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Abstract 
We propose an approach based on Floquet theorem combined with the reso-
nating averages method (RAM), to solve the time-dependent Schrödinger 
equation with a time-periodic Hamiltonian. This approach provides an alter-
native way to determine directly the evolution operator, and then we deduct 
the wave functions and the corresponding quasi-energies, of quantum sys-
tems. An application is operated for the driven cubic or/and quatric anhar-
monic as well as for the Morse potential. Comparisons of our results with 
those of other authors are discussed, and numerical evaluations are per-
formed, to determine the dissociation energy of (HCl) and (CO) molecules. 
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1. Introduction 

Several physical systems have been modeled by a simple harmonic oscillator as a 
first approximation devoted to the construction of elegant formalism, to under-
stand their dynamics and are dealing with the description of the nature of vari-
ous physical phenomena under certain conditions. Moreover, it is possible to 
compare solutions derived from these studies to experimental results obtained 
by studying laser-matter interaction problems in many branches of physics, rang-
ing from black body radiation to vibrations of crystal lattices [1] [2] [3] [4]. It is 
now generally realized that interesting connections of numerous real classical or 
quantum systems are a consequence of the anharmonic non-linear character of 
evolution in these systems, such as vibrations of the real molecules, graded alloys 
and irregular semiconductor structures. 

In this regard, several approaches have been used, among them the well- 
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known perturbation theory [1] [2] [5] [6], the variational method based on the 
squeezed states [7], Lie algebraic method using canonical transformations [8] 
and multiple scale method [9] which have been developed and introduced in 
some special cases of the time-dependent harmonic and anharmonic oscillators 
in the presence of an external excitation force, to obtain the evolution operator 
of these systems which in turn enables to find the explicit expressions of qua-
si-energies and wave functions. In the regime of strong field-matter interaction, 
a non-perturbative approach, based on the quantization version of the Floquet 
formalism [10] [11] [12], has been developed and applied to describe physical 
systems with time-periodic Hamiltonians. This was used to give explanation of 
various phenomena, including multiple high order harmonic generation in in-
tense laser field [12], multi-photon ionisation [13], and to describe the motion of 
a charged particle in an oscillating electric field [14], etc. Our motivation con-
sists especially in solving the problem of a quantum system driven by a periodic 
time-varying force. The key feature of the application of Floquet theorem is that 
it permits the reduction of the time-dependent Schrödinger equation of the sys-
tem to an equivalent conservative eigenvalue problem. It is an efficiency tool in 
the case of a system submitted to strong time-periodic field, and consequently 
for which the usual stationary states, solutions to the time-independent Schrödin-
ger equation when no external field acts, do not exist [4]. These derived quan-
tum steady states, lead to set correspondences with stationary states of conserva-
tive systems [12] [13]. 

In previous works, we have applied the above mentioned approach, to the case 
of harmonic oscillator with time-periodic frequency and to the simple forced 
harmonic oscillator [15]. Thus, some properties of the Floquet states for this sys-
tem were elucidated. Moreover, we used resonating averages method (RAM) [16] 
which provides a useful tool for constructing the evolution operators in a whole 
resonance zone, which enabled us to obtain readily steady states and the asso-
ciated quasi-energies of the time-periodic Hamiltonian of these systems. In this 
work, we apply our method, to first and second ameliorated order approxima-
tions, to some driven anharmonic potentials. A comparison of our analytical re-
sults with those of the literature was made and numerical evaluations, allowed 
calculation of the maximum vibrational quantum number to estimate the dis-
sociation energy for the (HCl) and (CO) molecules. 

The paper is organized as follows. In Section 2, we review the basic formula-
tion of our approach. Section 3 consists of its application to the driven cubic and 
quatric anharmonic oscillators, and to the Morse potentail expansion. In Section 
4, some comparisons of our results with those of other published works are pre-
sented and discussed and an example of numerical evaluations was performed 
for the (HCl) and (CO) molecules. Concluding remarks are given in Section 5. 

2. Basic of the Proposed Approach [15] 

A quantum system that is submitted to a perturbation may be described by the 
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following hamiltonian; 

( ) ( )0H t H H tλ ′= +                       (1) 

where 0H  is the Hamiltonian of the unperturbed system, and ( )H t′  is the 
interaction Hamiltonian, which amplitude λ  is taken as being very small. 

In the case of a periodical perturbation, according to the Floquet theorem 
there exists a couple of operators (R, T(t)), so that the time-evolution operator 
can be written in the following form [10] [11] [12] 

( ) ( )e
iRt

U t T t
−

= �
                        (2) 

and ( )0 1U =  
where T(t) is a periodic unitary operator of the same period as ( )H t′ , and R is a 
constant hermitian operator. 

