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Abstract

Statistical analysis of lifetime data is a significant topic in social sciences, en-
gineering, reliability, biomedical and others. We use the generalized weighted
exponential distribution, as a generator to introduce a new family called ge-
neralized weighted exponential-G family, and apply this new generator to
provide a new distribution called generalized weighted exponential gomber-
tez distribution. We investigate some of its properties, moment generating
function, moments, conditional moments, mean residual lifetime, mean inac-
tivity time, strong mean inactivity time, Rényi entropy, Lorenz curves and
Bonferroni. Furthermore, in this model, we estimate the parameters by using
maximum likelihood method. We apply this model to a real data-set to show
that the new generated distribution can produce a better fit than other clas-
sical lifetime models.

Keywords
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1. Introduction

Generally, there is a rising interest in the introduction of new generators for un-
ivariate continuous families of distributions by adding one or more additional
shape parameter(s) to the baseline distribution. This introduction of parame-
ter(s) was proven useful in the exploration of tail properties and the improve-
ment of the goodness-of-fit of the family under investigation. There are
well-known generators like the following: the beta-G distribution by Eugene et
al. [1], the gamma-G type 1 distribution by Zografos and Balakrishanan [2] and
Amini et al. [3], the Kumaraswamy-G (Kw-G) distribution by Cordeiro and de
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Castro [4], the McDonald-G (Mc-G) distribution by Alexander ef al [5], the
gamma-G type 2 distribution by Ristic and Balakrishanan [6] and Amini et al
[3], the odd exponentiated generalized (odd exp-G) distribution by Cordeiro et
al. [7], the transformed transformer (T-X) (Weibull-X and gamma-X) distribu-
tion by Alzaatreh ef al [8], the odd Weibull-G distribution by Bourguignon et al
[9], the Lomax-G distribution by Cordeiro et a/ [10], the Kumaraswamy odd
log-logistic-G distribution by Alizadeh et a/ [11] and the logistic-X distribution
by Tahir et al [12], a new family by using survival function called weighted ex-
ponential-G family introduced by Abd El-Bar et al. [13].

The class of weighted exponential (WE) distributions was obtained by Gupta
and Kundu [14] by implementing Azzalini’s method to the exponential distribu-
tion. Shakhatreh [15] generalized the WE distribution to the two-parameter
weighted exponential distributions (TWE). Finally, Kharazmi et al [16] pro-
posed a generalized weighted exponential distribution (GWE). It is observed that
the WE, TWE and GWE distribution can provide a better fit for survival time
data relative to other common distributions such as gamma, Weibull, or genera-
lized exponential distribution.

The aim of this paper is to introduce a new family of distributions generated
by generalized weighted exponential (GWE) distribution. We expect that the
proposed family may be better (at least in terms of model fitting) than other
classes of distributions in certain practical situations. The proposed GWE-G dis-
tribution provides WE-G and TWE-G distributions as its sub-models. This ex-
tension offers more flexible distributions with applications in reliability engi-
neering and lifetime modeling. In addition, several properties of the GWE-G
distribution have been established.

In the following sections, we study the properties of a special case of this fam-
ily, when G(-) is the CDF of the Gompertz distribution. In this case, the ran-
dom variable X is said to have the generalized weighted exponential-Gompertz
(GWE-G) distribution.

The reminder of this paper is organized as follows. We discuss the generalized
weighted exponential-G family in Section 2. In Section 3, the generalized
weighted exponential-Gompertz distribution is studied in detail. In Section 4, we
provide expansions for weighted exponential-Gompertz cumulative and density
functions. In Section 5, we present various properties of the new model such as
moment generating function, moments and conditional moments. Rényi Entro-
py introduced in Section 6. Also, some reliability properties of our model are
discussed in Section 7. In Section 8, the maximum likelihood estimator of the
parameters of our model is obtained. Section 9 gives an application to a real data

set.

2. Generalized Weighted Exponential-G Family

Risti¢ and Balakrishnan [6] introduced a new family of distributions generated

by gamma random variable with survival function (SF) given by:
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_ 1 —log G(x) s
F(ﬂ:m { " le'dt, xeR,6>0 (1)

where G(x) is a cumulative distribution function (CDF) of baseline distribu-
tion which is used to generate a new family of continuous distributions. On the
same line, we provide a new family of distributions generated by generalized
exponential distribution.

