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Abstract 
The energy levels of a hydrogen atom, derived by Bohr, are known to be ap-
proximations. This is because the classical quantum theory of Bohr does not 
take the theory of relativity into account. In this paper, the kinetic energy and 
momentum of an electron in a hydrogen atom are treated relativistically. A 
clearer argument is developed while also referring to papers published in the 
past. The energy levels of a hydrogen atom predicted by this paper almost 
match the theoretical values of Bohr. It is difficult to experimentally distin-
guish the two. However, this paper predicts the existence of an n = 0 energy 
level that cannot be predicted even with Dirac’s relativistic quantum me-
chanics. The only quantum number treated in this paper is n. This point falls 
far short of a finished quantum mechanics. However, even in discussion at 
the level of this paper, it can be concluded that quantum mechanics is an in-
complete theory. 
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1. Introduction 

Quantum mechanics is a physical theory representative of the 20th century, to-
gether with Einstein’s theory of relativity. Einstein devised various thought ex-
periments, such as the EPR paradox, and thereby attempted to demonstrate the 
incompleteness of quantum mechanics. Bohr, however, defended quantum me-
chanics by fending off all of Einstein’s challenges. At present, there is no one ob-
jecting to quantum mechanics among physicists regarded as orthodox. The be-
havior of matter in the natural world is different than Einstein imagined. Eins-
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tein believed that things like non-local phenomena do not exist in the natural 
world. 

However, phenomena which violate Bell’s theorem exist in the nature. In the 
beginning, violations of Bell’s theorem were thought to signify the instantaneous 
transmission of information. However, today it is known that violations of Bell’s 
theorem are due to quantum entanglement.  

Bohr fended off Einstein’s challenges, but that does not mean the complete-
ness of quantum mechanics has been shown. Even if a theory can be regarded as 
perfect and faultless, its authority will be lost with even a single discrepancy. 

Einstein’s special theory of relativity is a theory relating to physical quantities 
possessed by nature (reality) which exists with no relation to human beings. In 
the micro world, in contrast, the state of an object is changed by observation. 
Observed physical quantities are the values of states after a change due to obser-
vation. Quantum mechanics is not a theory which predicts the values of physical 
quantities possessed by reality prior to observation. 

Quantum mechanics is a theory for finding the mathematical regularities be-
tween observed physical quantities. Einstein had doubts about this theoretical 
structure of quantum mechanics, typified by Heisenberg’s matrix mechanics.  

This paper discusses the relativistic kinetic energy of an electron in a hydro-
gen atom. 

Einstein’s energy-momentum relationship holds for isolated systems in free 
space. There is another relationship applicable to an electron in a hydrogen 
atom, where potential energy is present. Using the newly derived relationship, it 
becomes possible to discuss relativistic kinetic energy of an electron in a hydro-
gen atom. In this paper, an elementary discussion is provided using only the 
principal quantum number n. 

Incidentally, in classical mechanics, the kinetic energy K of a mass point is 
given by the following formula. 

21 .
2

K mv=                              (1) 

Here, m is the mass of the mass point. In classical mechanics, the mass of a 
mass point does not depend on the velocity of the mass point, and thus there is 
no distinction between rest mass m0 and relativistic mass m. However, the two 
must be distinguished when handling mass relativistically. To prevent confusion 
in this paper, m in Equation (1) is set to m0 beforehand. 

Also, if the classical kinetic energy in Equation (1) is expressed as Kcl, then 
Equation (1) can be written as follows (The “cl” in Kcl is an abbreviation for “clas-
sical”). 

2
cl 0

1 .
2

K m v=                           (2) 

In addition, Kcl can also be written also follows using classical momentum pcl.  
2
cl

cl cl 0
0

, .
2
p

K p m v
m

=     =                      (3) 
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The next section discusses relativistic kinetic energy Kre and momentum pre. 
(The “re” in Kre and pre stands for “relativistic”). 

2. Relativistic Kinetic Energy and Momentum 

Among the formulas typical of STR, there is the following energy-momentum 
relationship.  

( ) ( )2 22 2 2 2
0 .m c p c mc+ =                        (4) 

2
0m c  is rest mass energy, and 2mc  is relativistic energy. Also, p is relativistic 

momentum (The significance of calling p “relativistic” is described later). 
Now, Equation (4) can be rewritten as follows. 

