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Abstract 
It is well known that Malliavin calculus can be applied to a stochastic diffe-
rential equation with Lipschitz continuous coefficients in order to clarify the 
existence and the smootheness of the solution. In this paper, we apply Mallia-
vin calculus to the CEV-type Heston model whose diffusion coefficient is 
non-Lipschitz continuous and prove the Malliavin differentiability of the 
model. 
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1. Introduction 

Malliavin calculus is the infinite-dimensional differential calculus on the Wiener 
space in order to give a probabilistic proof of Hölmander’s theorem. It has been 
developed as a tool in mathematical finance. In 1999, Founié et al. [1] gave a new 
method for more efficient computation of Greeks which represent sensitivities of 
the derivative price to changes in parameters of a model under consideration, by 
using the integration by parts formula related to Malliavin calculus. Following 
their works, more general and efficient applications to computation of Greeks 
have been introduced by many authors (see [2] [3] [4]). They often considered 
this method for tractable models typified by the Black-Scholes model. 

In the Black-Scholes model, an underlying asset tS  is assumed to follow the 
stochastic differential equation d d dt t t tS rS t S Wσ= + , where r and σ  respec-
tively imply the risk free interest rate and the volatility. The Black-Scholes model 
seems standard in business. The reason is that this model has the analytic solu-
tion for famous options, so it is fast to calculate prices of derivatives and risk pa-
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rameters (Greeks) and easy to evaluate a lot of deals and the whole portfolios 
and to manage the risk. However, the Black-Scholes model has a defect that this 
model assumes that volatility is a constant. 

In the actual financial market, it is observed that volatility fluctuates. However, 
the Black-Scholes model does not suppose the prospective fluctuation of volatil-
ity, so when we use the model there is a problem that we would underestimate 
prices of options. Hence, more accurate models have been developed. One of the 
models is the stochastic volatility model. One of merits to consider this model is 
that even if prices of derivatives such as the European options are not given for 
any strike and maturity, we can grasp the volatility term structure. In particular, 
the Heston model, which is introduced in [5], is one of the most popular sto-
chastic volatility models. This model assumes that the underlying asset tS  and 
the volatility tν  follow the stochastic differential equations  

( )d d d ,t t t tS S r t Bν= +                    (1.1) 

( )
1
2d d d ,t t t tt Wν κ µ ν θν= − +                 (1.2) 

where tB  and tW  denote correlated Brownian motion s. In the Equation (1.2), 
κ , µ  and θ  imply respectively the rate of mean reversion (percentage drift), 
the long-run mean (equilibrium level) and the volatility of volatility. This vola-
tility model is called the Cox-Ingersoll-Ross model and more complicated than 
the Black-Scholes model. We have not got the analytic solution yet. 

However, even this model cannot grasp fluctuation of volatility accurately. In 
2006 (see [6]), Andersen and Piterbarg generalized the Heston model. They ex-
tended the volatility process of (1.2) to  

( ) 1d d d , ,1 .
2t t t tt Wγν κ µ ν θν γ  = − + ∈   

           (1.3) 

This model is called the constant elasticity of variance model (we will often 

shorten this model as the CEV model). Naturally, in the case 1 ,1
2

γ  ∈ 
 

, the vola-

tility model (1.3) is more complicated than the volatility model (1.2). 
Here, consider the European call option and let φ  is a payoff function. Then 

we can estimate the option price by the following formula ( ) ( )e rT
TV x E Sφ− =   . 

However, the computation of Greeks is much important in the risk-management.  

A Greek is given by ( )V x
α

∂
∂

 where α  is one of parameters needed to compute 

the price, such as the initial price, the risk free interest rate, the volatility and the 
maturity etc.. Most of financial institutions have calculated Greeks by using fi-
nite-difference methods but there are some demerits such that the results de-
pend on the approximation parameters. More than anything, the methods need 
the assumption that the payoff function φ  is differentiable. However, in business 
they often consider the payoff functions such as ( ) ( )x x Kφ

+
= −  or ( ) { }1 x Kxφ ≥= . 

Here we need Malliavin calculus. In 1999 Founié et al. in [1] gave the new me-
thods for Greeks. To come to the point, they calculated Greeks by the following 
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formula ( ) ( ) ( )e weightrT
T

V x
E Sφ

α
−∂

 = ⋅ ∂
. We can calculate this even if φ  is 

polynomial growth. Instead, we need the Malliavin differentiability of tS . 
The solution tX  satisfying the stochastic differential equation with Lipschitz 

continuous coefficients is known as Malliavin differentiable. Hence we can eas-
ily verify that the Black-Scholes model is Malliavin differentiable. However the  

diffusion coefficient 1, ,1
2

xγ γ  ∈  
 is neither differentiable at 0x =  nor Lipschitz 

continuous and then we cannot find whether the CEV-type Heston model is 
Malliavin differentiable or not. In [7], Alos and Ewald proved that the volatility 

process (1.2), that is the case where 
1
2

γ =  of (1.3), was Malliavin differentiable 

and gave the explicit expression for the derivative. However, in the case 1 ,1
2

γ  ∈ 
 

, 

we cannot simply prove the Malliavin differentiability in the exact same way. 

In this paper we concentrate on the case 1 ,1
2

γ  ∈ 
 

, that is, we extend the  

results in [7] and give the explicit expression for the derivative. Moreover we 
consider the CEV-type Heston model and give the formula to compute Greeks. 

2. Summary of Malliavin Calculus 

We give the short introduction of Malliavin calculus on the Wiener space. For 
further details, refer to [8]. 

2.1. Malliavin Derivative 

We consider a Brownian motion ( ){ } [ ]0,
,

t T
W t ω

∈
 (in the sequel, we often denote 

( ),W t ω  by tW ) on a complete filtered probability space ( )( ), , ; tPΩ    where 

( )t  is the filtration generated by tW , and the Hilbert space [ ]( )2 0,HL T . When 

fixing ω , we can consider ( ) ( ) [ ]( ), 0,t W t Tω ω ∈C . Then the Itô integral of 

h H∈  is constructed as ( ) ( ) ( ) ( )
0 0

d , d
T T
h t W t h t tω ω=∫ ∫  on [ ]( )0,TC . We denote 

by ( )n
pC∞ R  the set of infinitely continuously differentiable functions : nf →R R  

such that f and all its partial derivatives have polynomial growth. Let S be the 
space of smooth random variables expressed as  

( ) ( ) ( )( )1 , , ,nF f W h W hω =                   (2.1) 

where ( )n
pf C∞∈ R  and ( ) ( )

0
d

T
tW h h t W∫  where 1, , nh h H∈ , 1n ≥ . We 

denote by ( )0
nC∞ R  the set of infinitely continuously differentiable functions 

: nf →R R  such that f has compact support. Moreover we denote by ( )n
bC∞ R  

the set of infinitely continuously differentiable functions : nf →R R  such that 
ƒ and all of its partial derivatives are bounded. Denote by 0  and b  respectively, 

the spaces of smooth random variables of the form (2.1) such that ( )0
nf C∞∈ R  
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and ( )n
bf C∞∈ R . We can find that 0 b⊂ ⊂    and 0  is a linear subspace 

of and dense in ( )pL Ω  for all 0p > . We use the notation i
ix

∂
∂ =

∂
 in the 

sequal. We define the derivative operator D, so called the Malliavin derivative 
operator. 

Definition 2.1. (Malliavin derivative) The Malliavin derivative tD F  of a 
smooth random variable expressed as (2.1) is defined as the H-valued random 
variable given by  

( ) ( )( ) ( )1
1

, , .
n

t i n i
i

D F f W h W h h t
=

= ∂∑ 
             (2.2) 

We sometimes omit to write the subscript t.  
Since   is dense in ( )pL Ω , we will define the Malliavin derivative of a gen-

eral ( )pF L∈ Ω  by means of taking limits. We will now prove that the Mallia-
vin derivative operator ( ) ( ): ;p pD L L HΩ → Ω  is closable. Please refer to [8] 
for proves of the following results.  

Lemma 2.1. We have ( ), ,H HE G DF h E F DF h E FGW h   = − +       , 
for ,F G∈  and h H∈ .  

Lemma 2.2. For any 1p ≥ , the Malliavin derivative operator  
( ) ( ): ;p pD L L HΩ → Ω  is closable.  

For any 1p ≥ , we denote by 1, pD  the domain of D in ( )pL Ω  and then it 
is the closure of   by the norm  

{ } ( )
1

1
2 2

1, 0
d .

p p
Tp p pp

tp HF E F E DF E F E D F t
          = + = +           

∫  (2.3) 

Note that 1,2D  is a Hilbert space with the scalar product  

[ ]1,2, , HF G E FG E DF DG = +   . Moreover, the Malliavin derivative  

{ } [ ]0,t t T
D F

∈
 is regarded as a stochastic process defined almost surely with the 

measure P u×  where u is a Lebesgue measure in [ ]0,T . Indeed, we can observe  

( ) ( ) ( ) [ ]( )2 2
2 22 2

; 0,0 0
d d .

T T
t tL H L TDF E D F t E D F t D F⋅Ω Ω×

   = = =    ∫ ∫    (2.4) 

The following result will become a very important tool.  

Lemma 2.3. Suppose that a sequence { }21,2: ,supn n n n HF F E DF ∈ < ∞ D  

converges to F in ( )2L Ω . Then F belongs to 1,2D  and the sequence { }nDF  

converges to DF in the weak topology of ( )2 ;L HΩ .  