If a random variable X has the generalized weighted exponential distribution
GWE (,B,a,n) with integer n>1, shape parameter ¢« and scale parameter
B, if its probability density function(PDF) is given by:

—,n+1
a

f(x.B.a.n) :+ﬂe’ﬂx(l ~e ), xa.f>0 )
B+

1
where, B(a,b)= ft“'l (1- t)b_l dz, and the corresponding CDF is given by:

0

)
F(x,ﬂ,a,n):l_ o L k o Plaksi)s 3)

B(l n+1)k_° ak+1
a’

Now, by using an integral transform of the PDF of a random variable T which
follows GWE distribution we generate a new family of distributions. The SF of
generalized weighted exponential-G (GWE-G) family is defined as:
aﬂ ~log G(x,£)

F(x,a,ﬂ,f) = 1— J. e—ﬁx (l _ e—aﬁx )" dx
B(,n+1j 0

___ i(_l)i[g (1-6"" () (4)

B(l n+1ji0 i+l
a’

S P i(_l)i(’;jgﬂw(x).

B(l n+1)i_° ai+l

a

and the PDF of GWE-G family is obtained by:

f(xa.p.8)= B(la—/:l)g(l)[[};]g(x)c;ﬁ(mml (x)

of (5)
=l—g(x)Gﬁ_1(x)[l—G“ﬂ (x)} .
B(,n+1}

a

where, G(x,f) and g(x,ﬁf) respectively, are the baseline CDF and PDF
which depends on a (px1) parameter vector ¢ and (@,f) are two addi-

tional parameters.
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3. Generalized Weighted Exponential-Gompertz Distribution

The PDF of GD with location parameter ¢ and shape parameter A, is given
by:

g(x,A,0)= ﬂ,dexp[lx - O'(e“ - 1)] (6)
The CDF associated with Equation (6) is obtained as:
G(x,ﬂ,o-)zl—exp[—a(e“ —1)} (7)

The GD plays an important role in modeling reliability, human mortality and
actuarial data that have hazard rate with exponential increase. Some applications
of this distribution can be found in Pollard and Valkovics [17]. An extension
version of Gompertz is the weighted Gompertz distribution discussed by Ba-
kouch and Abd El-Bar [18].

Now, we introduce the PDF and CDF of GWE-G distribution by using Equa-
tions (4)-(6) respectively, are:

f(x’a,ﬂ,ﬂ,g’n) = %i(_l)l [’?jeﬂxAﬂ(aHl)—l (X)[l _ A(x)]
B(,n + 1] i=0 !
Zﬂia ®)
:—( 1 je“Af“ () 1=4(x)|[1-47(x)] -
Bl —,n+1
(04
and,
— a S i Bai+l)
F(xaaaﬂsﬂ’so-an)_B(l’n+1j[_0 i+ 1 A (x) (9)
04

where, A(x)=1- exp[—a(e“ - 1)} .

Figure 1 shows the shapes of GWE-G distribution or some various parame-
ters. It can be summarized some of the shape properties of our model as: (a) The
PDF is left-skewed when (a =2,p=1A=2,0= 0.03) and n=12,5 and 7. (b)
The PDF is right-skewed when (a =l,o=3,n= 1) and f>1 and A>1 and
the PDF is reserved-] when (0! =lo=3,n= 1) and f>1 and A<1.(c) The
PDF is monotonically decreasing when (f=2,A=1n=1) and a<l and
o<1. (d) The PDF is reserved-] when (f=2,A=1n=1) and a<1 and
o=>1. (e) The PDF is left-skewed when (,3 =2,A=Ln= 1) and a¢>1 and
o<1. (f) The PDF is left-skewed when (ﬁ =LA=2,n= 1)
o>1.

The SF and HR of the GWE-G distribution respectively, are:

and a¢>1 and

o phom) e i(—l)l’{’fj[l_wm(xﬂ=1_ . i(—l)f@Aﬁ<a,-+.)(x),(lo)

B(l n+1j"° ai+l B(l n+1)f° ai+l

(24 (04

and,
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Figure 1. The PDF curves of GWE-G with (ﬂ,a,/l,a,n) .

pral (1)} e -]

h(x,a,ﬂ,l,o:n): (11)

i n
) (lj Pai+1)
! 1— A7 (x
21:0 al+1 |: ( ):|

Figure 2 gives some of the possible shapes of the hazard rate function of the

GWE-G distribution for some various values of parameters n, «,f,4 and o.

It can be summarized some of the shape properties of the hazard rate function of
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Figure 2. The hazard curves of GWE-G with (a,5,4,0,n).

WE-G as: (a) The hazard rate function is increasing function when
(a =05p4=3,1=l,0= 0.3) and n=1,2,5 and 10. (b) The hazard rate func-
tion is bathtub shaped when (ﬂ =0.05,1=0.1,n= l) and a>1 and o=>1.(c)
The hazard rate function is increasing function when ( p=2,1=n= 1) and

a<l and o<l.
4. Expansions for the Cumulative, Density and Survival
Function

In this section, we discuss some useful expansions for the CDF and PDF of

GWE-G distribution. The following mathematical relations will be used in these

-1y ["_]zf, (12)

J

expansions.