( ) ( )222
re 0p mc m c= −                          (5a) 

( )( )2 2
0 0 .m m mc m c= + −                        (5b) 

A. Sommerfeld once defined kinetic energy as the difference between the relati-
vistic energy 2mc  and rest mass energy 2

0m c  of an object [1]. That is, 
2 2

re 0 .K mc m c= −                            (6) 

If this definition is used, then Equation (5b) becomes as follows. 

( )2
re 0 re .p m m K= +                           (7) 

Therefore, 
2
re

re
0

.
p

K
m m

=
+

                            (8) 

Equation (8) is the formula for relativistic kinetic energy. 
Next, let’s consider the significance of pre in Equation (8). According to STR, 

( )
0

1 22 2
.

1

m
m

v c
=

−
                          (9) 

If Equation (9) is substituted into Equation (5a), the following equation is ob-
tained. 

( )
( )

2

22 0
re 01 22 2

.
1

m c
p m c

v c

 
 = −
 −  

                    (10) 

Rearranging, we obtain 

( )22
re 0 2 2

1 1
1

p m c
v c

 
= − − 

                     (11a) 

( )
2

2
0 2 2

cm v
c v

 
=  − 

                        (11b) 

( )
2

20
2 21

m
v

v c
=

−
                           (11c) 
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2 2 .m v=                               (11d) 

From this, 

re .p mv=                               (12) 

In the two formulas for momentum (3) and (12), caution is necessary because 
the masses in the formulas are different. 

Incidentally, there is no concept of relativistic mass in classical mechanics. If 
we assume 0m m= , then the formula for relativistic kinetic energy matches the 
formula for kinetic energy in classical mechanics. That is, 

2 2 2 22 2
re 0 cl

re cl
0 0 0 02 2
p m v pm vK K

m m m m m m
= =      →      = = .

+ +
          (13) 

3. Comparison of the Energy Levels of Bohr and This Paper 

According to the virial theorem, the following relation holds between K and V: 

1
2

K V= −  .                           (14) 

The average time of K is equal to −1/2 the time average of V. Also, the sum of 
the time average K and the time average of the total mechanical energy E of the 
entire system becomes 0. That is, 

0K E+ =  .                           (15) 

Next, if Equation (14) and Equation (15) are combined, the result is as follows:  

1
2

E K V= − =  .                        (16) 

Bohr thought the following quantum condition was necessary to find the energy 
levels of the hydrogen atom.       

e 2 2 .n nm v r n⋅ π = π                          (17) 

Here,  

e C .
2 2

m ch λ
= =

π π
                         (18) 

Next, when er α  is found,  
2

e 0 C
2 2

0 e

4
.

24
r ce

m c e
ε λ

α ε
π

= =
ππ



                  (19) 

Here, er  is the classical electron radius and α is the fine structure constant. 
Each of these can be written as follows. 

2

e 2
0 e

.
4

er
m cε

=
π

                        (20) 

2

0

.
4

e
c

α
ε

=
π 

                          (21) 

Also, the radius of the electron orbital derived by Bohr can be rewritten as fol-
lows.  
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22 2
2 2 2 20 e C

0 2 2 2 2
0 e

4
4 .

24n
c rer n n n n

me m c e
ε λ

ε
αε α

π = π = = =  ππ  


      (22) 

If the value of nr  in Equation (22) is substituted into Equation (16), 

2C
e e C .nm v n m c n

λ
λ

α
=                         (23) 

Using this,   

.nv
c n

α
=                               (24) 

Equation (24) is the core part of Bohr’s quantum condition (17) [2]. This condi-
tion is non-relativistically correct, but relativistically it is incorrect. However, 
Equation (24) is also valid when deriving a relativistic formula. 

When both sides of Equation (24) are squared, and then multiplied by e 2m , 
2 2

e e
2 2

1 1 .
2 2

nm v m
c n

α
=                          (25) 

Hence,  
22 2 4

2 e e
BO, cl, e 2 2 2

0

1 1 1 1 , 1,2, .
2 2 42n n n

m c m e
E K m v n

n n
α

ε
 

= − = − = − = − ⋅     = ⋅⋅ ⋅ π  

(26) 

Bohr thought that the kinetic energy of an electron constituting an atom was 
( ) 2

e1 2 nm v . However, to derive more precise energy levels, the relativistic kinetic 
energy of the electron must be treated as a problem. 

The author has previously derived the following relationships applicable to the 
electron constituting a hydrogen atom [3]. 

( ) ( )2 22 2 2 2
e .n nm c p c m c+ =                     (27) 

Here, mn is the mass of an electron in a state where the principal quantum 
number is n. 

Also, the relativistic kinetic energy re,nK  of an electron in a hydrogen atom 
can be defined as follows. 

