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Abstract 
We discuss, giving all necessary details, the boundary-bulk propagators. We 
do it for a scalar field, with and without mass, for both the Feynman and the 
Wheeler cases. Contrary to standard procedure, we do not need here to ap-
peal to any unfounded conjecture (as done by other authors). Emphasize that 
we do not try to modify standard ADS/CFT procedures, but use them to eva-
luate the corresponding Feynman and Wheeler propagators. Our present 
calculations are original in the sense of being the first ones undertaken expli-
citly using distributions theory (DT). They are carried out in two instances: 1) 
when the boundary is a Euclidean space and 2) when it is of Minkowskian 
nature. In this last case we compute also three propagators: Feynman’s, An-
ti-Feynman’s, and Wheeler’s (half advanced plus half retarded). For an oper-
ator corresponding to a scalar field we explicitly obtain, for the first time ever, 
the two points’ correlations functions in the three instances above mentioned. 
To repeat, it is not our intention here to improve on ADS/CFT theory but 
only to employ it for evaluating the corresponding Wheeler’s propagators. 
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1. Introduction 

Propagators and correlators are one of the essential tools to work, for example, 
in Quantum Field Theory (QFT) and String Theory (ST), in particular, in for-
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mulating the correspondence ADS/CFT (Anti-de Sitter/Conformal Field 
Theory). This correspondence was established by Maldacena [1] in 1998 and is 
universally regarded as a very useful model for many purposes. 

The bibliography on this subject, for scalar fields, is quite extensive. We give 
here just a small representative in [2]-[12]. For a more complete bibliography 
the reader is directed to the report [13]. 

One of the ADS/CFT correspondence’s prescriptions (see [2]) will allow us to 
evaluate the correlators on the boundary of ADS space. The first boundary-bulk 
propagator was calculated by Witten a few months after the appearance of [1], 
entitled Anti de Sitter space and holography. In this case the boundary is a Euc-
lidean space [2] [3]. 

In this work, instead, we evaluate the boundary-bulk propagators for the case 
in which the boundary is a Minkowskian space. In such regards, remark that 
some attempts have been made before in [14] [15] [16]. 

1.1. The Wheeler Propagator 

The Feynman’s propagator for a free real scalar field is a time-ordered correla-
tion function of two scalar fields ( )xΦ  and ( )yΦ  in the vacuum state 

( ) ( ) ( )ˆ0 0 .FG x y T x y− = Φ Φ                 (1.1) 

This propagator is a Green function of the Klein-Gordon equation, and is 
discussed in almost any text-book on quantum mechanics. Not so well-known at 
all is the Wheeler propagator. In fact, to provide a fairly complete description of 
it constitutes one of the present goals. 

More than half a century ago, J. A. Wheeler and R. P. Feynman published a 
work [17] in which they represented electromagnetic interactions by means of a 
half advanced and half retarded Green functions. The charged medium was 
supposed to be a perfect absorber, so that no radiation could possibly escape the 
system. 

We are going to call this kind of Green function a “Wheeler function’’ (or 
propagator). It has been used before by P. A. M. Dirac [18], when trying to avoid 
some run-away solutions, in which one finds rapid increases that cannot be con-
trolled. Later on, in 1949, J. A. Wheeler and R. P. Feynman showed that, in spite 
of the fact that the Green function contains an advanced part, the results do no 
contradict causality [19]. 

A causal, unitary, and Lorentz invariant quantification of tachyons was performed 
in reference [20]. The corresponding propagator is precisely a Wheeler’s one. 

The same happens with complex mass particles that appear in higher order 
supersymmetric models [21]. For these particles, the propagator is also a Whee-
ler’s propagator. 

We review some precedent work below. 

1.2. The Starinets and Son Paper 

The main previous attempt to try to calculate boundary-bulk propagators in the 
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Minkowskian boundary for the Anti-de Sitter space [in the ADS/CFT corres-
pondence] was made by Son and Starinets (SS) in 2002 [22]. However, SS needed 
to formulate a conjecture that we show here to become unnecessary if one uses 
the full distributions-theory of type S’ (of Schwartz). SS literally state (the neces-
sary symbols will be explained later in the text) “We circumvent the difficulties 
mentioned above by putting forward the following conjecture 

( ) ( )2 ,
B

R
z

G k F k z= −                   (3.15)” 

For this conjecture no rigorous mathematical basis is presented. Instead, we 
will nor need here any conjecture at all. SS’ work was entitled “Minkowski-space 
correlators in AdS/CFT correspondence: recipe and applications”. 

1.3. The Freedman et al. Paper 

We must also mention the work of Freedman et al. [23], in which the authors 
deal with the case of a Euclidean boundary. Freedman, however, did not treat 
the case of a Minkowskian boundary, at least in the way that Son and Starinets 
did. To repeat, we make full use here of distribution theory. This does not entail, 
of course, a simple i  prescription, but a much more elaborate treatment, that 
has not been performed before in this field. Let us also remark, as this is an im-
portant point for us, that in this paper we do not evaluate renormalized correla-
tion functions.  

1.4. Our Treatment 

As stated above, in the present effort we evaluate, without any a la Starinets and 
Son conjecture, the boundary-bulk propagators corresponding to the following 
three cases i) Feynman, ii) Anti-Feynman, and iii) Wheeler (half advanced plus 
half retarded). We do this both for massless and massive scenarios (a scalar field 
involved). Later we calculate the two points correlators (TPC) for operators cor-
responding to this scalar field in the three instances previously mentioned. We 
clarify that in this paper we do not evaluate the renormalized TPC. 