M

(1-2)' =

Jj=0

for any positive real non-integer &, and |Z | <1. We also use this relation for any

positive integer 1z

(a=-b)" =3 (-1) (”?]bfam-f, (13)

Jj=0 J

4.1. Expansion for the CDF

In this subsection, we introduce the expansion forms for the CDF for GWE-G

(a,p,4,0,n) distribution. We can writ Equation (9) in another form:

F(x,a,B,4,0,n)=

i N
(—1)’[ ] o
a n i |:1 B expfo-(ehfl) :r( 1)-1

B(l n+1)i_° ai+l
a’

(14)

= ieiG(x,a,ﬂ.,ﬂ(ai +1)- 1).

n

1)

1

: 1 j : , and G(x,a,/l,ﬂ(ai—i-l)—l) denotes the ex-
. sl L
(ai+1) (a,mj

ponentiated Gompertz (EG) distribution with parameters o©,4 and

where, ¢, =
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Blai+1)-1.
We also obtain another expansion for the CDF of GWE-G as:
From Equation (9) and expanding the term [1 - expa(ehl)r(m“)1 , the
GWE-G can be rewritten as:
F(x,a,ﬂ,/l,o,n)

_ Zi a(-1)" j(r'lj[ﬂ(ai + 1)- 1jexp0 (e )

i_Oj"O(ai+1)B(1,n+1 ! J

o

Using power series expansion for (exp[—a j (e“ - l)]) , we have:

F(x,a,ﬁ,/l,o;n)

v ¥ a(-1)""" j[éj{ﬂ(diﬂ)l}(z)k[(em1)1

i'of*"_o(ai+1)B(1,n+l ! J
a

Now, using the binomial expansion for (e“ —l)k, the CDF admits the fol-

lowing expansion:
F(x,a,B,A,0,n)
rad al-)T R Blai+1) =1\ (0)) [ sy
=53y jUM( . j X (e )(15)

05010 (g 4 1)3(,;1 +1 J
(04

Also, the GWE-G CDF can be rewritten as:
F(x,a,p,A,0,n)

5 5 Sl AU O ) b )]

i=07.k.m=01=0 (ai+l)k!m!B(l,n+1J !
a

n © k
=Z Z zpi,j,k,z,mxm

i=0m,k, j=01=0

where,

Pijkidm = (_1)

B A H e

4.2. Expansion for the SF

In this subsection, we introduce the expansion forms for the SF for GWE-G
(a,p,A,0,n) distribution. From Equation (10) and using Equation (13), the SF
of GWE-G can be rewritten as:

S IRL
!

S( _ a LA lj Bi(ait1)
x,a,ﬂ,/l,a,n)— Zz A (x)

B(l n+1j imjmo ai+l
a’

DOI: 10.4236/am.2020.112010

103 Applied Mathematics


https://doi.org/10.4236/am.2020.112010

A. A. M. Teamah et al.

, we have:

_O_(elx_]):|ﬂj(ai+l)l

expanding the term [1 —exp

S(x,a,ﬂ,/i,cr,n)

33§ a(—l)i+11'+k )(izj(ﬂj(ai}:l)—l}[expak(ch1)}

i=0 j=0k=0 i+1)B| — 1
(ai+1) (a,n+

—okle™ -1
Usmg power series expansion for |:CXp ( ):| >, WE have:

S(x,a,B,4,0,n)

o ven (LGS A

Now, using the binomial expansion for (e“ —1)1, the CDF admits the fol-

lowing expansion:

S(x,a,ﬂ,/i,a,b)

Ss e e o

= Zn:zl: i 21: Ui jktm (e“(lim))

i=0 j=0k,/=0m=0

’ _ a(—l)”‘”“”m [n][lj[ﬂj(m#l)—l](ak)l
e (ai+1)B(1,n+1j i)\m k I
a

4.3. Expansion for the PDF

where,

Here, we provide simple expansion for the GWE-G density function. Firstly, ap-

plying Equation (13) into Equation (8) and expansion the term:

—o—(e’“ _1) B(ai+1)+j-1
‘:1 —exp } , yields:

f(x.aB,2,0,n)
_ aﬂl/lae iZZ( e [?J(ﬂ(ai+l)+j—lj@[(em _1)1}

B(n"rl)loj =0k,/=0 k Iy
24

Using again the series expansion (13), we can express the PDF of GWE-G dis-

tribution as:

f(x,a,ﬂ,ﬂ,aan)
ZZ 3 Z( )b (ﬁ(ai + It)+ j—ljx(éj( ! ) (cr):1 k' [

B[l n+1)10] 0k, I=0m= Lj\m

(2
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= Zn:i i Zl: D ktm |:elx(17m+l):|- (18)