Similarly, we define the k-th Malliavin derivative of F, [ ]{ }1 , , , 0,
k

k
t t iD F t T∈


, 
as a [ ]0, kTΩ× -measurable stochastic process defined kP u× -almost surely 
and the operator kD  is closable from ( );p kL H→ Ω  for any 1p ≥  and 

1k ≥ . As with the Malliavin derivative D, from the closability of kD , we can 
define the domain ,k pD  of the operator kD  in ( )pL Ω  as the completion of 
  with the norm  
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1

,
1

.i

k ppp k
k p Hi

F E F E D F ⊗
=

   = +      
∑              (2.5) 

Moreover we define 1,∞D  as 1, 1,: p

p

∞

∈

=


N
D D . We will now prove the chain 

rule and refer to the ([8], Proposition 1.2.4) for details.  
Lemma 2.4. For 1p ≥ , let ( ) 1,

1, , p
nF F F= ∈ D  and : nψ →R R  be a Lip-

schitz function with bounded partial derivatives, and then we have ( ) 1, pFψ ∈D  
and  

( ) ( )
1

.
n

t i t i
i

D F F D Fψ ψ
=

= ∂∑                   (2.6) 

2.2. Skorohod Integral 

For , 1p q >  satisfing 1 1 1p q+ = , the adjoint *D  of the operator D which is 
closable and has the domain on ( )pL Ω  should be closable but with the domain 
contained in ( )qL Ω . Focus on the case 2p q= = . We can define the diver-
gence operator *Dδ =  so called the Scorohod integral which is the adjoint of 
the operator D such as  

( ) [ ]( ) ( )2 2 2: ; 0, .L H L T Lδ Ω ≅ Ω× → Ω             (2.7) 

Definition 2.2 (Skorohod integral). Let ( )2 ;u L H∈ Ω . If for all 1,2F ∈D , 
we can have  

( )2, ,H LE DF u c F
Ω

  ≤                    (2.8) 

where c is some constant depending on u, then u is called to belong to the do-
main ( )Dom δ . Moreover if ( )u Dom δ∈ , then we have that ( )uδ  belongs to 

( )2L Ω  and the duality relation ( ) , HE F u E DF uδ  =     , for all 1,2F ∈D .  
We can get the following results.  
Lemma 2.5. Let 1,2F ∈D  and ( )u Dom δ∈  satisfy ( )2 ;Fu L H∈ Ω . And 

then we have that Fu  belongs to ( )Dom δ  and ( ) ( ) , HFu F u DF uδ δ= − .  
Lemma 2.6. Let ( )2 ;u L H∈ Ω  be an t -adapted stochastic process then 

( )u Dom δ∈  and ( )
0

d
T

t tu u Wδ = ∫ .  
We give one of famous properties of δ . The following property implies the 

relationship between the Malliavin derivative and the Skorohod integral. Denote 
by ( )1,2 HD  the class of processes ( ) [ ]( )2 ; 0,u L H T∈ Ω ≅ Ω×  such that  
( ) 1,2u t ∈D  for almost all t and there exists a measurable version of the two  

variable processes s tD u  satisfying ( ) ( ) ( )2

0 0
d d

T T
s tE D u s tλ λ  < ∞  ∫ ∫ .  

Lemma 2.7. Let ( )1,2u H∈D  satisfy that ( )r tD u Dom δ∈  and that  
( ) ( )2 ;r tD u L Hδ ∈ Ω . We have then that ( )uδ  belongs to 1,2D  and  

( )( ) ( ) ( ).t tD u u t D uδ δ= +                   (2.9) 

The following result is applied to calculate Greeks. For further details, refer to 
([8], Chapter 6).  
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Lemma 2.8. Let 1,2,F G∈D . Suppose that an random variable ( ),u t H⋅ ∈  
satisfy , 0HDF u ≠  a.s. and ( ) ( )1

, HGu DF u Dom δ
−
∈ . For any continuous-

ly differentiable function f with bounded derivatives, we have  

( ) ( ) ( ),E f F G E f F H F G′ =        

where ( ) ( )( )1
, , HH F G Gu DF uδ

−
= .  

2.3. Malliavin Calculus for Stochastic Differential Equations 

Consider 0T >  and [ ]( )0 0, ; mC TΩ = R . Let { } [ ]0,t t T
W

∈
 be the m-dimensional  

Brownian motion on filtered probability space ( )( ), , ; tPΩ    where P is the 
n-dimensional Wiener measure and F is the completion of the σ-field of Ω  with 
P. And then [ ]( )2 0, ; mH L T= R  is the underlying Hilbert space. We consider the 
solution { } [ ]0,t t T

X
∈

 of the following n-dimensional stochastic differential equa-
tion for all 1, ,i n= 

  

( ) ( ) 0
1

d d d , ,
m

i i i j i i
t t j t t

j
X b X t X W X xσ

=

= + =∑            (2.10) 

where : n nb →R R  and : n m
jσ →R R  satisfy the following : there is a posi-

tive constant K < ∞  such that  

( ) ( ) ( ) ( ) , for all , ,nb x b y x y K x y x yσ σ− + − ≤ − ∈R      (2.11) 

( ) ( ) ( )1 , for all .nb x x K x xσ+ ≤ + ∈R           (2.12) 

Here jσ  is the columns of the matrix ( )i
jσ σ= . We can have the following 

result related to the uniqueness and refer to ([8], Lemma 2.2.1) for the detail.  
Theorem 2.1. There is a unique n-dimensional, continuous and t -adapted 

stochastic process { } [ ]0,t t T
X

∈
 satisfying the stochastic differential Equation (2.10) 

with ( )0sup
p

t TE X t≤ ≤
  < ∞   , for all 2p ≥ .  

In the case the coefficients are Lipschitz, the solution i
tX  belongs to 1,∞D .  

Theorem 2.2. Assume that coefficients are Lipschitz continuous of the sto-
chastic differential Equation (2.10). Then the solution i

tX  belongs to 1,∞D  for 
all [ ]0,t T∈  and 1, ,i n= 

 and satisfies  

0
.sup sup

pj i
r s

r t r s T
E D X

≤ ≤ ≤ ≤

  < ∞  
                  (2.13) 

Moreover the derivative j i
r tD X  satisfies the following  

( ) ( ) ( )
1 1 1

d d ,
n m nt tj i i i j k l i j k

r t j r k l s r s s k s r sr r
k l k

D X X X D X W b X D X sσ σ
= = =

= + ∂ + ∂∑∑ ∑∫ ∫  (2.14) 

for r t≤  a.e., and 0j i
r tD X =  for r t>  a.e.. Here jD  denotes the Malliavin 

derivative for jW .  
Let tX  be the solution of the following stochastic differential equation  

( ) ( ) 0d d d , ,t t t tX b X t X W X xσ= + =            (2.15) 
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where tW  denotes a 1-dimensional Brownian motion. Assume that 1,2
tX ∈D . 

We let tY  be the first variation of tX , that is, t
t

X
Y

x
∂

=
∂

. We can easily have that 

tY  satisfies the folloing  

( ) ( ) 0d d d , 1.t t t t t tY b X Y t X Y W Yσ′ ′= + =              (2.16) 

Considering this as a stochastic differential equation for tY , we can have the 
following solution  

( ) ( )( ) ( )2

0 0

1exp d d .
2

t t
t s s s sY b X X s X Wσ σ  ′ ′ ′= − +  

  
∫ ∫        (2.17) 

The following results will also be useful to calculate Greeks later.  
Lemma 2.9. Under the above conditions, we can have  

( ) { }
1 1t s t s s s tY D X X Yσ −

≤= ⋅ .  

Let ( ){ } [ ]0,t T
a t

∈
 be a continuous function in H such that ( )

0
d 1

T
a t t =∫ .  

Lemma 2.10. Under the above conditions, we can have  
( ) ( )1

0
d

T
T t T t tY a t D X X Y tσ −= ∫ .  
Theorem 2.3. For any :ψ →R R  of polynomial growth, we have  

( ) ( )T TE X E X
x

ψ ψ π∂
=      ∂

 where ( ) ( )1
0

d
T

t t ta t X Y Wπ σ −= ∫ .  

For the more general case, the same result is proved as below. Let tX  denote 
the solution of the following n-dimensional stochastic differential equation just 
like as (2.10)  

( ) ( ) 0d d d , ,t t t tX b X t X W X xσ= + =               (2.18) 

where tW  denotes m-dimensional Brownian motion. For the sake of simplifica-
tion, we assume that n m= .  

Theorem 2.4. Suppose that the diffusion coefficient σ  is invertible and that 

( )
21

0
d

T
t tE X Y tσ

+−  < ∞  ∫


, for some 0> , where Y denotes the first variation  

process, that is, ji j
t i tY X= ∂ . Let 1,G ∞∈D  be a random variable which does not 

depend on the initial condition x. Then for all measurable function φ  with po-
lynomial growth we have ( ) ( ) ( )i T T iE X G E X Gφ φ π∂ =       , where ( )a t  is 
an t -adapted process satisfying ( )

0
d 1

T
a t t =∫ ,  

( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )( )

1

1

1 1
0 0

1
d d ,

n kik
i t t

k
n ki kiT Tk k

t t t t t t
k

G Ga t X Y

G a t X Y W D Ga t X Y s

π δ σ

σ σ

−

=

− −

=

=

= −

∑

∑ ∫ ∫
 (2.19) 

and kδ  denotes the adjoint to the Malliavin derivative with respect to a Brow-
nian motion k

tW .  
The following theorem introduced in [9] is useful. From now on, we will now 

denote by t∂  the once derivative with respect to t, by x∂  the once derivative 
with respect to x and by xx∂  the second derivative with respect to x. 