We demonstrate as well that the Feynman propagator must be a function of 
0iρ +  (see below for the notation) in momentum space, and therefore a func-

tion of 2 0x i−  in configuration space. We show that something similar hap-
pens with the Anti-Feynman propagator. For the first time ever, we calculate the 
Wheeler’s propagator (half advanced plus half retarded) as well. 

As usual, we use here regularity conditions 1) at the origin (Dirichlet’s) and 2) 
of rapid decay at infinity (boundary condition). This applies, for instance, to 
Equations (2.8), (2.9), and (2.10). 

It may be asserted that propagators are always to be interpreted in a distribu-
tional sense, but most authors do not employ, in dealing with them, the FULL 
distribution theory developed by Laurent Schwartz [24] and Israelovich M. 
Guelfand et al. [25]. 

Note also that, until the 90’s, the only field propagators that had been calcu-
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lated were Anti-de Sitter (spatial) ones. 

1.5. Organization of This Work 

The paper is organized as follows: Section 2 deals with the Euclidean case. In it, 
the three different propagators referred to above cannot be distinguished (nei-
ther in the massive nor in the massless instances). 

In Section 3, we tackle similar scenarios as those of Section 2, but now in 
Minkowski’s space, where the three propagators can be distinguished. 

In Section 4, we compute in Euclidean space the TPC for a scalar operator 
corresponding to a scalar field via Witten’s prescription.  

In Section 5, we generalize the calculations of Section 4 to Minkowski’s space. 
We obtain in this fashion the two-point correlations functions corresponding to 
the three different propagators of our list above. 

Finally, some conclusions are drawn in Section 6. 

2. Euclidean Case 
2.1. Massless Scalar Field Propagator 

The Klein-Gordon equation in 1ADSν +  for the scalar field ( ),zφ x  reads, in 
Poincare coordinates, 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2, 1 , , , 0,z zz z z z z z zφ ν φ φ ν φ∂ + − ∂ + ∇ −∆ ∆ − =x x x x   (2.1) 

where ( ) 0ν∆ ∆ − ≥  plays the role of 2m . We exclude tachyons form of this 
treatment. Here ∆  is the conformal dimension, ν  the boundary’s dimension, 
and x  their coordinates. The Fourier transform in the variables x  of the 
field ( ),zφ x  is 

( ) ( )ˆ , , e d .iz z xνφ φ ⋅= ∫ k xk x
                  

(2.2) 

Using (2.2), (2.1) takes the form 

( ) ( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ, 1 , , 0.z zz z z z z k zφ ν φ ν φ ∂ + − ∂ − + ∆ ∆ − = k k k
    

(2.3) 

We analyze now the massless case given by 0,ν∆ = . For it we have the mo-
tion equation 

( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ, 1 , , 0,z zz z z z z k zφ ν φ φ∂ + − ∂ − =k k k          (2.4) 

or equivalently (for 0z ≠ ), 

( ) ( ) ( )2 21ˆ ˆ ˆ, , , 0.z zz z k z
z
νφ φ φ−

∂ + ∂ − =k k k
            

(2.5) 

In the variable z, this equation is of the Bessel type (see [26]) 

( ) ( ) ( )
2 2

2
2

1 2 0F z F z k F z
z z
α µ α − −′′ ′+ − + = 

            
(2.6) 

The pertinent solution (that does not diverge when the argument tends to in-
finity) is 

( ) ( ).F z z kzα
µ=                        (2.7) 
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Thus, the solution of (2.5) becomes 

( ) ( )2

2

ˆ , .z k z kz
ν

νφ = 
                     

(2.8) 

One easily verifies that, for infinitesimal z [26], 

( )
( )

( )

1
2

2
2

2 2

2
2 .kz O kz

kz

ν

ν

ν ν

ν−

− +

 Γ    = +  
 



              

(2.9) 

Equation (2.9) is just a Bessel-McDonald distribution (defined by Guelfand 
[25]) in Euclidean space. As a consequence, 

( )

1
2

2
0

2 2

2
2lim .

z
z kz

k

ν

ν

ν ν

ν−

→

 Γ 
 =

                 

(2.10) 

In other words, the solution is regular at the origin and vanishes at infinity (in 
the variable z). Accordingly, we have, for the field in the bulk, the solution 

( )
( )

( ) ( )
2

2

, e d .
2

izz a kz k

ν

ν
ννφ − ⋅=

π
∫ k xx k 

            
(2.11) 

This solution must reduce itself to the field ( )0 xφ  on the boundary, so that 

( ) ( )
( )

( )
( )

( )

1
2

2
0 0

2
12 ˆ0, e d e d .

2 2
i ia k k k

ν

ν
ν ν

ν ν

ν

φ φ φ

−

− − ⋅ − ⋅

 Γ 
 = = =

π π
∫ ∫k x k xx x k k

 
(2.12) 

From this last equation we can obtain ( )a k  as a function of 0̂φ  and then 
write 

( )
( )

( ) ( )
1

2 2
2

0
2

2 ˆ, e d ,
2

2

izz k kz k

ν ν
ν

ν
ν

ν
φ φ

ν

−

− ⋅=
 π Γ 
 

∫ k xx k

        

(2.13) 

or, equivalently, 

( )
( )

( ) ( ) ( )
1

2 2
2

0
2

2, e d d .
2

2

izz k kz k x

ν ν
ν

ν ν
ν

ν
φ φ

ν

−
′− ⋅ −′ ′=

 π Γ 
 

∫∫ k x xx x

     

(2.14) 