i=0 j=0k,/=0m=0

4 B 0:/3/1(0')1+1 K (—1)”j+k”+m (ﬁ(m# )+ /j- lj[n]( lj
i, ).k dm — i .

l!B(l,n+1j k m
a

Also, we can write the PDF of GWE-G in the form:

where,

ol 1) i n ai+l)-
f(x,a,/)’,i,o-,n) =¢el ( I)Z(_l) : gLt
! i=0 1
Bl —.n+1
a
Now, using the power series (12) in the last term of above equation:
f(x,a,ﬁ,/l,a,n)

o R0 At S
-, Sig(x o +1)).
where,

_apro(-1)" (q[ﬂ(ai +1)- 1}

;= 1 .
B(,n+lj J
a

and g(x,ﬁ,O'( j+1)) denotes the density function of Gompertz distribution
with parameters 2 and o/(j+1). Therefore, the density function of GWE-G

can be expressed as an infinite linear combination of Gompertz densities.

5. Statistical Properties

In this part, Let us view different moments of GWE-G ( @, f,4,0,n ) distribution.
By using the moment we can study some of the most important characteristics
and features of a distribution, such as moment generating function, the mo-

ments, and interesting reliability properties such as mean residual lifetime.

5.1. Moment Generating Function

If X has the GWE-G ( x,a, ,4,0,n) distribution, then the MGF is:

M (t)= ZZZZ$' t+Al+A>Am (20)

=0 j=0k,1=0m=0 —L — ( m+l)’

where, ¢ defined by Equation (18).

1,j,k,0,m
5.2. Moments

The GWE-G random variable has the 7* moments about the origin are:

#l=ii L (-1)7TT(r+1)

r+l 71,j (21)
=0 j=0k,1,=0m=0 [ﬂ(l Cm4+ 1)} RVAY
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Mean
For r=1 Equation (21), yields the mean of GWE-G that is given by:

S (22)
#= ;jZOkIZOI;) [/1([ m+ )]2 S
5.3. Central Moments and Cumulants
The central moments ( &, ) and cumulants ( x, ) of X can be calculated as
C res| ¥ NSy
S0 u
(23)

3y Y ZZ( ]( D" (W)™ hpsanl (5+1)

i=0 j=0k,1=0m=0s [ﬂ,(l—m+l)}Hl

and
ir-1
K =u — K. U
r ILlV ;[s—lj S/'ll’*s

respectively, where g, =g . Then, 1, =—u" , gy =p—=3ubu +2u ,
Wy = =4l + 6450 =31t etc. Also, the skewness 7, = ,u3//123/2 and kur-
tosis 7, = / 1 follow from the second, third and fourth moments.

Variance

For r=2 Equation (23), the variance of GWE-G distribution is given by:

M) ii[zj C ) panl (+1) (24)

i=0 j=0k,I=0m=0s=0\ [A (l —ma+ 1)]s+1

5.4. The Mean Deviation

Let X be a random variable that follows GWE-G distribution with median m and
mean . In this subsection, we inferred the mean deviation from the mean and

the median.

5.4.1. The Mean Deviation from the Mean Can Be Found from the
following Theorem

Theorem 1. The form of the mean deviation from the mean of the GWE-G dis-

o SEE )

tribution is

=
8
=

(25)
. Ak
{1
Proof: The mean deviation from the mean can be defined as
E(|X =ul) =[] =l (x
=2 (u—x f(x)dx
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= ZyF(y)—Zj:xf(x)dx
=2[F (x)dx

where, d[tG(t)] =G ()dt +1dG(r). Using Equation (15) we obtain

E(Ix—ﬂl)éjéog(aizflgIEM:;]@(IICJ

( 0(1+1 1] ,u lrkl

Hence, the theorem is proved.

5.4.2 The Mean Deviation from the Median Can Be Found from the
Following Theorem

Theorem 2. The mean deviation from the median (/) of the GWE-G distribu-

tion is in the form

RIS 35 S )@@

i=0 j,k=0/=0 i +1)B| — 1
(az+) [a,n"'

i (26)
N o "

x(ﬂ(al;l) lez[(z(Q—z)_J [0 1]
Proof: The mean deviation from the median can be defined as

E(|X—m|):.[;0 x—m|f(x)dx

= 2J-:(m—x)f(x)dx+_|.:(x—m)f(x)dx

=2mF (m)+ p—m —ZJ.:xf(x)dx

= ,u—m+2_[:F(x)dx

Using Equation (15) we obtain

E(|X—m|)=pu—m+ zgjgog » i‘i);)(::; 1) (i:j(l;}

X(ﬂ(m+l J aj) J-m Ikt

J

STRRE )b )U@

i=0 j.k=01=0 (ai i I)B(l,” +1
a

Blai+1)-1 (o ')k imlbt
SR Gl
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S (%)=

Bl,n+1 i=0j=0k=0
o

Hence, the theorem is proved.

