction
	2. Statement of Scattering Problem
	3. The Closed Form Solution to Scattering Problem
	4. Refractive Index of Resulting Material
	5. Numerical Modeling
	5.1. Checking the Applicability of Asymptotic Solution
	5.1.1. Exactness of Solution of the Limiting Equation (7)
	5.1.2. Comparison of Solutions to Limiting Equation (7) and Asymptotic SLAE (16)
	5.1.3. Investigation of Difference between Solutions to SLAE (16) and (17)

	5.2. Modeling the Material with the Desired Refractive Index

	6. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