From (2.14) we then obtain an expression of the boundary-bulk propagator 

( )
( )

( ) ( )
1

2 2
2

2

2, e d .
2

2

izK z k kz k

ν ν
ν

ν
ν

ν ν

−
′− ⋅ −′− =

 π Γ 
 

∫ k x xx x 

        

(2.15) 

To carry out the integration in the variable k we appeal to the expressions for 
the Fourier transform and its inverse obtained by Bochner [27]. For the Fourier 
transform we have 
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( ) ( ) ( ) ( ) ( )
2

2
11 0 22

2ˆ e d d ,if k f x r kr f r r
k

ν
ν

ν
νν

∞
⋅

−−

π
= =∫ ∫k xx 

       

(2.16) 

and for its inverse 

( )
( )

( )
( )

( ) ( )2
11 0 222

1 1ˆ ˆe d d .
2 2

if r f k k kr f k k
r

ν
ν

νν νν

∞
− ⋅

−−
= =

π π
∫ ∫k xk 

  

(2.17) 

Using these relations we have now 

( )
( )

( ) ( ) ( )
1

2 2 2

11 0 2 22

22, d .
2

2

zK z k kz k k

ν ν ν

ν
ν νν

ν ν

− ∞

−−

π
′ ′− = −

  ′−π Γ 
 

∫x x x x
x x

 

 

(2.18) 

So as to evaluate the last integral we appeal to a result from [26] 

( ) ( ) ( )
( )

1
12 20

1
d 2 ,x bx ax x a b

a b
µ ν µ ν µ ν

ν µ µ ν

µ ν∞
+ + +

+ +

Γ + +
=

+
∫  

       

(2.19) 

Our deduction follows a different, simpler and complete path than that of [2]. 
Our approach also has a didactic utility. 

( ) ( )
( )22

2

, ,

2

zK z
z

ν

ν

ν

ν

 Γ
′− =  

′+ −    π Γ 
 

x x
x x

           

(2.20) 

which leads to 

( ) ( ) ( )0, , d ,z K z xνφ φ′ ′ ′= −∫x x x x
              

(2.21) 

an expression that, in turn, leads to 

( ) ( )
0

lim , .
z

K z δ
→

′ ′− = −x x x x
                 

(2.22) 

2.2. Massive Field Propagator 

We now consider the massive case 0,ν∆ ≠ . The equation of motion for this 
case reads 

( ) ( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ, 1 , , 0,z zz z z z z k zφ ν φ ν φ ∂ + − ∂ − + ∆ ∆ − = k k k
   

(2.23) 

or equivalently, 

( ) ( ) ( ) ( )2 2
2

1ˆ ˆ ˆ, , , 0.z zz z k z
z z

ννφ φ φ
∆ ∆ − −

∂ + ∂ − + = 
 

k k k
      

(2.24) 

The solution for this last equation is 

( ) ( )2ˆ , ,z k z kz
ν

µφ =                      (2.25) 

with 
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( )
2

.
4
νµ ν= ± + ∆ ∆ −

                   
(2.26) 

Since ( ) ( )z zµ µ−=  , we select for µ  in (2.26) the plus sign. We have then 

( )
( )

( ) ( )
2

, e d .
2

izz a kz k

ν

ν
µνφ − ⋅=

π
∫ k xx k 

            
(2.27) 

For 0∆ ≠ , this solution is not regular at the origin. To overcome this prob-
lem we select 

( ) ( )
( )

( ) ( )
( )

( )
2 1 ˆ, e d e d ,

2 2
i ia k k k

ν

ν ν
µν νφ φ φ− ⋅ − ⋅= = =

π π
∫ ∫k x k xx x k k 


  

  
(2.28) 

where   is infinitesimal. From (2.28) we have then 

( ) ( )

( )2

ˆ
.a

k
ν

µ

φ
=

k
k 

                        

(2.29) 

Replacing the result of (2.29) into (2.27) we obtain 

( )
( )

( )
( ) ( )

21 ˆ, e d ,
2

ikzzz k
k

ν

µ ν
ν

µ

φ φ − ⋅ =  
 π

∫ k xx k



  
         

(2.30) 

or similarly, 

( )
( )

( )
( ) ( ) ( )21, e d d .

2
ikzzz k x

k

ν

µ ν ν
ν

µ

φ φ ′− ⋅ −  ′ ′=  
 π

∫∫ k x xx x



  
      

(2.31) 

From this last equation we see that the propagator is 

( )
( )

( )
( )

( )21, e d .
2

i
m

kzzK z k
k

ν

µ ν
ν

µ

′− ⋅ − ′− =  
 π

∫ k x xx x


  
        

(2.32) 

As a consequence we can write 

( ) ( ) ( ), , d .mz K z xνφ φ′ ′ ′= −∫x x x x               
(2.33) 

From (2.33) we immediately gather that 

( ) ( ), .mK δ′ ′− = −x x x x                   (2.34) 

2.3. Wrong but Popular Approach for Approximate  
Massive Field Propagators 

It is instructive to discuss here a popular but non-valid approach for the func-
tion ( )k  . The issue here is that, although   is infinitesimal, it cannot adopt 
a 0-value. As k is an unbounded variable, when k →∞ , we have k →∞ . No-
tice first that 

( ) ( )
( )

( )( )
1

22
.k O k

k

µ
µ

µ µ

µ−
−Γ

= +  
               

(2.35) 

Some people make now the approximation 
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( ) ( )
( )

12
.k

k

µ

µ µ

µ− Γ
= 

                     
(2.36) 