Theorem 2.5. Consider a stochastic process tX  satisfying the 1-dimensional 

https://doi.org/10.4236/jmf.2020.101012


S. Tsumurai 
 

 

DOI: 10.4236/jmf.2020.101012 180 Journal of Mathematical Finance 
 

stochastic differential equation  

( ) ( )d , d , d ,t t t tX t X t t X Wµ σ= +                 (2.20) 

where tW  denotes a Brownian motion and the coefficients  
( ) [ ]( )1, 0,t x Tµ ∈ ×C R  and ( ) [ ]( )2, 0,t x Tσ ∈ ×C R  satisfy the linear growth 

condition and the Lipschitz condition. Moreover, we assume that σ  is positive 
and bounded away from 0, and that ( ),0tµ  and ( ),0tσ  are bounded for all 

[ ]0,t T∈ . Then tX  belongs to 1,2D  and the derivative is given by  

( ) ( ) ( )1, exp , d ,
2

t x t
r t t x xx sr

D X t X s X s
µ σ σ

σ µ σ σ
σ σ

 ∂ ∂  = ∂ − − ∂ −  
  

∫   (2.21) 

for r t≤  and 0r tD X =  for r t> .  
Proof. We omit the proof. For further details, refer to (Theorem 2.1 [9]).  

3. Mean-Reverting CEV Model 

Following the construction in [7], we will now prove that the mean-reverting 
constant elasticity of variance model is Malliavin differentiable. The mean-reverting 
CEV model follows the stochastic differential equation  

( ) 1d d d , ,1 ,
2t t t tt Wγν κ µ ν θν γ  = − + ∈ 

 
            (3.1) 

with 0 0ν ν= >  and where µ , κ  and 0θ > . In [7], Alos and Ewald proved 

the Malliavin differentiability of the case 
1
2

γ =  of (3.1). In the case, the function 
1
2x  is neither continuously differentiable in 0 nor Lipschitz continuous so they 

circumvented various problems by some transforming and approximating. 

However, in the case 1 ,1
2

γ  ∈ 
 

, there are more complex problems. Following 

[7], we will extend their results. 

3.1. Existence and Uniqueness 

We will now prove that the solution to (3.1) not only exists uniquely but is also 
positive a.s.  

Lemma 3.1. There exists a unique strong solution to (3.1) which satisfies 
( )0, 0 1tP tν ≥ ≥ = . Moreover, let { }inf 0; 0 orttτ ν= ≥ = = ∞  with { }inf ∅ = ∞ . 

Then we have ( ) 1P τ = ∞ = .  
Proof. Instead of (3.1), consider the following  

( ) 1d d d , ,1 .
2t t t tv v t v Wγκ µ θ γ  = − + ∈ 

 
            (3.2) 

If we have concluded that the unique strong solution of (3.2) is positive a.s., 
then (3.2) coincides with (3.1). The existence of non-explosive weak solution for 
(3.2) follows from the continuity and the sub-linear growth condition of drift 
and diffusion coefficients. Moreover, from ([10], Proposition 5.3.20, Corollary 
5.3.23), we have the pathwise uniqueness. From ([10], Proposition 5.2.13), we 
can verify that the pathwise uniqueness holds for (3.2). 
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We will now prove that the second claim is true. Let  
{ }inf 0; 0 orv tt vτ = ≥ = = ∞  with { }inf ∅ = ∞ . In order to use ([10], Theorem 

5.5.29), we verify that for a fixed number c R∈ , ( )0limx p x→ = −∞  where  

( )p x  is defined as ( ) ( )
2 2exp 2 d d

x y

c c

z
p x z y

z γ

κ µ
θ

−  = − 
  

∫ ∫ . Since we have known  

that the solution tv  of (3.2) does not explode at ∞ , if we could prove that the 
above formula holds, we can claim that ( ) 1vP τ = ∞ = , that is, ( ) 1P τ = ∞ = . 
We can assume without restriction that 1x <  and let 1c = . Then we have  

( )

( ) ( )

( ) ( )

2 2 2 2 2 2 11 1

1 1

2 2 1 2 2 2

2 2 1 2

2 d 2 d

2 1 2 1
2 1 2 2

2 1 21 .
2 1 2 2

y y

y y

z
z z

z z z

z z

y

γ γ γ

γ γ

γ

κ µ κµ κ
θ θ θ

κµ κ
θ γ θ γ

κµ κ
θ γ θ γ

−

− −

−

−
− = − −

   = −   − −   

 
≥ − + − − 

∫ ∫

     (3.3) 

Letting 1w y−= , we can calculate ( )p x . From the last inequality, there exists a 
constant 0C >  satisfying the following inequality and then we have as 0x → ,  

( ) ( )

( )

1

2 2 1

1
2 1

2 21

2 1exp d
2 1

1 2exp d .
2 1

x

x

p x C y
y

C w w
w

γ

γ

κµ
θ γ

κµ
θ γ

−

−

   ≤ −   −   
  = − → −∞ −  

∫

∫
         (3.4) 

3.2. Lp-Integrability  

Consider the Stochastic Differential Equation 

( )d d d ,t t t tb t Wγν ν θν= +                    (3.5) 

with 0 0xν = > , where b is such that ( )0 0b >  and satisfies the Lipschitz con-

dition, 0θ >  and 1 ,1
2

γ  ∈ 
 

. The following lemma ensures the existence of its 

moments of any order.  
Lemma 3.2. Consider the solution of the (3.5). For any 0p ≥ , we have  

[ ]0,sup p
tt TE ν∈

  < ∞   and [ ]0,sup p
tt TE ν −

∈
  < ∞  . 

Proof. At first we consider the positive moments. We define the stopping time 
{ }inf 0 ;n tt T nτ ν= ≤ ≤ ≥  with { }inf ∅ = ∞ . By Itô’s formula,  

( ) ( )

( )
( )

21 2
0 0

1 1
0 0

2
2 2

0

1d 1 d
2

d d

1
d .

2

n n

n

n n

n

t tp p p p
t s s s s

t tp p p
s s s s

t p
s

x p p p

x p b s p W

p p
s

τ τ
τ

τ τ γ

τ γ

ν ν ν ν ν

ν ν θ ν

θ
ν

∧ ∧− −
∧

∧ ∧− − +

∧ − +

= + + −

≤ + +

−
+

∫ ∫

∫ ∫

∫

       (3.6) 

From the Lipschitz condition of the drift function ( )b x , there exists a posi-
tive constant K which satisfies ( ) ( )0s sb K bν ν≤ + . By the above inequality and 
Young’s inequality, we have  
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( ) ( )

( )

( )

2
1 2 2

0 0

1
0 0

2
2 2

0

0

0

1
d d

2

d 0 d

1
d

2

d
d

1

n n

n

n n

n

n

n

t tp p p p
t s s s

t tp p p
s s

t p
s

t p
stp p

s

p p
E x pE b s E s

x pKE s pE b s

p p
E s

E s b
x pKE s p pp

p

τ τ γ
τ

τ τ

τ γ

τ

τ

θ
ν ν ν ν

ν ν

θ
ν

ν
ν

∧ ∧− − +
∧

∧ ∧ −

∧ − +

∧

∧

−     ≤ + +        

   ≤ + +      
−  +   

 
   ≤ + + +  

−

∫ ∫

∫ ∫

∫

∫
∫

( )

( ) 2
0

0

0

d1 1
2

2 2 2 2

d .

n

n

p

t p
s

t p
s

p

E sp p
p p

p

C C E s

τ

τ

νθ

γ γ

ν

∧

∧

   −    + +
 
 − + − 

 ′= +  

∫

∫

 (3.7) 

By Gronwall’s lemma, we can have { }exp
n

p
tE C C tτν ∧  ′≤  , where both C and 

C′  do not depend on n. As n →∞ , we can obtain the result. Next we consider  

the negative moments. Define the stopping time as 1inf 0 ;n tt T
n

τ ν = ≤ ≤ ≤ 
 

, 

with { }inf ∅ = ∞ . By Itô’s formula, we have  

( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

21 2

0 0

1 10 0

2

2 10

1d 1 d
2

1d d

1 1 d .
2

n n

n

n n

n

t tp pp p
t s s s

t tsp
sp p

s s

t

p
s

x p p p

b
x p s p W

p p
s

τ τ
τ

τ τ

γ

τ

γ

ν ν ν ν ν

ν
θ

ν ν

θ
ν

∧ ∧− + − +− −
∧

∧ ∧−
+ + −

∧

− +

= + − + +

= − −

−
+

∫ ∫

∫ ∫

∫

    (3.8) 

Taking the expectation and using the Fubini’s theorem, we have  

( )
( ) ( ) ( )

( )
( )

( )

2

1 2 10 0

2

12 10 0

d d1
2

1 01 d d .
2

n n

n

n

n

t tsp p
t p p

s s

t tp
p pp
s ss

b s sE x pE p p E

p p pb
x pK E s E s

τ τ
τ γ

τ

γ
τ

ν θν
ν ν

θ
ν νν

∧ ∧− −
∧ + − +

∧−
+− +

∧

   
  = − + +           

    +
≤ + + −            

∫ ∫

∫ ∫
 (3.9) 

Here let ( ) ( )
( )

( )2

12 1

1 0
2 pp

p p pb
q x

xx γ

θ
+− +

+
= − , then we can easily evaluate the boun-

dedness for any > 0x   

( ) ( ) ( )( ) ( )

( )2 1
2 2 2 12 1

2 1 .
2 2 0

p

p
q x D p

b

γ
γγ θ θγ

− +

− −  ≤ − + 
  

         (3.10) 

Summarizing the calculation, we have 
0

d
n n

tp p p
t sE x Dt pK E sτ τν ν− − −
∧ ∧   ≤ + +   ∫ , 

and from Gronwall’s lemma we finally have ( ) { }exp
n

p p
tE x Dt pKtτν − −
∧  ≤ +  . 

