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Abstract 
Allometric biomass models are efficient tools to estimate biomass of trees and 
forest stands in a non-destructive way. Development of species-specific allo-
metric biomass models requires extensive fieldwork and time. Our study 
aimed to generate species-specific allometric biomass models for the most 
common fuelwood and timber species of Bangladesh. We also wanted to eva-
luate the performances of our models relative to the performances of regional 
and commonly used pan-tropical biomass models. We used semi-destructive 
method that incorporates tree-level volume, species-specific biomass expan-
sion factor (BEF), and wood density. We considered four base models, 1) Ln 
(biomass) = a + bLn (D); 2) Ln (biomass) = a + bLn (H); 3) Ln (Biomass) = a 
+ bLn (D^2H); 4) Ln (Biomass) = a + bLn (D) + cLn (H) to develop spe-
cies-specific best-fitted models for Total Above-Ground Biomass (TAGB) 
and stem biomass. The best-fitted model for each species was selected by the 
lowest value of Akaike Information Criterion (AIC), Residual Standard Error 
(RSE) and Root Mean Square Error (RMSE). The derived best-fitted models 
were then evaluated with respect to regional and pan-tropical models using a 
separate set of observed data. This evaluation was conducted by computing 
ME (Model Efficiency) and MPE (Model Prediction Error). The best-fitted 
allometric biomass models have shown higher model efficiency (0.85 to 0.99 
at scale 1) and the lowest model prediction error (−8.94% to 5.27%) com-
pared to the regional and pan-tropical models. All the examined regional and 
pan-tropical biomass models showed different magnitude of ME and MPE. 
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Some models showed higher level (>0.90 at scale 1) of ME compared to the 
best-fitted specific species biomass model.  
 

Keywords 
Allometry, Bangladesh, Biomass, Fuelwood, Timber, Pan-Tropical Model, 
Regional Common Model 

 

1. Introduction 

Bangladesh has 17.48% of forestland that ecologically can be classified into three 
types as tropical evergreen and semi-evergreen forest, tropical moist deciduous 
forest and mangrove forest (FD, 2017). This country has 163.05 million of pop-
ulation with a density of 1116 person/km2 that ranks 10th position in the world 
(World Population Review, 2019). This large population imposes immense 
pressure on natural resources of this country (Reza & Sharmin, 2016) that also 
influences the forestry sector through deforestation and degradation of forest-
lands (FRA, 2000; World Bank, 2016). Recently, Bangladesh has initiated 
REDD+ activities to reduce emissions of greenhouse gases from deforestation 
and degradation, conservation and enhancement of forest-carbon stocks, and 
sustainable management of forests (FD, 2019). Therefore, success of REDD+ ac-
tivities depends on authenticated data and information on the existing forest 
areas and their conditions. 

Forest inventory is an integral part of forest management as it provides data 
and information on trees and forest resources. A total of 19 forest inventories 
were conducted in Bangladesh by Bangladesh Forest Department since 1960. 
Overtime, the objectives of forest inventories have been shifted from a focus on 
volume for timber resources to biomass for carbon-related values to meet the 
demand of 21st century (FD, 2017). Forest can act as a sink and source of carbon 
(Canadian Forest Service, 2007). Biomass estimation is an important tool for es-
timating stock and sequestration of carbon in a forested ecosystem (Golley et al., 
1975; Vashum & Jayakumar, 2012; Mahmood, 2014). Biomass of trees and forest 
can be estimated by following destructive and non-destructive methods (So-
mogyi et al., 2007; Picard et al., 2012; Mahmood et al., 2015; Wakawa, 2016; 
Mahmood et al., 2017). Allometric biomass models are frequently used to esti-
mate tree and forest biomass (Somogyi et al., 2007). Destructive, semi-destructive 
and non-destructive methods are followed to derive species-specific, regional 
and pan-tropical allometric biomass models (Ketterings et al., 2001; Chave et al., 
2005, 2014; Basuki et al., 2009). Destructive method of biomass model develop-
ment is more accurate compared to others, but this method is usually discou-
raged from violating regional and/or national forest management policies (Ket-
terings et al., 2001).  