From (2.32) one obtains an approximation for the propagator K that can be 
called M. Ome has then 

( )
( ) ( )

( ) ( )2

1

1, e d .
22

i
m

zM z k kz k
ν

µ
µ ν

µν µ µ
′− ⋅ −

−

 ′− =   Γ π
∫ k x xx x 



   

(2.37) 

Using again the Bochner formula one arrives at 

( ) ( ) ( ) ( ) ( )
2

2
11 0 22

2
e d d .ik kz k k kz k k

ν
νµµ ν

µ µ νν

∞ +′− ⋅ −

−−

π
′= −

′−
∫ ∫k x x x x

x x
  

 

(2.38) 

By recourse to (2.19) it follows that 

( ) ( ) ( )

22

22
2

2, .m
zM z

z

νν µµ

ν

νµ

µ

+−
 Γ +    ′− =  
Γ ′+ −  π

x x
x x



       

(2.39) 

Defining 

( )
2

,
2 2 4
ν ν νγ µ ν= + = + + ∆ ∆ −

               
(2.40) 

one can write 

( ) ( )
( )22

2

, .

2

m
zM z

z

γ
γ ν

ν

γ
νγ

−  Γ
′− =  

  ′+ −  Γ −π  
 

x x
x x



        

(2.41) 

It is then realized that, by construction, 

( ) ( ), ,mM δ′ ′− ≠ −x x x x                   (2.42) 

and define 

( ) ( ), , ,m mN z M z ν γ−′ ′− = −x x x x                (2.43) 

which allows one to write for mN  the expression 

( ) ( )
( )22

2

1, .

2

m
zN z

z

γ

ν

γ
νγ

 Γ
′− =  

  ′+ −  Γ −π  
 

x x
x x

         

(2.44) 

Therefore, one has constructively proved that 

( ) ( )
0

lim , .mz
N z δ

→
′ ′− ≠ −x x x x

                
(2.45) 

Note that (2.44) is indeed the well known expression for the boundary-bulk 
propagator for a scalar field in configuration space. However, this expression can  

only be used as an approximation to the propagator K when 
2
νµ ≅ . 

The above recounted approximation, not very well founded, is precisely the 
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one most people use in current literature to obtain the propagator (2.32). From 
it, people deduce the approximation (2.44).  

Indeed, one of the main goals of our paper is to overcome the problems posed 
by this approximation. We will try below to do better than current usage, and 
shall indeed achieve our goal. 

3. Minkowskian Case 
3.1. Massless Field Propagator 

Let us now deal with the case in which the boundary of the 1ADSν +  is the ν
-dimensional Minkowskian space. In the massless case the field-equation is 

( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ, 1 , , 0,z zz z k z z k z k z kφ ν φ φ∂ + − ∂ + =          (3.1) 

where 2 2 2
0k k ρ= − =k . Thus, we can write 

( ) ( ) ( ) ( )2 2 2ˆ ˆ ˆ, 1 , , 0,z zz z z z z zφ ρ ν φ ρ ρφ ρ∂ + − ∂ + =          (3.2) 

or, rewriting this last equation, 

( ) ( ) ( ) ( ) ( )
21

2 2 2 2ˆ ˆ ˆ, 1 , 0 , 0.z zz z z z z i i zφ ρ ν φ ρ ρ φ ρ ∂ + − ∂ − ± =  


    
(3.3) 

The distribution ( )0i λρ ±  is defined as (see reference [24]) 

( )0 e ,ii λ λ λ λρ ρ ρ± π
+ −± = +                    (3.4) 

and can be cast in terms of ( )H x , the Heaviside step function [24]. We recast 
now (3.3) in the form of a Bessel equation 

( ) ( ) ( ) ( )
21

2 2
1ˆ ˆ ˆ, , 0 , 0.z zz z i i z

z
νφ ρ φ ρ ρ φ ρ−  ∂ + ∂ − ± =  



       
(3.5) 

The solution of this equation that is 1) regular at the origin and 2) vanishes for 
ρ →∞ , becoming 

( ) ( )
1

2 2

2

ˆ , 0 .z k z i i z
ν

νφ ρ = ±  


                
(3.6) 

One must take into account that lim e 0ikx
k→∞ =  (see below in this section 

and [25]). 

( )
( )

( )

1
2

21 1 2
2 2

12 2
2

2
20 0 .

0

i i z O i i z

i i z

ν
ν

ν ν

ν

ρ ρ

ρ

−
− +

 Γ         ± = + ±           ±  

 





   

(3.7) 

Equation (3.7) is just a Bessel-McDonald distribution (defined by Guelfand 
[24]) in Minkowskian space. We have then 

( )
( )

( ) ( ) ( )
12
2

2

ˆ, 0 e d , e d .
2

ik x ik xzz x a i i z k z k k

ν

ν ν
ννφ ρ φ− ⋅ ⋅ = ± =  π

∫ ∫k



 

(3.8) 

From this last equation we deduce that 
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( )
( )

( ) ( ) ( )
1

1 12 2 2
2 2 0

2

2 ˆ, 0 0 e d ,
2

2

ik xzz x i i i i z k k

ν ν ν

ν
ν

ν
φ ρ ρ φ

ν

−

− ⋅   = ± ±        π Γ 
 

∫

 

 

(3.9) 

or, equivalently, 

( )
( )

( ) ( )

( ) ( )

1
1 12 2 2
2 2

2

0

2, 0 0
2

2

e d d .ik x x

zz x i i i i z

x k x

ν ν ν

ν
ν

ν ν

φ ρ ρ
ν

φ

−

′− ⋅ −

   = ± ±        π Γ 
 

′ ′×

∫∫

 