Taking the limit n →∞ , then lim . .nn
a sτ

→∞
= ∞  so we have  

( ) { }expp p
tE x Dt pKtν − −  ≤ +  . Hence we can deduce the result.  

Remark 1. Since the CEV model satisfies the assumptions of Lemma 3.2, so 
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the result holds for the CEV model.  

3.3. Transformation and Approximation 

We consider the process transformed as 1
t t

γσ ν − . By Itô’s formula, we have  

( ) ( )
2

1 1d 1 d 1 d ,
2t t t t

t

t W
γ
γ γθσ γ κµσ κσ γ θ

σ

−
−

 
= − − − + −  

 
       (3.11) 

with 1
0 0γσ ν −= > . If tσ  is the solution of the stochastic differential Equation 

(3.11), then we can prove that 
1

1
t t

γσ ν− =  is also the solution of the stochastic 

differential Equation (3.1) satisfying the initial condition 
1

1
0 0

γσ ν− = . By this trans-
formation, we can replace (3.1) by (3.11) with the constant volatility term. In or-

der to use Theorem 2.5, we must approximate 
1
x

 and 1x
γ
γ

−
−  by the Lipschitz 

continuous functions, respectively. For all 0> , define the continuously diffe-
rentiable functions Φ  and Ψ  as  

( )
( )

( )

1

1
1 1

for ,

1 for ,
1 1

x x
x

x x

γ
γ

γ
γ γγ

γ γ

−
−

− −
− −


≥Φ = 

− + <
 − −



  
         (3.12) 

( )
( )

( )2

1 for ,

1 2 for ,

x
xx

x x

 ≥Ψ = 
− + <





 

               (3.13) 

For the functions Φ  and Ψ , we can easily verify that for all x∈R ,  

( )
1

1

1
x γγ

γ

−
−′Φ ≤

−
  and ( ) 2

1x′Ψ ≤


 and then we have that for all ,x y∈R ,  

( ) ( )
1

1

1
x y x yγγ

γ

−
−Φ −Φ ≤ −

−
  and ( ) ( ) 2

1x y x yΨ −Ψ ≤ −


. Moreover, 

note that for all x +∈R , ( ) 1x x
γ
γ

−
−Φ ≤  and ( ) 1x

x
Ψ ≤ . Define our approxima-

tions tσ
  as the stochastic process following the stochastic differential equation  

( ) ( ) ( ) ( )
2

d 1 d 1 d ,
2t t t t tt Wγθσ γ κµ σ σ κσ γ θ

 
= − Φ − Ψ − + − 

 
       (3.14) 

with 0 0σ σ=  for all 0> . The coefficients of the Equation (3.14) are Lipschitz 
continuous because we can have for all ,x y∈R ,  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2

1 2
1

2

2 2

2

1 .
1 2

x x x y y y

x y x y x y

x yγ

γθ γθκµ κ κµ κ

γθκµ κ

κµγ γθ κ
γ

−
−

   
Φ − Ψ − − Φ − Ψ −   

   

≤ Φ −Φ + Ψ −Ψ + −

 
≤ + + −  − 




     (3.15) 
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We will prove that tσ
  converges to tσ  in ( )2L Ω . First we prove that tσ

  
converges to tσ  pointwise.  

Lemma 3.3. The sequence tσ
  converges to tσ  a.s., for all [ ]0,t T∈ .  

Proof. Define for all 0>  the stopping time as { }inf 0 ; tt Tτ σ≤ ≤ ≤   with 
{ }∅ = ∞ . By the definition of Φ , Ψ , and τ  , we have  

( ) ( )

( )

( )

1
0

2

0 0

2
1

2 0

1 d

1 d d
2

1 d .
1 2

t t

t
s s

t t
s s s

s

t

s s

s

s s

s

ε

τ τ

γ
τ γ

τ τ

γ
γ

τ τ

σ σ

γ κµ σ σ

γθ σ κ σ σ
σ

γ γθγ κµ κ σ σ
γ

∧ ∧

−∧ −

∧ ∧

−
−

∧ ∧

−


≤ − −Φ




+ − Ψ + − 


 

≤ − + + −  − 

∫

∫ ∫

∫

 





 





 




        (3.16) 

By Gronwall’s lemma, t tσ σ=   for t τ<   and by Lemma 3.1 and the fact that 
1 2τ τ≤   for 1 2≥  , we have 

0
limτ
→

= ∞


 a.s. so 

0
lim t tσ σ
→

=


 for all [ ]0,t T∈ .  
Next we prove that there exist square integrable processes tu  and tw  with 

t t tu wσ≤ ≤  for all [ ]0,t T∈ . Actually, we will see that tw  is tσ . Before start-
ing with the proof, we prove the following inequality.  

Lemma 3.4. For 1 ,1
2

γ  ∈ 
 

 and , 0a b > , let ( ) 1 bf x ax
x

γ
γ

−
−= − . We have, 

for x +∈R ,  

( ) ( ) ( )
2 1 1 .

1 2 1
af x

b a

γ
γγ γ

γ γ

−
−  −

≥ −  − − 
              (3.17) 

Proof. By differentiating ( )f x , we can easily have the result.  

Consider a κµ=  and 
2

2
b γθ
=  in the above inequality, then we can have 

the below result.  
Lemma 3.5. Let tu  be the solution of the following stochastic differential 

equation  

( )( ) ( )d 1 d 1 d ,t t tu C u t Wγ κ θ γ= − − + −             (3.18) 

with 0 0u σ= , where 
( ) ( )

2 1

2
2 1
1 2 1

C

γ
γκµ γ

θ γ κµ γ

−
−  −

= −  − − 
. Then t t tu σ σ≤ ≤  a.s. 

for all [ ]0,t T∈ .  

Proof. From the definitions of Φ  and Ψ , ( ) ( )
2

2
x x CγθκµΦ − Ψ ≥  for all  

x +∈R , that is, the drift coefficient of tu  is smaller than one of tσ
 . By Yama-

da-Watanabe’s comparison lemma (see [10], Proposition 5.2.18) and Lemma 3.1, 
we have t tu σ≤   a.s. 

We prove the second inequality. In order to use Yamada-Watanabe’s compar-
ison lemma, we must prove that, for x +∈R ,  
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( ) ( )
2 2

1

2 2
x x x

x

γ
γγθ γθκµ κµ

−
−Φ − Ψ ≤ − . Let  

( ) ( ) ( )
2 2

1

2 2
g x x x x

x

γ
γ γθ γθκµ κµ

−
− − − Φ + Ψ . We can easily verify  

( )
12 2 2

1 1 1
22 1 2 1

g x x x
x

γ γ
γ γ γγθ κµγ γθ κµ γθκµ

γ γ

− − −
− − −

 
= − + − − +  − − 

 
 

, for x <   and 

( ) 0g x =  for x ≥  . For all x <  , we have  

( )
1 12 2

1 1
2 2 ,

1 2 1 2
g x x

x
γ γκµγ γθ κµγ γθ

γ γ

− −
− −′ = − + + −

− −



          (3.19) 

( )
( )

2 2 1
21 1

2 .
1

g x x x
γ γ
γ γκµγ γθ

γ

− −
−

− −
 

′′ = − 
 − 

              (3.20) 

Then there is a constant 0η >  with ( ) 0g η′′ <  for all x η<  and ( ) 0g η′′ >  
for all x η> . For η< , ( )g x′  is decreasing for all x <  . Then ( ) 0g =  and 

( ) 0g′ =  imply for all x <  , ( ) 0g x > , that is, for x +∈R   

( ) ( )
2 2

1 .
2 2

x x x
x

γ
γγθ γθκµ κµ

−
−Φ − Ψ ≤ −              (3.21) 

By Yamada-Watanabe’s comparison lemma, we have t tσ σ≤  a.s.  

Theorem 3.1. For all [ ]0,t T∈ , the sequence tσ
  converges to tσ  in ( )2L Ω .  

Proof. From Lemma 3.5, we have t t t t t tu uσ σ σ σ− ≤ − ≤ + . Lemma 3.2 

implies ( )2
t Lσ ∈ Ω . Moreover, the Ornstein-Uhlenbeck process ( )2

tu L∈ Ω . 
By the dominated convergence theorem we can have the convergence.  

3.4. Malliavin Differentiability 

We will prove the Malliavin differentiability of both tσ  and tν . To do this, we 
consider our approximation sequence tσ

 . The approximating stochastic diffe-
rential Equation (3.14) of tσ

  satisfies the assumption of Theorem 2.5, so we 
can prove the Malliavin differentiability of tσ

 .  