The multi-species regional and pan-tropical biomass models are commonly 
used for large-scale biomass estimation (Clark & Kellner, 2012; Mahmood et al., 
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2019a, 2019b, 2019c). The first nationwide forest inventory in Bangladesh was 
conducted in 2007 where pan-tropical biomass model (Above-ground biomass 
(tons) = V * W * BEF, where V = volume over bark tons ha−1, W = wood density 
tons m−3 and BEF= biomass expansion factor) of Brown & Lugo (1992) was used 
to estimate the biomass stock in forest areas. This estimation included a com-
mon wood density value (0.57 t∙m−3) and a fixed biomass expansion factor (6) 
(FD, 2007) which may result in uncertainty in biomass estimation by consider-
ing a lower wood density and a higher fixed value of biomass expansion factor 
(Penman et al., 2003). During the year 2009, pan-tropical model of Chave et al. 
(2005) was also used to estimate the biomass and carbon stock of the Sundar-
bans of Bangladesh (Rahman et al., 2015). The used pan-tropical model is capa-
ble to generalize poorly with its polynomial function that results in implausible 
relationship among biomass and diameter of trees (Sileshi, 2014). In other ways, 
pan-tropical biomass model of Brown et al. (1989) and Chave et al. (2005) were 
commonly used to estimate the biomass and carbon stock in plantation and 
natural forests of Bangladesh like Miah et al. (2009), Ullah & Al-Amin (2012), 
Rahman et al. (2015). Numerous studies demonstrated that pan-tropical models 
generate higher bias in biomass estimation compared to locally developed mod-
els (Vieira et al., 2008; Basuki et al., 2009; Kenzo et al., 2009; Ngomanda et al., 
2014; Maulana et al., 2016). Therefore, it is recommended to check the bias/ 
deviation in biomass estimation using the multi-species regional and pan-tropical 
models for a particular species and forests (Alvarez et al., 2012). Simultaneously, 
species-specific allometric biomass model may significantly reduce bias in bio-
mass estimation compared to the multi-species regional and commonly used 
pan-tropical models because they may not able to capture the variability of tree 
properties (height and diameter at breast height relationship, wood density) 
caused by ecological and management intervention (Nam et al., 2016; Maulana 
et al., 2016; Mahmood et al., 2019c). Therefore, this study aimed i) to generate 
species-specific allometric biomass models for the most common fuelwood and 
timber species of Bangladesh and ii) to evaluate the performances of the derived 
best-fitted species-specific models in relation to the performances of mul-
ti-species regional and commonly used pan-tropical biomass models. 

2. Materials and Methods 
2.1. Description of the Study Area 

Sampled trees of this study were collected from the natural patches and planta-
tions of tropical wet evergreen and semi-evergreen forest, tropical moist deci-
duous forest of Bangladesh during 2018. Bangladesh lies between 20˚34' and 
26˚38' north latitude and 88˚01' and 92˚41' east longitude (Figure 1). The rain-
fall ranges from 1500 mm in the northwest to 5000 mm in the northeast. Mean 
monthly maximum temperature is 24˚C to 37˚C, while mean monthly relative 
humidity found to vary from 63% to 83%. Soil texture is silty loam to clay loam 
and pH range is 5.5 to 8.3 (Banglapedia, 2014). Albizia procera (Roxb.) Benth.,  
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Figure 1. Location of major forest types of Bangladesh. 

 
Albizia richardiana (Voigt) King & Prain, Dipterocarpus turbinatus C. F. Gaertn., 
Gmelina arborea Roxb., Lagerstroemia speciosa (L.) Pers., Samanea saman F. 
Muell., Swietenia macrophylla King, Syzygium grande (Wight) Walp. Tectona 
grandis L. f. is the most common timber species found in both natural patches 
and plantations. While, Acacia auriculiformis A. Cunn. ex Benth., Acacia man-
gium Willd., Dalbergia sissoo Roxb., Eucalyptus camaldulensis Dehnh., Senna 
siamea (Lam.) Irwin et Barneby., are the commonest fuelwood species of Ban-
gladesh that mostly restricted in plantation (Das & Alam, 2001). 