    

(3.10) 

The ensuing propagator becomes then 

( )
( )

( ) ( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 e d .
2

2

i x xzK z x x i i i i z k

ν ν ν

ν
ν

ν
ρ ρ

ν

−
′− ⋅ −   ′− = ± ±        π Γ 

 

∫ k


  (3.11) 

Thus, the corresponding Feynman’s propagator is 

( )
( )

( ) ( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 e d .
2

2

i x x
F

zK z x x i i K i i z k

ν ν ν

ν
ν

ν
ρ ρ

ν

−
′− ⋅ −   ′− = − + − +        π Γ 

 

∫ k (3.12) 

Note that the Feynman propagator is a function of 0iρ + , as it should. For 
the anti-Feynman propagator we have instead 

( )
( )

( ) ( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 e d .
2

2

i x x
AF

zK z x x i i K i i z k

ν ν ν

ν
ν

ν
ρ ρ

ν

−
′− ⋅ −   ′− = − −        π Γ 

 

∫ k (3.13) 

The expression for the Wheeler’s propagator (half advanced plus half retarded) 
is: 

( ) ( ) ( )1, , , .
2 F AFW z x x K z x x K z x x′ ′ ′− = − + −           

(3.14) 

Using the relations 

( ) ( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 ,

2

F
zK z i i i i z

ν ν ν

νρ ρ ρ
ν

−
   = − + − +        Γ 

 



      

(3.15) 

and 

( ) ( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 ,

2

AF
zK z i i i i z

ν ν ν

νρ ρ ρ
ν

−
   = − −        Γ 

 



       

(3.16) 

we can define, as usual, the retarded propagator 

( ) ( ) ( ) ( ) ( )0 0, , , ,R F AFK z H k K z H k K zρ ρ ρ= + −
        

(3.17) 

and the advanced propagator 
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( ) ( ) ( ) ( ) ( )0 0, , , .A AF FK z H k K z H k K zρ ρ ρ= + −
        

(3.18) 

We are going to show now that lim e 0ikx

k→∞
=  (see [28]). Let φ̂  be a test func-

tion belonging to a sub-space   of Schwartz’s one [24] [25]. Its Fourier trans-
form is 

( ) ( )ˆ e d ,ikxk x xφ φ
∞

−∞

= ∫
                    

(3.19) 

where φ  belongs to  . Then one can verify that 

( ) ( ) ( )ˆ ˆ0 lim lim e d lim e d .ikx ikx

k k k
k x x x xφ φ φ

∞ ∞

→∞ →∞ →∞
−∞ −∞

= = =∫ ∫
        

(3.20) 

As a consequence, we obtain 

lim e 0.ikx

k→∞
=

                        
(3.21) 

(3.21) is an extremely well-known fact established by Distribution Theory, 
and can be found in the text-book by Jones [28]. The Feynman propagator is, 
according to (3.12), 

( )
( )

( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 e d .
2

2

ik x
F

zK z x i i i i z k

ν ν ν

ν
ν

ν
ρ ρ

ν

−

− ⋅   = − + − +        π Γ 
 

∫ 

 

(3.22) 

Since 
2
ν  is exponentially decreasing or oscillating, we can evaluate the 

integral that defines FK  by means of a Wick rotation over 0k . Therefore we 
have the change of variables 0 0Ek ik= , 0 0Ex ix= , 2 2 2

0E Ek k= + k , and 
2 2 2

0E Ex x= + x . Casting the integral that defines the propagator in terms of these 
new variables, we obtain 

( )
( )

( )
1

2 2
2

2

2, e d .
2

2

E Ei
F E E E E

izK z k k z k

ν ν
ν

ν
ν

ν ν

−

− ⋅=
 π Γ 
 

∫ k xx 

        

(3.23) 

Using Bochner’s formula together with (3.19) we have 

( ) ( )
2 2

2

, .

2

F E
E

i zK z x
z x

ν

ν

ν

ν

Γ  
=  +   π Γ 

                 

(3.24) 

Now, making the change to Minkowskian variables and taking into account 
that the Fourier transform of a distribution that depends on 0iρ −  is a distri-
bution that depends on 2 0x i+ , we obtain 

( ) ( )
2 2

2

, ,
0

2

F

i zK z x
z x i

ν

ν

ν

ν

Γ  =  − −  π Γ 
               

(3.25) 

which is the expression of the Feynman propagator in terms of the variables of 
the configuration space. For the anti-Feynman propagator we analogously find 
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( ) ( )
2 2

2

, .
0

2

AF

i zK z x
z x i

ν

ν

ν

ν

Γ  =  − +  π Γ 
               

(3.26) 

3.2. Massive Field Propagator 

For the massive case, the field-motion equation is 

( ) ( ) ( ) ( ) ( )
21

2 2
2

1ˆ ˆ ˆ, , 0 , 0,z zz z i i z
z z

ννφ ρ φ ρ ρ φ ρ
 ∆ ∆ −−   ∂ + ∂ − ± + =     


(3.27) 

with, again, 

( )
2

.
4
νµ ν= + ∆ ∆ −

                    
(3.28) 

The pertinent solution is now 

( ) ( )
1

2 2ˆ , 0 .z z i i z
ν

µφ ρ ρ = ±  



               

(3.29) 

The field-expression in configuration space is then 

( )
( )

( ) ( )
12
2, 0 e d .