Lemma 3.6. tσ
  belongs to 1,2D  and we have  

( ) ( ) ( ) ( )
2

1 exp 1 d ,
2

t
r t s sr

D sγθσ γ θ γ κµ σ σ κ
   ′ ′= − − Φ − Ψ −  
   

∫       (3.22) 

for r t≤ , and 0r tD σ =  for r t> .  
Proof. By Theorem 2.5, we have the result.  
We will now prove the Malliavin differentiability of tσ . To start with, we 

prove some useful lemmas. 

Lemma 3.7. For 1 ,1
2

γ  ∈ 
 

 and , 0a b > , let ( ) 1 bf x ax
x

γ
γ

−
−= − , then for 

x +∈R  we have  
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( )
( )

( )
( )

1
2 1

2 2

2 1
.

2 1 2 1
aaf x

b

γ γ γγ
γ γ

−
−   −

′ ≤    
   − −   

              (3.23) 

Proof. By differentiating ( )f x′  we can easily have the result.  

By Lemma 3.7, considering the case where a κµ=  and 
2

2
b γθ
= , we have 

for x ≥  ,  

( ) ( )
( )

( )
( )

1
2 12

2 22

2 1
.

2 1 2 1
x x

γ κµγ γγθ κµκµ ξ
θ γ γ

−
−   −

′ ′Φ − Ψ ≤    
   − −   

     (3.24) 

We have for x <  ,  

( ) ( )
1 2 12 2

1 1 ,
2 2 1

x x
γ

γ γγθ γθ κµγκµ
γ

−
− −

− −
 

′ ′Φ − Ψ = − +  − 
          (3.25) 

so there exists a constant 0 0>  such that for all 0<  ,  

( ) ( )
2

0
2

x xγθκµ ′ ′Φ − Ψ < . Hence, for 0<  , we have ( ) ( )
2

2
x xγθκµ ξ′ ′Φ − Ψ ≤ , 

for all x +∈R . Note that ξ  is independent of  . By this inequality, we have 
the following result.  

Lemma 3.8. We have for all [ ]0,t T∈  and 0<  ,  

( ) ( )( )( ){ }1 exp 1 .r tD t rσ γ θ γ ξ κ≤ − − − −             (3.26) 

Proof. When r t> , 0r tD σ =  so the result follows. Moreover when r t≤ , 
putting above results together, we obtain the result.  

Putting the scenarios together, we can prove the following.  
Theorem 3.2. tσ  belongs to 1,2D  and we have  

( ) ( )
1 2

1
21 exp 1 d ,

1 2
t

r t sr
s

D sγκµγ γθσ γ θ γ σ κ
γ σ

−
−

   = − − − + −   −   
∫     (3.27) 

for r t≤ , and 0r tD σ =  for r t> .  
Proof. We have proved that t tσ σ→  in ( )2L Ω  and 1,2

tσ ∈ D . Moreover, 

by Lemma 3.8, we have 
2

sup tE Dσ  < ∞  



. Here tσ

  converges to tσ  also 

pointwise, we can conclude that r tD σ   converges to  

( ) ( )
1 2

1
21 exp 1 d

1 2
t

sr
s

G sγκµγ γθγ θ γ σ κ
γ σ

−
−

   − − − + −   −   
∫ . Using the bounded  

convergence theorem, we can have that r tD σ   converges to G in ( )2 ;L HΩ . 
Hence by Lemma 2.4, we can conclude that 1,2

tσ ∈D  and r tD Gσ = .  
Moreover we can prove the following Malliavin differentiability in more de-

tail. 
Theorem 3.3. For all 1p ≥ , tσ  belongs to 1, pD , that is, tσ  belongs to 
1,∞D .  
Proof. We only have to prove that 1,

p
t pσ < ∞ . We have  
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( )

( ) ( ) ( )

( ) ( ) ( )( )( ){ }

( ) ( )

2 2
1, 0

2 21 2
1 1

20

2 21 2
0

1

d

1 exp 1 d d
1 2

1 exp 2 1 d

1

p
Tp p

t t r tp

p

T tp
t sr

s

p
Tp

t

p
t

E E D r

E E s r

E E t r r

E

γ γ

γ

γ

σ σ σ

κµγ γθν γ θ γ σ κ
γ σ

ν γ θ γ ξ κ

γ
ν

−
− −

−

−

 
   = +    

 
         = + − − − + −      −       

 
   ≤ + − − − −    

−
 = + 

∫

∫ ∫

∫

( )( ){ }( )
( ) ( )( ){ }

2 21 exp 2 1
exp 1 .

2

p

T
p C t

θ γ ξ κ
γ κ

ξ κ

 − − − −
  − −
 − 

 (3.28) 

Hence we can conclude that 1,
p

t pσ < ∞ .  
By the chain rule, we can conclude that tν  is also Malliavin differentiable. 
Theorem 3.4. For all 1p ≥ , tν  belongs to 1,∞D  and the Malliavin deriva-

tive is given by  

( ) ( ) ( )

2

2 1exp 1 d ,
1 2

t
r t t r

s s

D sγ
γ

κµγ γθν θν γ κ
γ ν ν −

   = − − + −   −   
∫        (3.29) 

for r t≤ , and 0r tDν =  for r t> .  
Proof. Consider only the case where r t≤ . Similarly, we can easily prove the 

case where r t> . We have shown that 
1

1
t t

γν σ −=  and 1,
tσ

∞∈D . By Lemma 2.5, 
we have  

( ) ( ) ( )

1 2
1

2 1exp 1 d .
1 2

t
r t r t t r

s s

D D sγγ
γ

κµγ γθν σ θν γ κ
γ ν ν

−
−

   = = − − + −   −   
∫   (3.30) 

For all 1p ≥ , using Young’s inequality and the fact ( )p
t Lν ∈ Ω  and 1,

tσ
∞∈D , 

we can prove that tν  belongs to 1,∞D . Indeed, we have  

( )

( )

( )

( )

2 2
1, 0

2 21
0

2
21

0

22
0

d

1 d
1

1 1 1 d
1 2 2

1 1 1 d
1 2 2

.

p
Tp p

t t r tp

pp p
Tp

t t r t

p p pTp
t t r t

p pTp p
t t r t

E E D r

E E D r

E E D r

E E D r

γ
γ

γ
γ

γ

ν ν ν

ν σ σ
γ

ν σ σ
γ

ν ν σ
γ

−

−

 
   = +    

     = +    −     
   ≤ + +    −    

    = + +     −   
< ∞

∫

∫

∫

∫

      (3.31) 

4. CEV-Type Heston Model and Greeks 

We will now consider the CEV-type Heston model and Greeks. Fournié et al. 
introduced new numerical methods for calculating Greeks using Malliavin cal-
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culus for the first time in 1999 (see [1]). We call this methods Malliavin Monte- 
Carlo methods. They focused on models with Lipschitz continuous coefficients, 
and then a lot of researchers have considered Malliavin Monte-Carlo methods to 
compute Greeks. However, lately, there is need to focus on models with non- 
Lipschitz coefficients such as stochastic volatility models. In 2008, Alos and Ewald 
proved that the Cox-Ingersoll-Ross model was Malliavin differentiable (see [7]). 
We apply Malliavin calculus for calculating Greeks of the CEV-type Heston 
model which is one of the important in business but mathematically complex 
models. Basically, we consider the European option but we can easily extend this 
result to other options. 

4.1. Greeks 

We introduce the concept of Greeks. For example, consider a European option 
with payoff function φ  depending on the final value of the underlying asset 

TS  where tS  denotes a stochastic process expressing the asset and T denotes 
the maturity of the option. The price V is given by ( )e rT

TV E Sφ− =    where r 
is the risk-free rate. We can estimate this by Monte-Carlo simulations. Greeks 
are derivatives of the option price V with respect to the parameters of the model. 
Greeks are the useful measure for the portfolio risk management by traders in 
financial institutions. Most of financial institutions estimate Greeks by finite 
difference methods. However, there are some demerits. For examples, the nu-
merical results depend on the approximation parameters and, in the case where 
φ  is not differentiable, this methods do not work well. In [1], Founié et al. gave 
the new methods to circumvent these problems. The idea is that we calculate 
Greeks by multiplying the weight, so-called Malliavin weight, as following  

( ) ( ) ( )e weight .rT
T

V x
E Sφ

α
−∂

 = ⋅ ∂
               (4.1) 

This methods are much useful since we do not require the differentiability of 
the payoff function φ . Instead, there is need to assume that the underlying as-
sert tS  is Malliavin differentiable. From Theorem 2.2, we find that the solution 
of the stochastic differential equation with Lipschitz continuous coefficients are 
Malliavin differentiable. However, if a model under consideration becomes more 
complex just like the CEV-type Heston model, we could not apply this Malliavin 
methods. Through Section 4, we consider the Malliavin differentiability of the 
CEV-type Heston model in order to give formulas for Greeks, in particular, Del-
ta and Rho. Here, Delta ∆  and Rho ρ  respectively measure the sensitivity of 
the option price with respect to the initial price and the risk-free rate. In partic-
ular, ∆  is one of the most important Greeks which also describes the replicat-
ing portfolio. 