In the interaction picture, ( )U t  satisfies the following differential equation 

( ) ( ) ( )
d

d
I

I I

U t
i H t U t

t
λ=�

                    
(3) 

where 

( ) ( )0 0e eiH t iH t
IH t H t −′= � �

                    (4) 

A unitary transformation T(t) may be applied to Equation (3) to obtain the 
so-called reduced equation of the system such as, 

( )
( )

d
d
n

n

t
i R t

t
φ

φ=�
                     

(5a) 

( ) e niE t
n t nφ −= �

                       
(5b) 

where ( )n tφ  are the eigenstates of the Floquet operator R, corresponding to 
the eigenvalues nE , and where n  are the states of the unperturbed system. 
Consequently, the Floquet states (or steady states), solutions of the time-dependent 
Schrödinger equation, in the Floquet representation are defined such as, 

( ) ( ) ( )n nt T t tψ φ=
                      

(6) 

The obtained steady states form a complete set of time-dependent solutions in 
the extended Hilbert space, and do not depend on the choice of the couple (R, 
T(t)). 

Search of Floquet operators is based on the resonating averages method (RAM) 
[15] [16], which consists in the separation of the perturbed Hamiltonian ( )IH t , 
written in the interaction picture Equation (4), into an averaging part, ( )IH t , 
and an oscillating part, ( )IH t� , such as: 

( ) ( ) ( )d
d
I

I I

H t
H t H t

t
= +

�

                    
(7) 

The application of the RAM to Equation (3) gives rise to the following solu-
tions to first and second order in λ

 
( ) ( ) ( ) ( ) ( )1 11a

I I I
iU t H t V tλ = −  
�

�                  
(8) 
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( ) ( ) ( ) ( ) ( )2 2
21a

I I
iU t H t A t G tλ λ = − +  
�

�               
(9) 

The determination of the solutions ( ) ( )1a
IU t  and ( ) ( )2a

IU t  Equations ((8), 
(9)) and a comparison with Floquet representation of Equation (2), enabled us to 
obtain the first and second order couples ( ) ( ) ( )( )1 1,a aR T t , ( ) ( ) ( )( )2 2,a aR T t , and  

thence the quasi-energies ( )1a
nE , ( )2a

nE  and Floquet-states ( ) ( )1a
n tψ ,  

( ) ( )2a
n tψ , respectively. 

3. Applications 
3.1. Driven Cubic Anharmonic Oscillator 

The Hamiltonian of the considered quantum system is given by the following 
expression 

( ) ( )
2

2 2 3
1 0 1 0 0

1 ˆ ˆsin
2 2
pH t m q q t q
m

ω µ ω µ ω ν= + + +� �
         

(10) 

where 0ˆ m
q q

ω
=

�
 

3
1 0q̂µ ω�  and ( )0 ˆsin t qµ ω ν�  are the conservative perturbation and the time- 

dependent perturbation due to an external force, respectively. 
m and 0ω  are the mass and the frequency of the simple harmonic oscillator, 

respectively, ν  is the driven oscillation frequency, and 1µ , µ , are very weak 
amplitudes of the perturbations. 

Adjusting Equation (10) with the RAM formulation needs the following va-
riables changes, 

1 1µ λγ= ; µ λγ=  and 1λ �  
Thus, we can write ( )1H t  in the form, 

( ) ( )( )
2

2 2 3
1 0 1 0 0

1 ˆ ˆsin
2 2
pH t m q q t q
m

ω λ γ ω γ ω ν= + + +� �
        

(11) 

Introduction of the creation and annihilation operators a+  and a of the un-
perturbed Hamiltonian [15] allows to write ( )H t′  given in Equation (1) as, 

( ) ( )( ) ( ) ( )3 30 1 3 3 1 sin
22

H t a a a aa a a a a a t
ω γ

γ ν+ + + + + ′ = + + + + + +  

�

 
(12) 

The RAM applied to the interaction picture form of ( )1H t  (Equations ((4), 
(7))) gives 

( ) 0IH t =                          (13) 

( ) ( )

( ) ( )( )

0 0 0 0

0 0

3 33 31

0
0 0

e e 9e 9e 1
6 2

e e
2

i t i t i t i t
I

i t i t

iH t a a a aa a a a

t a t a

ω ω ω ω

ω ω

γ

γ ω
α α

− −+ + + +

−+

 = − + − + + 

+ +

��

� 

  

(14) 

where 
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( ) ( ) ( )0
0 2 2

0

cos sint i t
t

ν ν ω ν
α

ν ω
+

= −
−                 

(15) 

( )0 tα   being the complex conjugate of ( )0 tα  
From Equation (8), we obtain the evolution operator to the first ameliorated 

order such as 

( ) ( ) ( )( )

( ) ( )( )
0

1 3 31
1

0
0 0

1 9 9 1
6 2

e
2

a

iH t

U t a a a aa a a a

i t a t a

µ

µω
α α

+ + + +

−
+


= + − + − + +



− + 


�

       