5.5. The Mode

The mode for the GWE-G distribution can be found by differentiating f'(x)

with respect to x; thus, from Equation (8)

f'(x)=f(x)| 21— Ace™ +

o(p-1)e"[1-A(x)]
)

A(x
(27)
naﬂﬂo-e“[l (x)]4” " (x)
— A7 (x)
By equating Equation (27) with zero, we get
_1 Ax I_A Ax 1 Aaﬂl
l—ae“Jro-(ﬂ )e**[1-4(x) ] nafioe [ (x)] (x) 0 (8)

A(x) A“" ()
Then, the mode of GWE-G distribution can be found numerically by solving
Equation (28).
6. Rényi Entropy

Entropy is a measurement representation of the degree of disorder or uncertain-
ty in a system. The Rényi entropy is defined by

L(r)=(1=7) "log[ f7 (x)dx, (r>0,y=1)

In this case

afiic v (- o
/7(x)= ﬁ A (1= A [1- 47 ()"
Bl —,n+1
L a .
7
_ (Zﬂ/lO' i(_l)i(i’l.}/]el”Aﬁ(aH”y(x)[l_A(x):IV
1 par i
B(,n+1j
. a .
r s
— Ciﬂﬂ'a ZZ( 1)’*]( j( j l}/xAﬂ(aH}/) y+J (x)
B(,n+1j i=0j=0 J
o
) ) 70(61)(71) ﬂ(aH;/)f;/Jr/
We expand the term Aﬂ(m”)y“(x)z[l—exp } , the f7(x)

can be rewritten as:

¥

apic ZZZ( )’“*"(Mj[y,jx(ﬂ(aH2)_7+j]exp[/17x—k0(e“—1)}

L )\J

Using power series expansion for (exp[ﬁyx - O'k(e'” - l)}) , we have:
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| i=0 j=0k,1=0 l J
a

(- B(‘ﬁﬂ“) S5 (7))

. [ﬂ(m' by jj [4rx—ko(e" —1)]
k I

when we expand the term [l}/x - ko-(e“ - 1)}1

4

ron | B ()

a
. . m I=m
y (ﬂ (e +Z)_y+jj (k) I(EM) (e 1)

Expand the term (e“ -~ l)m and using power series expansion of ¢**"™")

A LS - & i+ j+k+l+m=s+q | 1
P2 =2 | $T TS S (- ")
B(’n_,’_lj i=0 j=0k,/=0m=0s,q=0 J
(04

k 1!

x(ﬁ (ai+y)=y+ Jj(':j(ffk)m (A) ") " =) e

Hence, the Rényi entropy is given by

ny y o 1 0 l+gq-m+1
1R<7>=<1—y)llog{zz SY Yo —} 9

i,j,k,l,m,s,q
=0 j=0k ,I=0m=0s.,g=0 [+g-—m+1

when

(| ](T][ﬁ(“’”) ”’j[ )@Y (@ @ 2 () sy

i \J k
.

i,jk,l,m,s,q = 1 y
l!q!(B(,n +1D
o

7. Reliability Measures of GWE-G

Here, we derive the expression for the mean and strong mean inactivity time

functions, mean of residual lifetime of the GWE-G model.

7.1. Mean Residual Time

One of the well known properties of the lifetime distribution is mean residual
lifetime (MRL). For the GWE-G distribution, it can be written as

by using Equation (17) the MRL can be written as:
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Z. (1-m)

Z, OZ, oZk!ozmo tjk//l( )
z, oz, ()Zkl ozm 0 tjklm( i m))

t>0. (30)

7.2. Mean Inactivity and Strong Mean Inactivity Time

The mean inactivity time (MIT) and strong mean inactivity time (SMIT) func-
tions are significant to describe the time which had elapsed since the failure in
many applications. Many properties and applications of MIT and SMIT func-
tions can be found in Kayid and Ahmad [19], and Kayid and Izadkhah [20]. Let
X be a lifetime random variable with CDF, F (). Then the (MIT) and (SMIT)

are defined as, respectively:
1
Er (1) = —jo F(x)dx
and

Sy ()= j 2xF (x)dx

by using the expansion form of CDF that given in Equation (16) and after some
simple calculations, we obtain the MIT of GWE-G distribution as:

n 0 k
zl oka, 021 optjklm
éM[T
zl Ozmkj 021 ()pz/klm

Similarly, we obtain the SMIT of the GWE-G distribution as:

tm+2

Zz OZmAJOZI Opljklm +2
4
SMIT —
Zl Oka] OZZ Opljklm

We observed from Table 1 and Table 2 that the MIT and SMIT are decreas-
ing for increasing values of o and f. Also from Table 3 the MIT and SMIT

are increasing for increasing values of 1.

tm+l

mtl, o (31)

t>0. (32)