4.2. CEV-Type Heston Model 

In [5], Heston supposed that the stock price tS  follows the stochastic differen-
tial equation  
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( )d d d ,t t t tS S r t Bν= +                     (4.2) 

where tB , r and tν  respectively mean a Brownian motion , the risk-free rate 
and the volatility. Moreover Heston assumed that the volatility process tν  be-
comes a mean-reverting stochastic process of the form  

( )d d d ,tt t tt Wν κ µ ν θ ν= − +                  (4.3) 

where tW , µ , κ  and θ  respetively mean a Brownian motion , the long-run 
mean, the rate of mean reversion and the volatility of volatility. This model is 
called the Cox-Ingersoll-Ross model. Here tB  and tW  are two correlated Brow-
nian motion s with  

( )d d d , 1,1 ,t tB W tρ ρ= ∈ −                  (4.4) 

where ρ  is the correlation coefficient between two Brownian motion s. More-
over we assume that the dynamics following stochastic differential Equations 
(4.1), (4.2), and (4.3) are satisfied under the risk neutral measure. However even 
the Heston model cannot grasp the fluctuation of the volatility accurately. In [6], 
Andersen and Piterbarg extended the Heston model to the model of which dy-
namics follow  

( )d d d ,t t t tS S r t Bν= +                   (4.5) 

( ) 1d d d , ,1 ,
2t t t tt Wγν κ µ ν θν γ  = − + ∈  

           (4.6) 

( )d d d , 1,1 ,t tB W tρ ρ= ∈ −                 (4.7) 

with the initial conditions 0S x=  and 0ν ν= . We call this model the CEV-type 
Heston model. For the Equation (4.5) with 1γ = , the Malliavin differentiability 

obviously follows by Theorem 2.2. In the case 
1
2

γ = , Alos and Ewald proved 

the Malliavin differentiability in [7]. In Section 3, we have proved the Malliavin  

differentiability in the case 1 ,1
2

γ  ∈ 
 

. Fron now on, we concentrate on 1 ,1
2

γ  ∈ 
 

.  

In order to give the formulas for the CEV-type Heston model, we will now prove 
the Malliavin differentiability of the model. Before considering the Malliavin 
differentiability, we now prove that there is a following Brownian motion ˆ

tW  
which will become useful later. 

Lemma 4.1. There exists a Brownian motion ˆ
tW  independent of tW  with 

2 ˆ1t t tB W Wρ ρ= + − . 

Proof. From the definition of ˆ
tW , we have 

2 2

1ˆ
1 1

t t tW B Wρ

ρ ρ
= −

− −
. At  

first we prove that ˆ
tW  is independent of tW . Since we easily have ˆ 0t tE WW  =  , 

so ˆ
tW  is independent of tW . Using Lêby’s theorem, we conclude ˆ

tW  is a Brow-
nian motion. We can easily verify that ˆ

tW  is also martingale. Consider the qua-

dratic variation ˆ
t

W  of ˆ
tW . Then we have  
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2 2

1ˆ .
1 1t

t

W B W tρ

ρ ρ
= − =

− −
               (4.8) 

Hence by the Lêvy’s theorem, ˆ
tW  is a Brownian motion. 

Instead of the dynamics (4.5), (4.6) and (4.7), replacing tB  by ˆ
tW , then we 

can consider the following  

( )( )2 ˆd d d 1 d ,t t t t tS S r t W Wν ρ ρ= + + −              (4.9) 

( )d d d ,t t t tt Wγν κ µ ν θν= − +                  (4.10) 

where tW  and ˆ
tW  are independent. Note that we assume that tS  and tν  fol-

low the dynamics (4.7) and (4.8) under the risk neutral measure. 

4.3. Arbitrage 

Under the real measure, the CEV-type Heston model follows the following dy-
namics  

( )( )2 ˆd d d 1 d ,t t t t tS S u t W Wν ρ ρ= + + −            (4.11) 

( )d d d ,t t t tt Wγν κ µ ν θν= − +                 (4.12) 

where tW  and ˆ
tW  are independent. Here u denotes the expected return of tS . 

In business, u is assumed to equal to the risk free rate. In order to do this, we will 
change the real measure P to the measure Q called the risk-neutral measure. We 
consider the arbitrage but this problem is complicated, since the volatility is not 
tractable. However, we obtain the following theorem.  

Theorem 4.1. The CEV-type Heston model following (4.9) and (4.10) is free 
of arbitrage and there is a risk-neutral measure Q  

( )( )2 ˆd d d 1 d ,t t t t tS S r t W Wν ρ ρ= + + −           (4.13) 

( )d d d .t t t tt Wγν κ µ ν θν= − +                (4.14) 

Proof. We consider the interval [ ]0,T . First we solve the equation 
2 1 21t t t tu r z zν ρ ν ρ− = − + . In order to solve this, we put 2 0tz = . From  

Lemma 3.1, tν  is positive a.s. so we have 1

21
t

t

u rz
ρ ν

−
=

−
. Here 1

tz  is obviously 

progressively measurable. Moreover, we can easily see that 1
tz  is locally 

bounded and in ( )2L Ω . Let ( ) 1exp
2tt tM M M − 

 
  where 1

0
ˆd

t
t s sM z W= −∫ .  

It is well-known that if we can prove that ( )tM  is a martingale, then the mar-
ket is free of arbitrage and under the risk neutral measure Q with  
( ) ( ) ,p

A TTQ A E M A F = ⋅ ∈  1 . Note that ˆ
tW  is replaced by tW  which is a 

Brownian motion under Q. Here we must prove that for all 0t ≥ , ( ) 1tE M  =  . 
Fix 0t ≥  and let { }1inf 0;n ts z nτ = ≥ ≥  with { }inf ∅ = ∞ . Here 1

n
zτ ∧⋅  is 

bounded, so we have ( )21
0

dn
n

t
st

M z sτ
τ∧= ∫  is bounded. From Novikov’s crite-

ria, we have that ( )n

t
M τ  is a uniformly integrable martingale for any 0t ≥ . 
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Moreover, from the continuity of 1
tz  and Lemma 3.1, nτ  increases to infinity. 

Since ( )tM  is positive a.s., ( ) { }nttM τ≤⋅ 1  converges to ( )tM  as n →∞ , and 
then by using the monotone convergence theorem  

( ) ( ) { }lim .
ntt tn

E M E M τ≤→∞
   = ⋅     1              (4.15) 

Here we have ( ) { } ( ) { }
n

n n

t
t tt T

M M τ
τ τ

∧
≤ ≤⋅ = ⋅ 1 1 , so letting nQ  be the meas-

ure satisfying ( )d
d

n
n

t

T

Q M
P

τ∧=  , and then we have  

( ) ( ) { }

( ) { }

( )

lim

lim

lim .

n

n
n

tt tn

t
tTn

n
nn

E M E M

E M

Q t

τ

τ
τ

τ

≤→∞

∧
≤→∞

→∞

   = ⋅   

 = ⋅ 
= ≤

 



1

1             (4.16) 

We must prove ( )lim 1n
nn

Q t τ
→∞

≤ = . First we prove ( ) ( )n
n nQ t P tτ τ≤ = ≤ . 

From Girsanov’s theorem, the processes [ ] ( )1
0,0

ˆ 1 d
n

t
t s tW z s sτ ∧+ ⋅∫  and tW  are 

t -Brownian motion s under the measure nQ . Note that tW  is an t

-adapted Brownian motion under nQ  for all n. We have known that under the 
measure P, tν  follows the equation  

( )d d d .t t t tt Wγν κ µ ν θν= − +                 (4.17) 

Integrals under P and nQ  are the same, so tν  also satisfies the above sto-
chastic differential equation under nQ . From Lemma 3.1, the solution tν  is 
unique. Hence the distribution of tν  under the measure nQ  must be the same 
as the distribution of tν  under the measure P, and then we can conclude that 
the distribution nτ  is the same under P and nQ , that is, ( ) ( )n

n nQ t P tτ τ≤ = ≤ . 
Since nτ  tends to ∞  a.s., ( )lim 1nn

P t τ
→∞

≤ = . Hence we can conclude ( ) 1tE M  =   
and ( )tM  is a martingale. Then the market is free of arbitrage.  

This theorem implies that the dynamics for the volatility process is preserved, 
and the drift term of the underlying asset is changed from u to r. In the sequel, 
we will consider the CEV-type Heston model under the risk-neutral measure 
denoted by P not by Q. 

4.4. Malliavin Differentiability of the CEV-Type Heston Model  
(Logarithmic Price) 

From now on, we denote by D and D̂  two Malliavin derivatives with respect 
to tW  and ˆ

tW , respectively. We now consider the logarithmic price logt tX S . 
First, we will prove that tX  is Malliavin differentiable. By Itô’s formula, we 
have  

d d d ,
2

t
t t tX r t Bν ν = − + 

 
                  (4.18) 

with 0 logX x= . Here tν  is neither differentiable at 0tν =  in 0 nor Lip-
schitz continuous. Hence we will now approximate this stochastic differential 
equation by one with Lipschitz continuous coefficients and prove the Malliavin 
differentiability of tX . Let  
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( )

( )

1

e e ,
1 ,

1 1e 1 .

x

x

x

x x
x

x

φ
− +

 − + <


  ≤ <  =   


 − + + ≤   







 




 

               (4.19) 

Here we can easily verify that ( )xφ   is bounded and continuously differentiable. 