2.2. Biomass Expansion Factor (BEF) 
2.2.1. Sampling of Trees for Biomass Expansion Factor (BEF) 
Twenty individuals of each studied species, which yielded 280 sample trees, were 
felled from the natural patches and plantations of the study areas. The species 
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were identified using taxonomic key. The sample trees were selected based on 
subjective judgement to avoid specimens with broken top, hollow trunk, dam-
age caused by natural calamities or animals, and evidence of suppression or 
disease.  

2.2.2. Field Measurement and Laboratory Analysis 
Total height and DBH of the sampled tree were measured and felled at ground 
level. The felled trees were separated into leaves, small branches (diameter < 7 
cm), bigger branches (diameter > 7 cm) and stem. Species wise fresh weight of 
these components of individual sampled tree were measured and recorded in the 
field (Picard et al., 2012; Mahmood et al., 2019a, 2019b, 2019c). Ten sub samples 
(0.25 kg) of leaf, smaller branch, and ten disk of disk of bigger branches and 
stem) of individual species were taken randomly from the felled trees. These 
sub-samples were oven-dried at 105˚C until a constant weight to estimate the 
fresh to oven-dry weight conversion factor. The respective conversion factors 
were used to estimate the oven-dry weight of individual sampled trees (Mah-
mood et al., 2019a, 2019b, 2019c). Finally, biomass expansion factor (BEF) of in-
dividual sampled trees was calculated from the ratio of Total Above-ground 
Biomass (TAGB) and oven-dry stem biomass, and species-specific average BEF 
was derived for further use (Taeroe et al., 2015). 

Total aboveground biomassBEF
Oven-dry stem biomass

= . 

2.3. Allometric Model of Stem and Total Above-Ground (TAGB)  
Biomass 

2.3.1. Data Collection and Compilation 
This study used stem volume data of 2490 individuals of 14 most common tim-
ber and fuelwood species of Bangladesh that were collected from the natural 
patches and plantations of tropical wet evergreen and semi-evergreen forest and 
tropical moist deciduous forest. The mean value with ranges of DBH, H and W 
of the sampled tree species are presented in Table 1. Bangladesh Forest Research 
Institute collected the stem volume data from the natural patches and planta-
tions of tropical evergreen and semi-evergreen forest, tropical moist deciduous 
forest of Bangladesh. Stem biomass (kg) of individual sampled tree was esti-
mated from their stem volume (m3) and wood density (W) (kg∙m−3) value of the 
respective tree species as derived by Sattar et al. (1999). TAGB of individual trees 
was estimated from the stem biomass and species-specific mean BEF.  

2.3.2. Allometric Model Development and Evaluation 
The independent variables (D and H) and dependent variables (Stem biomass 
and TAGB) were transformed to Ln (natural logarithm) to improve the linearity 
and homoscedasticity. Tree volume data was collected in two different occasions. 
A total of 2490 sample trees (data set A) were selected to derive species-specific 
allometric biomass model. While, data set B contained 614 individual which was 
used to validate the derived best-fitted model and comparison with regional and  
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Table 1. List of studied species and their wood density, range of DBH and Height, sample 
number in data set A and B and mean biomass expansion factor. 

Species 
Wood 
density 
(kg∙m−3) 

Range of 
DBH (cm) 

Range of 
Height (m) 