8. Estimation and Inference

In this section, the ML method is considered to estimate the parameters of
GWE-G (x,a,f,1,0,n) distribution. Let (XI,XQ,---,Xm) be a random sample
with size m from the GWE-G with PDF and CDF given, respectively, by Equa-
tion (8) and Equation (9). Also, we assume that ® = (a,ﬁ,ﬂ,G)T is the (r*l)
unknown parameter vectors. Based on the Equation (8), the log-likelihood func-

tion is defined by:
1(©)=1(x,,%,,+,x, |©) = logL, (x)

where,

m

L,(x)=11/(x.©)

i=1
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Table 1. MIT and SMIT of GWE-G distribution at #= 8 and n= 2.

a p=251=04,0=15 MIT SMIT
0.01 7.29476 63.3085
0.8 6.9773 62.716
0.5 6.72204 62.0715

5 6.57676 61.6221

7 6.517 61.4162

Table 2. MIT and SMIT of GWE-G distribution at #= 8 and n= 3.

Y] a=351=04,0=25 MIT SMIT
0.05 7.99905 63.9999
0.7 7.72049 63.8527

2 7.26157 63.3189
3.8 6.92267 62.696

5 6.7765 62.3633

Table 3. MIT and SMIT of GWE-G distribution at #= 8.

n a=6,=03,1=050=1 MIT SMIT

1 7.66701 63.6709
2 7.74102 63.7975
3 7.78211 63.8555
4 7.80898 63.8883
5 7.82824 63.9094

is the likelihood function. We can derive the likelihood function of GWE-G dis-

tribution as:

L, (x) = (QL/I)’”I&[[I _ A(xi):H:Aﬂfl (xi )][1 _ gP (xi ):|” e
B {l,n + 1} !
a
thus, the log-likelihood function of GWE-G distribution is obtained as:

f(@) =mloga +mlog B+ mlog A +mlogo + mo

m

—oSexpt 4 (f-1)Y logA(x,)+ A3 x, (33)
i=1 i=1 i=1

+an::10g[l - Aaﬂ(xl_)]—mlog[BB,n + 1D

The first derivatives of Equation (33) with respectto «,f,4 and o respec-
tively is given by:

aa@):z_nﬁiwiwﬁ_W«»&mHH (34

da « S 1-47(x,) a’
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o4(O) m & A% (x,)log A(x,)

)7 1 N— 2 )P4
BB +; og A(x;) na; -7 (x,) (35)
(%)
G MR Colbs) I (GO
. —m+O_ ge +(p 1); A0
’ (36)
(2 = 1)1 4(x,)] 47 (x,)
_naﬁg;, 1— 4% (x )
_ Ax) _
o((®) _m__ < xiei(xi) +(ﬂ_1)io-x" exp[lxi O—(e I)J
o4 A i=0 i=0 A(xi) (37)
m w X, A7 (x;)exp /Ixi—a(eﬂ(x")—l)
+ ;}x,. - naﬂo-; — E“ﬁ o) ]
where,
() _ dm+1 ) _ dml—v(a) _ dm (0)
l// (a) dam+l Ogr(a) damr(a) dam l// (a)

is the polygamma function of order m and it is defined by (m + 1)”1 derivative of
'(a)

F(a) is

the logarithm of the gamma function, as « particular case, ' (a)=

called digamma function.

Equate the Equations (34)-(37) to zero and solving them simultaneously yield
the maximum likelihood estimators (MLEs) of GWE-G distribution parameters.
Clearly, these equations are not in explicit form, the solutions can be found by
using a numerical method such as the Newton-Raphson procedure to obtain the
MLEs of the parameters «,f,4 and o.

To obtain the asymptotic confidence intervals (CIs) for the parameters of the
GWE-G distribution, the 4x4 [,(0®)=1,(a,f,4,0) is required. Under cer-
tain regularity conditions, the MLEs asymptotically have (for large samples) a
multivariate normal distribution with mean vector 0= (0,0,0,0)T and va-
riance-covariance matrix, which is given by the inverse of Fisher information
matrix: I,;l(é) = I;(d, /;’,):,6') for more details about asymptotic confidence
intervals. The /,(©®) depends on ©, the observed Fisher information matrix
I, (@) may be used instead of the /,(®) in the estimation of the variance of
MLEs. The 4x4 observed information matrix, 7, (@) =1, (0?,,5’,}:,6-) is:

1, I

1,(6)=- Toa g Ay Ay
Ila [ﬁﬁ 1’” 1'10-

I Ia/l [afr a=a,p=p,A=1,0=6
0% log/
06,00

i

where, [,(0)=E { J Regrettably, the accurate mathematical expres-

sions for the above expectation are very hard to obtain. Therefore, the observed
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d*log/
06,00,

Fisher information matrix is given by [, = which is obtained by drop-

ping the expectation on operation E.
The elements of the 7 (@) are given by the following equations:

(&) vy
vi—| w|—+n+l
_m_n a)__\&

aa 2 3

(24 (24 (24 (24

+2{W0(Lj_wo(g+nHﬂ_nﬁziA“ﬂ(xJ(logA(?))z

« = (I_Aaﬁ (x,.))