2
ik xzz x a i i z k

ν

ν
µνφ ρ − ⋅ = ±  π

∫ k



        

(3.30) 

Once again we choose 

( ) ( )
( )

( ) ( )

( )
( )

12
2, 0 e d

2
1 ˆ e d ,

2

ik x

ik x

x x a i i k

k k

ν

ν
µν

ν
ν

φ φ ρ

φ

− ⋅

− ⋅

 = = ±  π

=
π

∫

∫

k 




  

     

(3.31) 

and from (3.23) we obtain 

( ) ( )

( )
1

2 2

ˆ
.

0

k
a k

K i i
ν

µ

φ

ρ
=

 ±  




 
                

(3.32) 

We have then the following relation for the solution 

( )
( )

( )

( )
( ) ( )

1
2

2

1
2

0
1, e d d ,

2 0

ik x x
i i z

zz x x k x
i i

ν
µ

ν ν
ν

µ

ρ
φ φ

ρ

′− ⋅ −

 ±     ′ ′=     π ±  

∫∫









  
  

(3.33) 

so that the propagator is now 

( )
( )

( )

( )
( )

1
2

2

1
2

0
1, e d .

2 0

i x x
m

i i z
zK z x x k

i i

ν
µ

ν
ν

µ

ρ

ρ

′− ⋅ −

 ±    ′− =     π ±  

∫ k








  
    

(3.34) 

The corresponding Feynman’s propagator becomes 
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( )
( )

( )

( )
( )

1
2

2

1
2

0
1, e d .

2 0

i x x
mF

i i z
zK z x x k

i i

ν
µ

ν
ν

µ

ρ

ρ

′− ⋅ −

 − +    ′− =     π − +  

∫ k


  
   

(3.35) 

For the anti-Feynman propagator we obtain the expression 

( )
( )

( )

( )
( )

1
2

2

1
2

0
1, e d .

2 0

i x x
mAF

i i z
zK z x x k

i i

ν
µ

ν
ν

µ

ρ

ρ

′− ⋅ −

 −    ′− =     π −  

∫ k


  
    

(3.36) 

Finally, the definition of Wheeler propagators, half retarded and half advanced, 
is similar to that of the preceding subsection, this is: 

( ) ( ) ( )1, , , .
2m mF mAFW z x x K z x x K z x x′ ′ ′− = − + −          

(3.37) 

3.3. An Approximation 

We now evaluate in approximate fashion the propagator ( )
1
20i iµ ρ − +  

   

( ) ( )

( ) ( )

11
2

2

2
0 ,

0
i i

i i

µ

µ µµ µ

µ
ρ

ρ

− Γ − + =   − +
 

             

(3.38) 

entailing 

( )
( ) ( )

( ) ( )
1 12 2
2 2

1, 0 0 e d .
22

ik x
mF

zM z x i i z i i k

ν νµ µ
ν

µν µ ρ ρ
µ

−

− ⋅
−

   = − + − +   Γ    π
∫




 
(3.39) 

Effecting again the above Wick’s rotation we obtain 

( )
( ) ( )

( )
2 2

1, e d .
22

E Ei
mF E E E E

izM z k k z k

ν νµ
µ ν

µν µ µ

−

− ⋅
−=
Γπ

∫ k xx 


      
(3.40) 

This integral is evaluated as in the previous cases. One has 

( ) ( )
2 2

2 2
2

2, .mF E
E

i zM z
z x

ν νµ µ

ν

νµ

µ

− +
 Γ −    =  Γ + π

x 

          

(3.41) 

Changing variables as above we arrive at 

( ) ( )
2 2

2

, ,
0

2

mF
i zM z x

z x i

γγ ν

ν

γ
νγ

− Γ  =  − −   Γ −π  
 



          

(3.42) 

where 

( )
2

.
2 4
ν νγ ν= + + ∆ ∆ −

                  
(3.43) 

Now we return to the inequality 
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( ) ( ),mFM x xδ≠                      (3.44) 

The following relation is valid for FN  

( ) ( ), , .mF mFN x M xν γ−=                    (3.45) 

Proceeding in analogous fashion with the Anti-Feynman propagator we ob-
tain the approximation 

( ) ( )
2 2

2

,
0

2

mAF
i zM z x

z x i

γγ ν

ν

γ
νγ

− Γ  =  − +   Γ −π  
 



          

(3.46) 

4. Glaring Mistakes of Son and Starinets’  
Calculation [22] Corrected 

By appeal to the unproved conjecture mentioned in Subsection 1.2, Son and Sta-
rinets evaluated the retarded propagator for a scalar field in a work regarded as a 
standard-bear of the ADS/CFT field. They found 

( ) ( )
2 4

2 2
2, ln

64R
N kK z k i H k sgnρ ω = − π − π            

(4.1) 

We will show below that this result is both wrong and incomplete. 
The retarded propagator reads 

( ) ( ) ( ) ( ) ( )0 0, , , .R F AFK z H k K z H k K zρ ρ ρ= + −
         

(4.2) 

For 4ν =  one has 

( )

( ) ( ) ( ) ( )

1
22

1
12

0

1 10 ln ln 0 , , ,
4 2 2

K i i z

ii i z C z i f z g z

ρ

ρ ρ ρ ρ−

 − +  
π = − + + + − − − + +    

(4.3) 

where 

( ) ( )
( )

1 2 2

0
, ,

! 2 ! 2

s s

s

zf z
s s

ρ
ρ

+ +∞

=

−  =  +  
∑

                
(4.4) 

and 

( ) ( )
( )