Data 
set A 

Data 
set B 

Mean 
BEF ± SE 

Acacia auriculiformis 700 3.9 - 49.4 5.8 - 25.0 567 61 1.39 ± 0.04 

Acacia mangium 530 5.0 - 41.8 5.5 - 28.5 260 54 1.41 ± 0.01 

Albizia procera 730 6.9 - 70.0 4.5 - 22.0 57 28 1.51 ± 0.12 

Albizia richardiana 580 5.1 - 80.5 4.0 - 32.5 271 81 1.50 ± 0.08 

Dalbergia sissoo 740 6.8 - 39.3 5.5 - 19.5 56 22 1.31 ± 0.05 

Dipterocarpus turbinatus 619 5.5 - 51.0 5.0 - 26.0 170 44 1.47 ± 0.11 

Eucalyptus camaldulensis 721 4.5 - 51.2 8.0 - 30.5 264 60 1.35 ± 0.03 

Gmelina arborea 540 8.5 - 50.0 6.5 - 22.0 106 31 1.28 ± 0.03 

Lagerstroemia speciosa 595 9.5 - 56.3 6.5 - 27.0 257 54 1.49 ± 0.07 

Samanea saman 590 5.2 - 39.1 5.9 - 19.7 57 28 1.51 ± 0.14 

Senna siamea 660 7.8 - 73.2 6.0 - 25.0 148 51 1.63 ± 0.13 

Swietenia macrophylla 537 9.9 - 90.5 6.5 - 32.0 149 58 1.29 ± 0.03 

Syzygium grande 673 5.0 - 38.0 5.0 - 27.0 84 30 1.63 ± 0.14 

Tectona grandis 720 7.0 - 51.0 9.5 - 26.0 44 12 1.41 ± 0.11 

Note: BEF = Biomass Expansion Factor, SE = Standard error of mean. 

 
pan-tropical biomass models. We considered four Ln base models, 1) Ln (bio-
mass) = a + bLn (D); 2) Ln (biomass) = a + bLn (H); 3) Ln (Biomass) = a + bLn 
(D^2H); 4) Ln (Biomass) = a + bLn (D) + cLn (H) to develop species-specific 
allometric biomass models for TAGB and stem biomass according to (Picard et 
al., 2012). The best-fitted models were selected based on the lowest Akaike In-
formation Criterion (AIC), Residual Standard Error (RSE) and Root Mean 
Square Error (RMSE); and highest coefficient of determination (Adjusted R2) 
values (Sileshi, 2014; Mahmood et al., 2019a, 2019b, 2019c). Data were analyzed 
using R (3.2.3) statistical software. A correction factor (CF) was calculated for 
each equation to minimize the systematic bias during the back transformation to 
biomass value (Sprugel, 1983). The derived best-fitted TAGB models were com-
pared and evaluated with the multi-species regional and common pan-tropical 
models (Table 2) in terms of Model Efficiency (ME) and Model Prediction Error 
(MEP) (Mayer & Butler, 1993). 

3. Results 
3.1. Selection of Allometric Model 

Model 4 (Ln (biomass) = a + bLn (D) + Ln (H)) has appeared as best-fit TAGB 
and stem biomass allometric model for A. auriculiformis, A. procera, A. richar-
diana, E. camaldulensis, G. arborea, L. speciosa, S. saman, S. siamea and S. 
grande due to its lowest AIC, RSE and RMSE values. While, Model 3  
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Table 2. Multi-species regional and commonly used pan-tropical allometric biomass models. 

Source Allometric biomass model Type 

Mahmood et al., 2019a 
(Tropical moist deciduous forest) 

Ln (TAGB) = −2.460 + 2.171 Ln (D) + 0.367 Ln (H) + 0.161 Ln (W) 
Regional multi-species, 

Bangladesh 

Mahmood et al., 2019b 
(Tropical evergreen and semi-evergreen forest) 

Ln (TAGB) = −6.6937 + 0.809 Ln (D^2HW) 
Regional multi-species, 

Bangladesh 

Brown et al. (1989) (Moist) TAGB = exp (−2.4090 + 0.9522 Ln (D^2HW)) Pan-tropical 

Chave et al. (2005) TAGB = exp (−2.977 + Ln (D^2HW)) Pan-tropical 

Chave et al. (2014) TAGB = exp (−2.6986 + 0.976 Ln (D^2HW)) Pan-tropical 

Note: TAGB = Total aboveground biomass, D = Diameter at Breast Height, H = Total Height, W = Wood density. 

 
(Ln (biomass) = a + bLn (D^2H)) found to be best-fit TAGB and stem allome-
tric biomass model for A. mangium, D. sissoo, D. turbinatus, S. macrophylla and 
T. grandis considering the model selection criteria (Table 3 and Table 4).  

3.2. Model Evaluation and Comparison 

The model efficiency and model prediction error values of the best-fitted TAGB 
models of the studies species found to vary from 0.85 to 0.99 (at scale 1) and 
−8.94% to 5.27% respectively. Lower model efficiency and higher prediction er-
ror were observed for S. saman, S. macrophylla and A procera, while the highest 
model efficiency and lower prediction error were observed for A. mangium, E. 
camaldulensis and T. grandis (Table 5). 