“m e AP (x)(logA(x,))
Iﬁﬂ =—>-na 3
B 21: (1-47(x,))
Lo aff A7 (xl.)(logA()c,.))2 . A7 (x;)log A(x;,)
ly=15= {; (I—A"‘ﬂ (xi))z 1— 4 (x))

(1 —e™ )A“ﬂ’l (x, )exp[(l —e )a}[l — A (x,)+ aflog A(x, )]
(1-47 (x,))
ﬂi ox, A7 (x,)exp[(l et )o- + lxi][l — A7 (x,)+ aﬁlogA(xl.)]

i=1 (I—Aaﬁ (xl.))z

Io’a :[aa' :nﬂi
i=l1

iax,.A“lH (xi)exp[(l — e )0' + ﬂxi][l — A7 (x,)+ aﬂlogA(x,.)]

5 (1- 4% (x))

i (1 —e™ )A"ﬂ’l(x,.)exp[(l —eM )O':H:I — A (x,)+ aflog A(x, )]
i=1 (1 — A4 ()Ci))2

x7 (1 —oe™ )exp[(l —ei )O' + /bc,}A””H (x,)
1-47 (x,)

1, =—%—aixfe“" —naﬂai{
i=1 i=1
o(af-1)x; exp[Z(l —e* )0'+ 2/1xi]Aaﬂ'2 (x,)
1- 4% (x,)
afox’ exp [2(1 —e* )0' +22x, } A2 (x, )}

(147 (x,))

+

+
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+(/3_1)§

A(x,)

o’x; exp[Z(l —eh )o- + ZJxI}]

{axf (1 — et )exp [(1 —eM )O' + /1x,}

—naffy.

) +(ﬁ—1)i}[m€ exp[ o-+/lxllfzx1 +xe —A(x,)xe™
ox, exp[(l—e“‘ )o-+ﬁx ]( [1 A(x }
A (x,)
m [xe“"A“’B (x,)—xe*" 47 (x,) aﬁA”ﬂ "(x,)—afA” (x,)— A7 (xl.)J
- 1 A“/’( )

. aﬁ(l—eh")[AZW(XZ-)—AM'B*] (xl)]]

(1- 47 (x,))

1, = ;_’?_ (B~ 1)i(eui ) exp[(l < )GJ

i=1 A()Ci)2
- naﬁiz:l:(e“’ - 1)2 exp[(l —e™i )U:|

y af A (x,) - afA” (x,) - A7 (x,)
1- A% (x,)

. af A (x,)— a4 (x,)
(1-47 (x,))
The approximate (1—5)100% ClIs of the parameters of GWE-G («, 8,4,0)

are respectively, given by: & £ Z 5 2\/7 ﬂ +Z MW and

A+Z J—AY O'JrZﬁ/2 6) where, , V(/)’), V(ﬂ:) and 7 (6)
are the variances of & ﬁ yi and 6 which are given by the diagonal elements
of I;l(@)) =I' (&,B,i,é‘) and Z;, is the upper ( 8/2 ) percentile of the
standard normal distribution.

5/2

9. Real Data Application

In this section, we illustrate an application of the GWE-G distribution to the to-
tal milk production in the first birth of 107 cows from SINDI race. These cows
are property of the original data is not in the interval (0, 1), and it was necessary
to make Carnatiba farm which belongs to the Agropecudria Manoel Dantas Ltda
(AMDA), located in Taperoa City, Paraiba (Brazil). a transformation given by
X, = [y,. —min(y,.)]/[max(y,)—min(y,.)] , for i=1,---,107. These data are pre-
sented in Table 4 and the values of y, are given in Table 3.1 of Brito ([21], p.
46). Also, Descriptive statistics of these data are tabulated in Table 5.
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Table 4. Proportion of total milk production.