1 2 2 2

0 0 0

1 1, .
! 2 ! 2

l l l l

l s s

zg z
l l s s

ρ
ρ

+ +∞ +

= = =

−   = +   +    
∑ ∑ ∑

           
(4.5) 

Using [26] we have 

( )

( ) ( ) ( ) ( )

1
22

1
12

0

1 10 ln ln 0 , , .
4 2 2

K i i z

ii i z C z i f z g z

ρ

ρ ρ ρ ρ−

 −  
π = − − − − + + + − +     

(4.6) 

This, Feynman’s propagator becomes 
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( ) ( )

( ) ( ) ( )

2 1
2

2

, 0
8 4

1ln ln 0 , , ,
2 2 2

F
z iK z i z

z i C z i f z g z

ρρ ρ

ρ ρ ρ ρ

= − +

π − − − − + +      

(4.7) 

while the anti-Feynman one turns out to be 

( ) ( )

( ) ( ) ( )

2 1
2

2

, 0
8 4

1ln ln 0 , , .
2 2 2

AF
z iK z i z

z i C z i f z g z

ρρ ρ

ρ ρ ρ ρ

= + −

π + + + + − +      

(4.8) 

With the two last results OUR version of Starinets and Son retarded propaga-
tor becomes 

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2
0

1 1
0 02 2

2
0 0

, , ln ,
8 4 2

0 0

ln 0 ln 0 , , ,
4

R
z i z zK z sgn k f z C z f z

iz H k i H k i

z H k i H k i f z g z

ρ ρ ρρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ

π
= − + +

 − + − −  

 + + + − − +   

(4.9) 

and for the advanced one 

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2
0

1 1
0 02 2

2
0 0

, , ln ,
8 4 2

0 0

ln 0 ln 0 , , .
4

A
z i z zK z sgn k f z C z f z

iz H k i H k i

z H k i H k i f z g z

ρ ρ ρρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ

π
= + + +

 + − − +  

 + − + − + +   

(4.10) 

With a little algebra the two propagators reappear as 

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 1 1
0 02 2

2
0 0

, ln , 0 0
8 2

ln 0 ln 0 , , ,
4

R
z zK z C z f z iz H k i H k i

z H k i H k i f z g z

ρ ρρ ρ ρ ρ

ρ ρ ρ ρ ρ

 = + + − + − −  

 + − − + − − + +   

(4.11) 

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 1 1
0 02 2

2
0 0

, ln , 0 0
8 2

ln 0 ln 0 , , .
4

A
z zK z C z f z iz H k i H k i

z H k i H k i f z g z

ρ ρρ ρ ρ ρ

ρ ρ ρ ρ ρ

 = + + + − − +  

 + − + + − − − +   

(4.12) 

Consider now the penultimate term of the retarded propagator. It is 

( ) ( ) ( ) ( ) ( )
2

0 0ln 0 ln 0 , .
4

z H k i H k i f zρ ρ ρ ρ − − + − − +        
(4.13) 

Considering just the first term ( 0s = ) in ( ),f z ρ  we can write (up to a sign) 

( ) ( ) ( ) ( )
2 2

0 0ln 0 ln 0 ,
4 8

z zH k i H k iρ ρρ ρ − − + − − +         
(4.14) 

that can be recast as 
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( ) ( )
4 2

0ln .
32

z i sgn k Hρ ρ ρ − π                 
(4.15) 

2k  reads, using Son and Starinets’ metrics 
02 2 2k kρ = − = −k : 

( ) ( )
4 4

2 0 2ln ,
32

z k k i sgn k H k − π −                
(4.16) 

which coincides with (4.1) after calling 2 2 42N z= π . 
Thus, expression (4.1) is just a single term of the full expression for the re-

tarded propagator of (4.11). This last propagator verifies ( )lim , 0z RK z ρ→∞ =  
while (4.1) does not. We conclude then that (4.1) CAN NOT be used as a prop-
agator. 

Starinets and Son expression (SS) (4.1) cannot be regarded as a propagator for 
the massless scalar field. The same happens for the Feynman propagator of Eq. 
(3.21) in page 9 of [22]. These erroneous results demonstrate that their conjec-
ture is inadequate. 

4.1. Son and Starinets Surprising Elimination of a Divergence 

To justify the results of their paper, in page 22 of [22], Son and Starinets en-
counter an infinite in their equation (A.22). They eliminate it by setting 
( ) ( )1 ! 1 0− = = Γ , which is absurd since ( )zΓ  has a pole in 0z = , and, as a 
consequence, it has a divergence in this value of z. This procedure is mathemat-
ically unacceptable. However, it was applauded by many ADS/CFT practitioners. 
Read and learn! 

5. Two Points Correlation Functions in Euclidean Space 
5.1. Massless Case 

To evaluate the two-point correlation function of a scalar operator, we use the 
result obtained in [29]. This is 

( ) ( ) ( ) ( ) 1
1 2 0 1 0 2, , d ,g K y K y yµ ν

µ
+= − ∂ − ∂ −∫x x y x y x 

    
(5.1) 

where 00 y z≤ = < ∞ , y xµ µ= , 0µ ≠ , and then 

( ) ( ) ( ) ( )1
1 2 1 20

lim , , d .zz
Boundary

z K z K z xν ν−

→
 = − − ∂ − ∫x x x x x x 

  
(5.2) 

As ( ) ( )1 2 1 20
lim 0,
z

K δ
→

− = −x x x x , we obtain 

( ) ( ) ( )1
1 2 1 20

lim , .zz
z K zν−

→
 = − ∂ − x x x x 

           
(5.3) 

Using now the expression for K given in Equation (2.20) we have 

( ) ( ) ( )
( )1 2 2

2 1 2

1 1 .