The best-fitted TAGB model of all the studied species except A. procera, L. 
speciosa and S. saman showed higher performance in biomass estimation com-
pared to the regional and commonly used pan-tropical allometric models in re-
lation to model efficiency and model prediction error values. TAGB model of 
Chave et al. (2014) and Chave et al. (2005) have appeared as more efficient in 
biomass estimation of A. procera and L. speciosa respectively. While, TAGB 
models of Mahmood et al. (2019a) and Chave et al. (2014) can efficiently esti-
mate the biomass of S. saman compared to the derived model (Table 5). 

4. Discussion 

Alometric biomass models are important tools to estimate biomass of standing 
trees and stands (Golley et al., 1975; Basuki et al., 2009) and the accuracy in the 
estimation depends on model efficiency (Sileshi, 2014). Method of model 
development, involvement of independent variables and model selection criteria 
influence the efficiency of allometric biomass model (Sileshi, 2014; Picard et al., 
2012). Generally, wood density (W), Diameter at Breast Height (DBH) and total 
height (H) are considered as independent variables of allometric biomass models 
(Picard et al., 2012). Wood density of a species varies among the ecoregion 
(Zanne et al., 2009). This study considered DBH and H as independent variables. 
But, W was not included because the sample trees were collected from the same 
ecoregion that likely to have similar wood density for a particular species  
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Table 3. Species-specific best-fitted allometric biomass model for Total Above-Ground Biomass (TAGB). 

Species name Best-fitted allometric biomass model Adjusted R2 AIC RSE RMSE CF 

Acacia auriculiformis Ln (TAGB) = −2.459 + 1.869 Ln (D) + 0.800 Ln (H) 0.986 −760.515 0.123 0.123 1.007 

Acacia mangium Ln (TAGB) = −3.005 + 0.923 Ln (D^2H) 0.984 −276.327 0.141 0.141 1.010 

Albizia procera Ln (TAGB) = −1.984 + 1.911 Ln (D) + 0.572 Ln (H) 0.969 −13.870 0.205 0.205 1.021 

Albizia richardiana Ln (TAGB) = −2.111 + 1.832 Ln (D) + 0.648 Ln (H) 0.972 −62.744 0.214 0.214 1.023 

Dalbergia sissoo Ln (TAGB) = −2.608 + 0.905 Ln (D^2H) 0.985 −53.709 0.145 0.145 1.010 

Dipterocarpus turbinatus Ln (TAGB) = −2.525 + 0.897 Ln (D^2H) 0.974 −67.920 0.196 0.196 1.019 

Eucalyptus camaldulensis Ln (TAGB) = −2.663 + 1.915 Ln (D) + 0.832 Ln (H) 0.989 −349.155 0.124 0.124 1.008 

Gmelina arborea Ln (TAGB) = −2.421 + 1.585 Ln (D) + 1.011 Ln (H) 0.976 −102.663 0.146 0.146 1.011 

Lagerstroemia speciosa Ln (TAGB) = −2.909 + 1.976 Ln (D) + 0.829 Ln (H) 0.968 −199.884 0.162 0.150 1.013 

Samanea saman Ln (TAGB) = −2.461 + 1.933 Ln (D) + 0.660 Ln (H) 0.984 −24.594 0.167 0.167 1.014 

Senna siamea Ln (TAGB) = −2.597 + 1.835 Ln (D) + 0.951 Ln (H) 0.992 −289.357 0.090 0.090 1.004 

Swietenia macrophylla Ln (TAGB) = −2.302 + 0.894 Ln (D^2H) 0.974 −89.208 0.177 0.177 1.016 

Syzygium grande Ln (TAGB) = −2.713 + 1.529 Ln (D) + 1.324 Ln (H) 0.968 −7.211 0.225 0.225 1.026 

Tectona grandis Ln (TAGB) = −2.180 + 0.875 Ln (D^2H) 0.973 −25.420 0.173 0.173 1.015 

Note: AIC = Akaike Information Criterion, RSE = Residual Standard Error, RMSE = Root Mean Square Error, CF = Correction Factor. 

 
Table 4. Species-specific best-fitted allometric biomass model for Stem. 