0.4365 0.4260 0.5140 0.6907 0.7471 0.2605 0.6196 0.8781 0.4990  0.6058

0.6891 0.5770 0.5394 0.1479 0.2356  0.6012  0.1525 0.5483  0.6927 0.7261

0.3323  0.0671 0.2361 0.4800 0.5707 0.7131  0.5853 0.6768  0.5350  0.4151

0.6789 0.4576  0.3259  0.2303 0.7687 0.4371 0.3383 0.6114 0.3480  0.4564

0.7804 0.3406  0.4823 0.5912 0.5744 0.5481 0.1131 0.7290 0.0168  0.5529

0.4530 0.3891 0.4752 03134 0.3175 0.1167 0.6750 0.5113  0.5447 0.4143

0.5627  0.5150 0.0776  0.3945 0.4553 0.4470 0.5285 0.5232 0.6465 0.0650

0.8492  0.8147 0.3627 0.3906 0.4438 0.4612 0.3188 0.2160 0.6707  0.6220

0.5629 0.4675 0.6844 0.3413 0.4332 0.0854 0.3821 0.4694 0.3635 0.4111

0.5349 0.3751 0.1546  0.4517 0.2681 0.4049 0.5553 0.5878 0.4741  0.3598

0.7629  0.5941 0.6174 0.6860 0.0609 0.6488  0.2747

Table 5. Descriptive statistics for the real data.

Measure Value Measure Value

n 107 Minimum 0.0168
Maximum 0.8781 Mean 0.468851

Q 0.348 Qs 0.6012
Median 0.4741 Mean Deviation 0.152078
variance 0.0368625 SD 0.191996
Kurtosis 2.68612 Skewness —-0.335289

We apply the values of negative log likelihood function (-LOG), Kolmogo-
rov-Smirnov (K-S), P-value of (K-S), Androson-Darling (A"), Cramér-Von Mis-
es (W") and Watson statistics to verify which distribution better fits these data.
The model selection was carried out using the AIC (Akaike information crite-
rion), the BIC (Bayesian information criterion), the CAIC (consistent Akaike
information criterion), Second Order of Akaike Information Criterion (AICc)

and Hannan-Quinn Information Criterion (HQC):
AIC = -2 x z(é) +2k

2k (k+1)

AIC, = AIC +
n—-k-1

BIC = -2x1(8) +k xlog(n)

and

HQIC = -2 x z(é) +2klog[ log(n)]

where, l(é) denotes the log likelihood function evaluated at the maximum li-

kelihood estimates, k is the number of parameters and m is the sample size. The
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Estimated Density

MLESs, AIC, BIC, AICc and HQIC for the parameters of WE-G(a,f,4,0,n=1),
TWE-G(a,B,4,0,n=2), GWE-G(a,f,4,0,n=6) and
GWE—G((Z, B, A,0,n= 7) are given in Table 6. Table 7 provides the values of
negative log likelihood function (-LOG), Kolmogorov-Smirnov (K-S), P-value of
(K-S), Androson-Darling (A"), Cramér-Von Mises (W') and Watson statistics.

It is evident from Table 6, Table 7 that, the GWE-G when (22 = 7) distribution
has the lowest statistics among all fitted model. Hence, this distribution can be

chosen as the best model for fitting this data set.

Figure 3(a): the plots of estimated density function of the real data set. Figure
3(b): the plots of empirical distribution and estimated CDF for the real data set.

Table 6. MLEs, AIC, BIC, HQIC, and AIC, for data set.

2* Model MLE estimate Statistics
& B p) é AIC BIC  HQIC  4IC,
WE-G (n=1) 10.1633 1.22375 3.82133 0.139725 -49.411 -38.7198 -45.077 -41.0189
TWE-G (n=2) 1.45782 1.05258 4.60484 0.036615 -50.286 —39.595 -45.952 -41.8941
GWE-G (n=6) 0.01618 1.42704 8.39064 0.000203 -50.337 -39.6458 -46.003 —49.9449
GWE-G (n=7) 0.07822 1.25358 8.69878 0.000113 -50.346 -39.655 -46.012 -49.9541

Table 7. The statistics -LOG, K-S, WT, A" and W~ for data set.

model K-S P-value A’ w’ WT -LOG
WE-G (n=1) 0.0591377 0.848387 0.327242 0.132836 0.132358 —28.7055
TWE-G (n=2) 0.0508221 0.945088 0.237994 0.117374 0.117362 —29.1431
GWE-G (n=6) 0.048713 0.961402 0.225738 0.114653 0.114609 —-29.1685
GWE-G (n=7) 0.047872 0.966937 0.220327 0.113465 0.113409 —-29.1732
-------- WE-G(n=1)
20k imimee TWE-G(n=2) |
----- GWE-G(n=6)
— GWE-G(n=7)
15f i
1.0f ,
05F \ :
0.0t ! : : ‘ §
0.0 0.2 04 06 08
X
(a)
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Figure 3. (a) Estimated density for real data set; (b) Estimated CDF for real data set.

10. Conclusion

In this paper, we discuss a new extension version of the Gompertz distribution
generated by integral transform of the PDF of the generalized weighted expo-
nential distribution. Statistical properties of the GWE-G are viewed. Maximum
likelihood estimators of the GWE-G parameters are obtained. Moreover, the
new model with its sub-models is fitted to real data set and it is shown that this

model has a better performance among the compared distributions.
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