2

ν ν

ν

ν

Γ +
= −

− π Γ 
 

x x
x x

 

             

(5.4) 

Accordingly, we have here arrived to the usual, well-known result. 
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5.2. Massive Case 

For the massive case we obtain, similarly, 

( ) ( ) ( ) ( )1
1 2 1 2, , d .m zm

Boundary

z K z K z xν ν− = − − ∂ − ∫x x x x x x 
   

(5.5) 

As ( ) ( )1 1,mK δ− = −x x x x  we can write 

( ) ( ) ( ) ( )1
1 2 1 2, d .zm z

z K z xν νδ −

=
 = − − ∂ − ∫x x x x x x


 

     
(5.6) 

Thus we arrive at 

( ) ( ) ( )1
1 2 1 2, .z mm z

z K zν−

=
 = − ∂ − x x x x


 

          
(5.7) 

Now, we use the expression for mK  given in (3.32) and write 

( ) ( )
( )

( )
( )

( )1 2
1 2

1 2 e d ,
2

i
zm

z

kzz k
k

ν
ν

µ ν
ν

µ

−
− ⋅ −

=

 
  = − ∂    π
 

∫ k x xx x




 

  
   

(5.8) 

or, equivalently, 

( ) ( )
( )

( )
( )

( )

( )
( )

( )

1 2

1 2

31
2 1

2
1 2

2

e d
22

e d .

i
m

i

z

kz
z k

k

kz
z k k

k

ν
ν

µ ν
ν

µ

ν
µ ν

µ

ν
−

− − ⋅ −

− ⋅ −

=


= − 

π 
′ 

+ 


∫

∫

k x x

k x x

x x




 

 



 
      

(5.9) 

Using now the following result, given in [26], 

( ) 1,z
zµ µ µ
µ

−′ = − +  
                   

(5.10) 

we obtain 

( ) ( ) ( )
( )

( )
( )

( )1 2
1

1
1 2 1 2 e d .

2 2
ik

k k
k

ν
µν ν

ν
µ

νµ δ
−

− − ⋅ −−  = − − − 
  π

∫ k x xx x x x
 

  
 

 
(5.11) 

Note that we have not renormalized the correlation functions. We will do that 
using the results of [23] in a forthcoming paper. 

6. Two Points Correlation Functions in Minkowskian Space 
6.1. Massless Case 

Similarly to the Euclidean case we obtain for the Minkowskian one the result 

( ) ( ) ( )1
1 2 1 20

lim , .z FF z
x x i z K z x xν−

→
 = ∂ −  

          
(6.1) 

Thus, we obtain for the Feynman’s propagator 

( ) ( ) ( )
( ) ( )

1 2 22
2 1 2 10 20

1 1 .
0

2

F
x x i

ν ν

ν

ν

Γ +
= −

   − − − +π Γ    

x x
x x

 

    

(6.2) 

For the Anti-Feynman instance one has 
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( ) ( ) ( )
( ) ( )

1 2 22
2 1 2 10 20

1 1 ,
0

2

AF
x x i

ν ν

ν

ν

Γ +
= −

   − − − −π Γ    

x x
x x

 

    

(6.3) 

and for Wheeler’s situation, 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2
1 .
2W F AF

x x  = + x x x x     
    

(6.4) 

6.2. Massive Case 

Again, following the developments of the Euclidean case, we have, for the Min-
kowskian instance, the two points Feynman’s correlator: 

( ) ( ) ( )1
1 2 1 2, .z mFmF z

i z K z x xν−

=
 = ∂ − x x


 

          
(6.5) 

Thus, we have 

( ) ( )
( )

( )

( )
( )1 2

1
2

1 2

1 2 1
2

0
e d ,

2 0

ik x x
zmF

z

K i i z
zx x i k

K i i

ν
µν

ν
ν

µ

ρ

ρ

−
− ⋅ −

=

  − +      = ∂     π − +    

∫




 

 
 

(6.6) 

or equivalently, 

( ) ( )
( )

( )

( )
( )

( )
( )

( )
( )

1 2

1 2

1
3 21
2 1

2
1 2 1

2

1
2

1
2 2

1
2

0
e d

22 0

0
0 e d .
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(6.7) 

Using again (5.10) we finally obtain 
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(6.8) 

For the Anti-Feynman propagator we obtain in analogous fashion 
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and for Wheeler 
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Note again that we have not re-normalized the correlation functions. We will 
do that using the results of [23] in a forthcoming paper. 

7. Conclusions 

In this work we have firstly calculated, without using any conjecture, the boun-
dary-bulk Feynman, Anti-Feynman, and Wheeler propagators (half advanced 
plus half retarded) for both a massless and a massive scalar field, by recourse to 
the theory of distributions. 

We conclusively showed that a previous 2002 work by Son and Starinets [22] 
(discussing only the Feynman propagator) is wrong. 

As further novelties, in the paper we showed that, for massive scalar fields, the 
expression for the boundary-bulk propagator in Euclidean momentum space 
does not correspond to the expression used in configuration space, but it is ra-
ther a mere approximation. 

Subsequently, using the previous results, we have evaluated the correlation 
functions of scalar operators corresponding to massless and massive scalar fields. 

Unlike the results obtained in [22], with the ones obtained here you can cal-
culate the n-points correlation functions from gravity. This is feasible for a scalar 
operator when n is an arbitrary natural number. This is perhaps our main 
present contribution. 
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