Species name formula Adjusted R2 AIC RSE RMSE CF 

Acacia auriculiformis Ln (Stem) = −2.787 + 1.869 Ln (D) + 0.800 Ln (H) 0.985 −760.631 0.123 0.123 1.007 

Acacia mangium Ln (Stem) = −3.327 + 0.923 Ln (D^2H) 0.984 −276.356 0.141 0.141 1.010 

Albizia procera Ln (Stem) = −2.396 + 1.911 Ln (D) + 0.572 Ln (H) 0.969 −13.870 0.205 0.205 1.021 

Albizia richardiana Ln (Stem) = −2.532 + 1.832 Ln (D) + 0.648 Ln (H) 0.972 −62.742 0.214 0.214 1.023 

Dalbergia sissoo Ln (Stem) = −2.878 + 0.904 Ln (D^2H) 0.985 −53.709 0.145 0.145 1.011 

Dipterocarpus turbinatus Ln (Stem) = −2.911 + 0.897 Ln (D^2H) 0.974 −67.922 0.196 0.196 1.019 

Eucalyptus camaldulensis Ln (Stem) = −2.963 + 1.915 Ln (D) + 0.832 Ln (H) 0.989 −349.194 0.124 0.124 1.008 

Gmelina arborea Ln (Stem) = −2.668 + 1.585 Ln (D) + 1.011 Ln (H) 0.976 −102.663 0.146 0.146 1.011 

Lagerstroemia speciosa Ln (Stem) = −3.307 + 1.976 Ln (D) + 0.829 Ln (H) 0.968 −199.882 0.162 0.162 1.013 

Samanea saman Ln (Stem) = −2.873 + 1.933 Ln (D) + 0.660 Ln (H) 0.984 −24.594 0.167 0.167 1.014 

Senna siamea Ln (Stem) = −3.057 + 1.835 Ln (D) – 0.951 Ln (H) 0.992 −289.374 0.090 0.008 1.004 

Swietenia macrophylla Ln (Stem) = −2.556 + 0.894 Ln (D^2H) 0.974 −89.208 0.177 0.177 1.016 

Syzygium grande Ln (Stem) = −3.202 + 1.529 Ln (D) + 1.324 Ln (H) 0.968 −7.211 0.225 0.225 1.026 

Tectona grandis Ln (Stem) = −2.524 + 0.875 Ln (D^2H) 0.973 −25.420 0.173 0.173 1.015 

Note: AIC = Akaike Information Criterion, RSE = Residual Standard Error, RMSE = Root Mean Square Error, CF = Correction Factor. 
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Table 5. Comparison of species-specific best-fitted TAGB model with regional and commonly used pan-tropical allometric bio-
mass models. 

Species 

Best-fitted 
Mahmood et al. 

(2019a) 
Mahmood et al. 

(2019b) 
Brown et al. 

(1989) 
Chave et al. 

(2005) 
Chave et al. 

(2014) 

ME 
MPE 
(%) 

ME 
MPE 
(%) 

ME 
MPE 
(%) 

ME 
MPE 
(%) 

ME 
MPE 
(%) 

ME 
MPE 
(%) 

Acacia auriculiformis 0.95 2.62 0.89 −31.15 0.83 55.66 0.61 28.01 0.75 6.21 0.70 15.78 

Acacia mangium 0.99 0.12 0.93 −15.56 0.86 63.51 0.84 25.46 0.94 1.59 0.91 12.11 

Albizia procera 0.94 −8.94 0.82 −27.28 0.94 23.57 0.88 6.34 0.94 −10.86 0.93 −3.30 

Albizia richardiana 0.94 3.18 0.91 −9.83 0.74 44.05 0.51 30.97 0.71 11.83 0.64 20.20 

Dalbergia sissoo 0.96 −3.29 0.83 −17.59 0.91 53.72 0.83 31.73 0.94 10.36 0.90 19.75 

Dipterocarpus turbinatus 0.98 1.44 0.87 −23.32 0.90 39.40 0.84 13.83 0.93 −5.96 0.90 2.74 

Eucalyptus camaldulensis 0.99 −1.79 0.72 −38.68 0.93 49.10 0.84 27.21 0.90 6.60 0.89 15.64 