2 2
re, 0 .n nK m c m c= −                         (28) 

Therefore, when Equation (16) is taken into account, the energy levels SU,nE  
of a hydrogen atom are as follows. 

2 2
SU, re, 0 .n n nE K m c m c= − = −                    (29) 

Here, SU,nE  is the energy levels of a hydrogen atom predicted by Suto. 
Incidentally, it is known that the following relationship can be derived from 

Equation (4). 
1 22

0 21 .vm m
c

−
 

= − 
 

                        (30) 

If the method which derived Equation (30) is also applied to Equation (27), 
the following relationship can be derived. 
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1 22

e 21 .n
n

v
m m

c

−
 

= + 
 

                         (31) 

However, the discreteness of the quantum world is not incorporated into Equ-
ation (31). Thus, Equation (24) is applied, and Equation (31) is changed to the 
following quantum theoretic formula. 

1 22

e 21 .nm m
n
α

−
 

= + 
 

                         (32) 

If Equation (32) is substituted into Equation (29), the following formula is ob-
tained. 

1 22
2

SU, e 21 1nE m c
n
α

−  
 = + − 
   

                    (33a) 

1 22
2

e 2 2 1 , 0,1, 2,nm c n
n α

  
 = −    = ⋅⋅ ⋅ . +   

              (33b) 

what should be noted here is that Equation (33) has an n = 0 energy level. This 
state is also not included in the solutions of the relativistic wave equation of Di-
rac. 

The existence of an n = 0 energy level in the hydrogen atom has already been 
predicted in a past paper [4]. However, in References [4], Equation (33) was de-
rived by assuming Equation (24). In the present case, success has been achieved 
in logically deriving Equation (24). 

Here, if the part in parentheses in Equation (33a) is developed as a Taylor se-
ries, 

2 4 6
2

SU, e 2 4 6

3 51 1
2 8 16nE m c

n n n
α α α  

= − + − + ⋅⋅⋅ −  
   

           (34a) 

2 2
e
2 .

2
m c
n

α
≈ −                           (34b) 

From this, it is evident that Equation (26) derived by Bohr is an approximation 
of Equation (33). 

Next, the following table summarizes the energies of a hydrogen atom ob-
tained from Equation (26) and Equation (33) (Table 1). 

The following values of CODATA were used when calculating energies. 
37.2973525693 10 .α −= ×  

8 12.99792458 10 m s .c −= × ⋅  
31

e 9.1093837015 10 kg.m −= ×  

4. Conclusions 

The following table summarizes formulas of physical quantities derived from 
classical theory and relativistic arguments (Table 2). 
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Table 1. Comparison of the energies of a hydrogen atom predicted by Bohr’s classical 
quantum theory and this paper. 

 Bohr’s Energy Levels This Paper 

n = 0 - −0.511 MeV ( )2
em c−  

1 −13.60569 eV −13.60515 eV 

2 −3.40142 eV −3.40139 eV 

3 −1.511744 eV −1.511737 eV 

 
Table 2. Classical formulas (Classical mechanics and classical quantum theory) and formulas derived in this paper for physical 
quantities. 

 Classical Formulas This Paper 

Kinetic Energy 

2
cl 0

1 .
2

K m v=  Equation (2) 

2
cl

cl
0

.
2
pK
m

=  Equation (3) 

2 2
re 0 .K mc m c= −  Equation (6) 

2
re

re
0

.pK
m m

=
+

 Equation (8) 

Momentum cl 0 .p m v=  Equation (3) re .p mv=  Equation (12) 

Energy Levels of  
a Hydrogen Atom 

BO, cl, .n nE K= −  Equation (26) 
2 2

e
BO, 2 , 1, 2, .

2n

m cE n
n

α
= − = ⋅⋅ ⋅  Equation (26) 

SU, re, .n nE K= −  Equation (29) 
1 22

2
SU, e 2 2 1 0,1,2,n

nE m c n
n α

  = −  , = ⋅ ⋅ ⋅ .  +   
 Equation (33b) 

 
The energies SU,nE  and BO,nE  approach each other, and their values are dif-

ficult to experimentally distinguish. However, the decisive difference between the 
two is the existence of an n = 0 energy level. This paper has discussed cases in-
cluding only the quantum number n. 

This point falls far short of a finished quantum mechanics. Finding more exact 
energy levels will require to solve the relativistic wave equation derived by the 
author [5] [6]. 

However, even in discussion at the level of this paper, it can be concluded that 
quantum mechanics is an incomplete theory. 
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