Moreover we can verify that both ( )( )
1

1x γφ −  and ( )( ) ( )
1

2 1x γφ −  are Lipschitz 

continuous. In Section 3, we have used the stochastic process σ   with Lipschitz 
continuous coefficients, instead of tν . We will now prove the Malliavin diffe-
rentiability of the two stochastic processes σ   and the following approxima-
tion process X   of X with Lipschitz coefficients. Naturally, instead of tX , we 
consider the following stochastic differential equation  

( )( ) ( )( ) ( )
1 1

1 2 11d d d ,
2t t t tX r t Bγ γφ σ φ σ− −

 
= − +  
 

              (4.20) 

with 0 logX x= .  
Lemma 4.2. We have t tX X→  in ( )2L Ω .  
Proof. From the inquality ( ) ( )2 2 22a b a b+ ≤ + , we have  

( )( )

( ) ( )( ) ( )

21 1
2 1 1

0

21 1
2 1 2 1

0

1 d
2

2 d .

t
t t s s

t
s s s

X X s

B

γ γ

γ γ

σ φ σ

σ φ σ

− −

− −

 
− ≤ −  

 

 
 + −
 
 

∫

∫

  

 

         (4.21) 

We have using Cauchy-Schwarz’s inequality and Itô’s isometry,  

( )( )

( ) ( )( ) ( )

21 122 1 1
0

21 1
2 1 2 1

0

d
2

2 d .

t
t t s s

t
s s

tE X X E s

E s

γ γ

γ γ

σ φ σ

σ φ σ

− −

− −

 
   − ≤ −    

 
 
 + −
 
 

∫

∫

  

 

       (4.22) 

For the second term, since both tσ  and tσ
  are positive a.s. and for , 0a b > , 

( )2 2 2a b a b− ≤ − , we have  

( )( )

( )( )

21 122 1 1
0

1 1
1 1

0

d
2

2 d .

t
t t s s

t
s s

tE X X E s

E s

γ γ

γ γ

σ φ σ

σ φ σ

− −

− −

 
   − ≤ −    

 
 

+ − 
  

∫

∫

  

 

         (4.23) 

By the scenarios in Subsection 3.3 and Subsection 3.4, we have that for almost 
all ω∈Ω  there exists a positive constant ( )0 ω  such that for all ( )0 ω<  , 

( ) ( ) 1
t tσ ω σ ω< = <


. For such  , let  

1inf 0; or ,t ttτ σ σ = ≥ = = 
 

 


               (4.24) 
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with { }inf ∅ = ∞ , then we have 0t tσ σ− =  for t τ≤ . Hence we can have 

( )( )
11

11 0 a.s.t t
γγφ σ σ −− − =  , for t τ≤ . And then we can have τ → ∞  as  

0→ , ( )( )
11

11 0 a.s.t t
γγφ σ σ −− − =   for all 0t ≥ . Since ( )x xφ ≤  and  

t tσ σ≤ , ( )( )
11 1

11 12t t t
γγ γφ σ σ σ−− −− ≤  . Here tσ  is pL -integrable for all  

1p ≥  so we can conclude that for all 1p ≥ , ( )( )
11

11 0t t
γγφ σ σ −− − =   in ( )pL Ω . 

We have from Fubini’s theorem, 0t tX X− →  in ( )2L Ω . 

The following theorem implies that tX  is Malliavin differentiable.  
Theorem 4.2. tX  belongs to 1,2D  and the Malliavin derivatives are given 

by  

( )
( )

( )
( )

1 2 1
2 1 2 111 1d d ,

2 1 2 1
t t

u t t s s u s u s su u
D X D s D B

γγ
γ γγσ σ ρσ σ σ

γ γ

−
− −−= − + +

− −∫ ∫  (4.25) 

( )
1

2 12ˆ 1 ,u t uD X γρ σ −= −                    (4.26) 

for u t≤ , and ˆ 0u t u tD X D X= =  for u t> .  
Proof. Since the coefficients of stochastic differential equations for tσ

  and 

tX   are Lipschitz continuous, we can use Theorem 2.2. At first, we can conclude 
that 1,

tσ
∞∈ D  and the derivatives are given by  

( ) ( ) ( ) ( )
2

1 exp 1 d ,
2

t
u t s su

D sγθσ γ θ γ κµ σ σ κ
   ′ ′= − − Φ − Ψ −  
   

∫     (4.27) 

ˆ 0,u tD σ =                         (4.28) 

for u t≤  and ˆ 0u t u tD Dσ σ= =   for u t> . 
Moreover we can also conclude that 1,

tX ∞∈ D  and the derivatives are given 
by the following  

( )( ) ( )( ) ( )

( )( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( )( )

1 1
1 2 1

1
2 1

1
1 2 1

2 1
2(1 )

1 d
2

d

1 d
2 1

1 d ,
2 1

t
u t u s uu

t
u s su

t
s u s uu

t
s u s su

D X D r s

D B

D s

D B

γ γ

γ

γ
γ γ

γ
γ

φ σ ρ φ σ

φ σ

φ σ σ ρ φ σ
γ

φ σ σ
γ

− −

−

− −

−
−

 
= − +  

 

+

= − +
−

+
−

∫

∫

∫

∫

    

 

    

  

     (4.29) 

( )( ) ( )
1

2 2 1ˆ 1 ,u t uD X γρ φ σ −= −                   (4.30) 

for u t≤ , and ˆ 0u t u tD X D X= =   for u t> . 
We only consider the case u t≤ . First we consider the Malliavin derivative 
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ˆ
u tD X  . By Lemma 4.2 and the proof, we have ( )( ) ( ) ( )

11
2 12 1

t t
γγφ σ σ −− →   in ( )2 ;L HΩ  

and t tX X→  in ( )2L Ω . Moreover, ( )( ) ( )
1

2 1x γφ −  is bounded, so we can use 

Lemma 2.4. Hence we can conclude ( )
1

2 12ˆ 1u t uD X γρ σ −= − . We consider the 
Malliavin derivative u tD X . For the first term, we need prove  

( )( ) ( )211 d d in ; .
t t

s u s t u su u
D s D s L H

γγ
γγφ σ σ σ σ−− → Ω∫ ∫         (4.31) 

Here we have that  

( )( )

( )( )

( )( )

( )( )

11

11

1 1
1 1 11

1 11

d d

d

d

d

t t
s u s t u tu u

t
s u s t u su

t
s u s t u s t u s s u tu

t t
s u s t u s t u su u

D s D s

D D s

D D D D s

D D s D

γγ
γγ

γγ
γγ

γγ
γ γ γγ

γ γγ
γ γγ

φ σ σ σ σ

φ σ σ σ σ

φ σ σ σ σ σ σ σ σ

φ σ σ σ σ σ σ

−−

−−

− − −−

− −−

−

 
= −  

 

   
= − + −      

   

 
≤ − +  

 

∫ ∫

∫

∫

∫ ∫

  

  

    

    

( )( )
[ ]

( )
[ ] [ ]

1

1 11

, , ,

d

d .sup sup sup

t u s

t
s t u s u s u s su s u t s u t s u t

D s

s D t u D D

γ
γ

γ γγ
γ γγ

σ σ

φ σ σ σ σ σ σ

−

− −−

∈ ∈ ∈

 
−  

 

 
≤ − + − −  

 
∫    

(4.32) 

This converges to 0 in ( )2L Ω  by the proof of Lemma 4.2, Lemma 3.8, Theo-
rem 3.2, and Lemma 3.1. Hence we can conclude  

( )( )
1

11 d d
t t

s u s t u su u
D s D s

γ
γγφ σ σ σ σ−− →∫ ∫    in ( )2 ;L HΩ . For the second term, as 

well as the case for ˆ
u tD X , we can prove that ( )( ) ( ) ( )

1
2 12 1

u t

γ
γγρ φ σ ρσ −− →   in 

( )2 ;L HΩ . For the third term, we will prove  

( )( ) ( ) ( )
2 12 1

2 12 1 d d
t t

s u s s s u s su u
D B D B

γγ
γγφ σ σ σ σ
−−
−− →∫ ∫     in ( )2 ;L HΩ . We have from Itô’s 

isometry,  

( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

22 12 1
2 12 1

22 1 2 1 2 12 1
2 1 2 1 2 12 1

22 1 2 1 22 1
2 1 2 12 1

d d

d

2 d 2

t t
s u s s s u s su u

t
s u s s u s s u s s u su

t t
s u s s u s s u s su u

D B D B

D D D D s

D D s D

γγ
γγ

γ γ γγ
γ γ γγ

γ γγ
γ γγ

φ σ σ σ σ

φ σ σ σ σ σ σ σ σ

φ σ σ σ σ σ σ σ

−−
−−

− − −−
− − −−

− −−
− −−

−

   
   = − + −
   
   

≤ − + −

∫ ∫

∫

∫ ∫

  

    

     ( )

( )( )
[ ] [ ]

21
2 1

2 1 2 12 1
2 21 11

, ,
2 d sup 2 d sup .

u s

t t
s s u s u s u s su us u t s u t

D ds

s D D D s

γ
γ

γ γγ
εγ γγ

σ

φ σ σ σ σ σ σ

−
−

− −−
− −−

∈ ∈
≤ − + −∫ ∫  

(4.33) 

https://doi.org/10.4236/jmf.2020.101012


S. Tsumurai 
 

 

DOI: 10.4236/jmf.2020.101012 195 Journal of Mathematical Finance 
 

This converges to 0 in ( )2L Ω  as well as the first term, so we can conclude 
that  

( )( ) ( ) ( ) ( )
2 12 1

2 1 22 1 d d in ; .
t t

s u s s s u s su u
D B D B L H

γγ
γγφ σ σ σ σ
−−
−− → Ω∫ ∫         (4.34) 

By Lemma 2.4, we have  

( )
( )

( )
( )

1 2 11
2 1 2 111 1d d .