Gmelina arborea 0.96 2.00 0.90 0.28 0.10 52.10 0.15 30.07 0.63 8.67 0.45 18.10 

Lagerstroemia speciosa 0.96 5.27 0.81 −15.99 0.94 28.71 0.87 16.65 0.94 −0.72 0.92 6.89 

Samanea saman 0.85 −6.55 0.86 −4.41 0.84 18.08 0.78 8.61 0.82 −7.01 0.81 −0.19 

Senna siamea 0.97 0.89 0.70 −41.58 0.94 28.43 0.96 −1.44 0.95 −20.39 0.97 −12.01 

Swietenia macrophylla 0.93 4.66 0.84 −35.00 0.90 −10.02 0.91 −6.43 0.89 −16.22 0.91 −12.09 

Syzygium grande 0.94 0.66 0.72 −37.67 0.92 28.26 0.90 1.28 0.95 −17.29 0.94 −9.11 

Tectona grandis 0.99 −1.33 0.65 −36.10 0.97 7.45 0.84 7.88 0.94 2.20 0.91 4.65 

Note: ME = Model efficiency, MPE = Model prediction error. 

 
(Kusmana et al., 2018). Moreover, W is not recommended as independent varia-
ble for species-specific allometric models development due to its lower perfor-
mance and robustness in use (Njana et al., 2016). Inclusion of more than one 
independent variable likely to increase the efficiency of allometric models to 
capture more variabialities (Ketterings et al., 2001; Chave et al., 2005). Our study 
showed that models with H and DBH have higher efficiency for all the studied 
species and similar findings were also reported by Rutishauser et al. (2013); 
Kusmana et al. (2018) and Khushi et al. (2019). Allometric models with single 
independent variable (DBH) are robust in the field measurement and biomass 
estimation (Ketterings et al., 2001; Chave et al., 2014; Istrefi et al., 2019). But, 
DBH as single independent variable has shown lower efficiency in model selec-
tion parameters of this study. 

Model validation is an important stage to precribe best-fitted allometric 
biomass model for a group of species or single species (Sileshi, 2014). Different 
predictive performance (goodness-of-fit) statistics like ME, MPE, Roor Mean 
Squared Relative Prediction Error, graphical presentation of 1:1 line etc. are 
followed to evaluate performance of best-fitted models (Makungwa et al., 2013; 
Sileshi, 2014; Huy et al., 2016; Mahmood et al., 2019a, 2019b, 2019c). Best-fitted 
model of the studied species (except A. procera, S. saman and L. speciosa) 
showed higher predictive performance in biomass estimation compared to the 
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regional and pan-tropical models. The variation in estimated biomass may be 
due to the differences in tree species, climatic conditions, site conditions, forest 
types with its composition and management practices which ultimately influence 
the architecture of tree and biomass partitioning (Poorter et al., 2006; Iida et al., 
2011; Mugasha et al., 2016; Nam et al., 2016). Development of species-specific 
allometric models is quite laborious and time-consuming efforts (Picard et al., 
2012). Therefore, regional and pan-tropical allometric biomass models are fre-
quently used to estimate biomass of tree species those do not have species-specific 
model (Chave et al., 2014). Such application of regional or pantropical models 
may produce higher variation in biomass estimation compared to species specific 
allometric biomass models (Ketterings et al., 2001; Ngomanda et al., 2014). 
However, the species-specific best-fitted allometric models of A. procera, L. spe-
ciosa and S. saman in this study showed lower efficiency compared to some re-
gional and pan-tropical models. Therefore, the regional and pan-tropical bio-
mass models can be used to estimate the species-specific biomass prior checking 
the range of variation generated by using those (Alvarez et al., 2012).  

5. Conclusion 

Allometric biomass models with DBH and H showed higher efficiency in model 
selection parameters for all the studied species. Most of the best-fitted biomass 
models showed higher model efficiency and lower model prediction error com-
pared to the regional and pan-tropical models. Our study suggests using spe-
cies-specific allometric models for biomass estimation for higher accuracy. In 
absence of species-specific models, ME and MPE need to be checked for the re-
gional- and pan-tropical models to reduce uncertainties in large scale biomass 
estimation. 
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