2 1 2 1
t t

u t t u s t s u s su u
D X D s D B

γ
γ γγσ σ ρσ σ σ

γ γ

−
− −−= − + +

− −∫ ∫   (4.35) 

Remark 2. For tσ , as well as Theorem 4.1, we can more easily prove  

( ) ( )
1 2

1
21 exp 1 d ,

1 2
t

u t su
s

D sγκµγ γθσ γ θ γ σ κ
γ σ

−
−

   = − − − + −   −   
∫       (4.36) 

ˆ 0,u tD σ =                            (4.37) 

for u t≤ , and ˆ 0u t u tD Dσ σ= =  for u t> .  

4.5. Malliavin Differentiability of the CEV-Type Heston Model  
(Actual Price) 

From now on, we will concentrate on the underlying asset tS  and the volatility 

tν . 
In Subsection 4.4, we proved the Malliavin differentiability of the logarithmic 

price tX  and the transformed volatility tσ . Here we can prove that both of the 
underlying asset tS  and the volatility tν  are Malliavin differentiabile by the 
chain rule.  

Theorem 4.3. tS  and tν  belong to 1,2D  and we have  
1
21 1d d ,

2 2
t t

t t t t s t s t s st t
D S S D s D Bν ρ ν ν ν

−

′ ′ ′ ′′ ′

 
= − + + 

 
∫ ∫          (4.38) 

2ˆ 1 ,t t t tD S S ρ ν′ ′= −                      (4.39) 

( ) ( )
2

2 11exp 1 d ,
1 2

t
t t t s st

D sγγ κµγ γθν θν γ ν ν κ
γ

− −−
′ ′

   = − − + −  −   
∫       (4.40) 

ˆ 0,t tD ν′ =                          (4.41) 

for t t′ ≤ , and ˆ ˆ 0t t t t t t t tD S D S D Dν ν′ ′ ′ ′= = = =  for t t′ > .  
Proof. First we consider the Malliavin derivative for tν . By Lemma 2.5, we 

have  
1

1 11 1 ,
1 1t t t t t t t t t tD D D D

γ
γγ γν σ σ σ ν σ

γ γ
− −

′ ′ ′ ′

 
= = =   − − 

         (4.42) 

1ˆ ˆ .
1t t t t tD Dγν ν σ

γ′ ′=
−

                     (4.43) 

We have by Theorem 4.2  

( ) ( )

( ) ( )

1 2
1

2

2
2 11

1 1 exp 1 d
1 1 2

exp 1 d ,
1 2

t
t t t st

s

t
t s st

D s

s

γ γ

γγ

κµγ γθν ν γ θ γ σ κ
γ γ σ

κµγ γθθν γ ν ν κ
γ

−
−

′ ′

− −−

′

   = − − − + −   − −   
   = − − + −  −   

∫

∫

  (4.44) 
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ˆ 0,t tD ν′ =                          (4.45) 

for t t′ ≤ , and ˆ 0t t t tD Dν ν′ ′= =  for t t′ > . Next, we consider the Malliavin de-
rivative for tS . By Lemma 2.5, we have  

e e ,t tX X
t t t t t t t tD S D D X S D X′ ′ ′ ′= = =               (4.46) 

ˆ ˆ .t t t t tD S S D X′ ′=                       (4.47) 

Hence by Theorem 4.2, we have  

( )
( )

( )
( )

1 2 1
2 1 2 11

1
2

1 1d d
2 1 2 1

1 1d d ,
2 2

t t
t t t t t s t s t s st t

t t
t t s t s t s st t

D S S D s D B

S D s D B

γγ
γ γγσ σ ρσ σ σ

γ γ

ν ρ ν ν ν

−
− −−

′ ′ ′ ′′ ′

−

′ ′ ′′ ′

 
 = − + +
 − − 
 

= − + + 
 

∫ ∫

∫ ∫

(4.48) 

( )
1

2 12 2ˆ 1 1 ,t t t t t tD S S Sγρ σ ρ ν−
′ ′ ′= − = −             (4.49) 

for t t′ ≤  and ˆ 0t t t tD S D S′ ′= =  for t t′ > .  

4.6. Delta and Rho 

Using Theorem 2.4 and Theorem 4.4, we can calculate Greeks of tS . We now 
consider the following stochastic differential equations  

2 ˆd d d 1 d ,t t t t t t t tS rS t S W S Wρ ν ρ ν= + + −            (4.50) 

( )d d d .t t t tt Wγν κ µ ν θν= − +                   (4.51) 

Rewrite the stochastic differential Equations (4.15) and (4.16) as the integral 
form, and then we have  

( )
2

0 0
0

ˆd1d .
d0

t tst ss s s s

st ss

rSS x WS Ss
Wγ

γ ν ρ ν
κ µ νν ν θν

       −= + +         −        
∫ ∫  (4.52) 

We now give the formula for Delta of this model. 
Theorem 4.4. Consider the CEV-type Heston model following the dynamics 

(4.15) and (4.16). We have for any funtion with polynomial growth :φ →R R   

( )
0 2

1 ˆe d .
1

TrT
S T t

t

E S W
xT

φ
ρ ν

−
 
 ∆ =
 − 

∫             (4.53) 

Proof. Let ϒ  be the diffusion matrix 
21
0

s s s s

s

S S
γ

γ ν ρ ν
θν

 −ϒ =   
 

, then 

we can have the inverse 
2 2

1

1
1 1

10

s s s

s

S γ

γ

ρ

γ ν γ ν

θν

−

 − 
− − ϒ =  

  
 

. We can have from 

the Itô’s formula  

2
0 0 0

ˆexp d d 1 d .
2

t t ts
t s s s sS x r s W Wν ρ ν ρ ν  = − + + −  

  
∫ ∫ ∫    (4.54) 
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Hence we can directly calculate the first variation process tZ  of t

t

S
ν
 
 
 

 as 

=
0

t
t

t
t

SS
Z x

x ν

  ∂     ∂     

. Then we can have  

( ) ( )
2

T T1 T 1

2

2

1 0
1

0
1

1

1 0 .
1

t tt
t t

tt

t

SSZ Z
x

x

γγ

ρ ν
ρ

θνρ ν

ρ ν

− −

 
 

−  ϒ = ϒ =     − 
 − 

 
 =
 − 

      (4.55) 

By Lemma 3.2, we have [ ]( )4

2

1 0,
1 t

L T
x ρ ν

∈ Ω×
−

. As with Theorem 4.3, 

let d tW  be the column with the form 
ˆd

d
t

t

W
W

 
 
 

. Since tS  and tν  are Malliavin 

differentiable we have from Theorem 2.4  

( ) ( )

( )

( )

T1
0

0 2

0 2

1e d

ˆd1 1e 0
d1

1 ˆe d .
1

TrT
S T t t

TrT t
T

tt

TrT
T t

t

E S Z W
T

WE S
T Wx

E S W
xT

φ

φ
ρ ν

φ
ρ ν

− −

−

−

 ∆ = ϒ  
   
  =    −    
 
 =
 − 

∫

∫

∫



         (4.56) 

Moreover we can calculate a Greek, Rho ρ .  
Theorem 4.5. Consider the CEV-type Heston model following the dynamics 

(4.15) and (4.16). Then for any :φ →R R  of polynomial growth, we have  

( )
0 2

1 ˆe d .
1

TrT
T t

t

E S W Tρ φ
ρ ν

−
  
  = −

  −  
∫            (4.57) 

Proof. By the definition of ρ , we have  

( ) ( ) ( ) ( )e e e .rT rT rT T
T T T

SE S E T S S
r r

ρ φ φ φ− − −∂ ∂ ′ = = − +   ∂ ∂ 
     (4.58) 

and TS
r

∂
∂

 as =
0

T TT
T

T

S TSS xTZ
r r ν

 ∂ ∂  
= =   ∂ ∂   

. Here we have  

2
0 0 0

ˆexp d d 1 d .
2

T T Ts
T s s s s TS x r s W W T S

r r
ν ρ ν ρ ν

 ∂ ∂   = − + + − = ⋅   ∂ ∂    
∫ ∫ ∫ (4.59) 

By the above formula, we have  

( ) ( ) ( )

( )
0 2

e e

1 ˆe d .
1

rT rT
T T T

TrT
T t

t

E T S S xTZ

E S W T

ρ φ φ

φ
ρ ν

− −

−

′ = − + 
  
  = −

  −  
∫

         (4.60) 
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5. Conclusions 

From Sections 3 and 4, it is proved by using unique transformation and ap-
proximation that we can apply Malliavin calculus to the CEV model and the 
CEV-type Heston model both of which have non-Lipschitz coefficients in their 
processes. Then we can provide the formulas to calculate important Greeks as 
Delta and Rho of these models and contribute to finance, in particular for trad-
ers in financial institutions to measure market risks and hedge their portfolios in 
terms of Delta Hedge. 

In the future, it will be required how to calculate the Vega, one of the most 
important Greeks, for general stochastic volatility models including the CEV-type 
Heston model. Vega is the sensitivity for volatility but it is difficult to measure 
Vega for the stochastic volatility models since the volatility is also stochastic 
process. After the financial crisis, the necessity to grasp the behavior of volatility 
is increasing. We believe that we can calculate the vega of some important sto-
chastic volatility models such as the Heston model or the CEV-type Heston 
model by using our results in Sections 3 and 4. 
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