(16) 

By comparison with the formulation of Equation (2), we deduce the first ame-
liorate order Floquet operators (R, T(t)), such as: 

( )1
1 0

1
2

a R a aω + = + 
 

�
                    

(17a) 

( ) ( ) ( )( )
( ) ( )( )

1 3 31
1

0
0 0

1 9 9 1
6 2

2

a T t a a a aa a a a

i t a t a

µ

µω
α α

+ + + +

+

= + − + − + +

− +

       

(17b) 

Thus, the quasi-energies, Floquet states and wave functions developed to the 
first order respectively are: 

( )1
0

1
2

a
nE nω  = + 

 
�

                     
(18) 

( ) ( )
( )1

1
3 1 1 3e 3 1 1 3

a
ni E t

a
n t c n c n n c n c nψ

−

− − + +=  − + − + + + + +  
�

 
(19) 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )
1

1
3 3 1 1 1 1 3 3, e

a
ni E t

a
n n n n n nq t c q c q q c q c qψ ϕ ϕ ϕ ϕ ϕ

−

− − − − + + + += + + + +  
� (20) 

where the coefficients 1c±  and 3c±  are given by 

( )( )1
3 1 2

6 2
c n n nµ
− = − −

                  
(21a) 

( )01
1 0

3
2 2 2

c n i t n
µωµ

α−
 

= − 
                  

(21b) 

( ) ( )01
1 0

3
1 1

2 2 2
c n i t n

µωµ
α+

 
= − + + + 

 


            
(21c) 

( )( )( )1
3 1 2 3

6 2
c n n nµ
+ = − + + +

               
(21d) 

and 

( ) ( )
2

1
24 e

2 !

q

n nn
q H q

n

α

αϕ α

−

 =  π                   
(22) 

( )n qϕ  is the wave function of the simple oscillator, the parameter 0mω
α =

�
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and ( )nH qα  are the Hermite polynomials. 

Using Equation (9) and with the help of Equations ((13), (14)) one can write 
the second ameliorated order evolution operator and deduce the Floquet opera-
tors ( )2

1
a R  in the following form 

( ) ( ) ( )
2 322 2 0 0

1 0 1 2 2
0

15 11
4 30 4

a R H a a a a
w

ω µ ω
µ

ν
+ + = − + + + 

− 

� �

       
(23) 

Thus, the quasi-energies of the system up to second ameliorated order is given 
by 

( )

( )
2 3

2 2 20 0
0 1 2 2

0

151 11
2 4 30 4

a
nE n n n

w
ω µ ω

ω µ
ν

   = + − + + +   
−   

� �
�

      
(24) 

We note that the correction effects on the quasi-energies to second order ap-
proximation, and the Floquet shift levels depend on the amplitudes ( )1,µ µ , of 
the perturbations and the quantum number n. 

3.2. Driven Quatric Anharmonic Oscillator 

We consider the system which Hamiltonian is given by, 

( ) ( )
2

2 2 4
2 0 2 0 0

1 ˆ ˆsin
2 2
pH t m q q t q
m

ω µ ω µ ω ν= + + +� �
         

(25) 

where 
4

2 0q̂µ ω�  and ( )0 ˆsin t qµ ω ν�  are the quatric anharmonic perturbation with 
amplitude 2µ  and the external time-dependent perturbation with amplitude 
µ  respectively. 

We operate the change variable 2 2µ λγ=  and µ λγ=  on Equation (25), 
then we have, 

( ) ( )( )
2

2 2 4
2 0 2 0 0

1 ˆ ˆsin
2 2
pH t m q q t q
m

ω λ γ ω γ ω ν= + + +� �
       

(26) 

Using the usual creation and annihilation operators yields to write ( )H t′  in 
Equation (1) as 

( ) ( )

( ) ( ) ( ) ( )

4 4 2 2 2 20
2

2 2 0

4 2 4 1 2
4

3 3 1 sin
2

H t a a a aa a a a a a

a a a a a a t

ω
γ

ω
γ ν

+ + + + +

+ + +

′ = + + − + + +

+ + + + +

�

�

    

(27) 

The RAM applied to the interaction picture form of ( )2H t  (Equations ((4), 
(7))), gives 

( ) ( )( )2

2 0
3 2 2 1
4IH t a a a aγ ω + += + +�

              
(28) 

( ) ( )

( ) ( ) ( )( )

0 0 0

0 0 0

4 4 24 4 2
2

2 2 0
0 0

e e 4e 2 1
16

4e 2 3 e e
2

i t i t i t
I

i t i t i

iH t a a a a a

a a a t a t a

ω ω ω

ω ω ω

γ

ω
γ α α

−+ + +

− −+ +

= − + − −

+ + + +

��

� 

  

(29) 
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where ( )0 tα  is given by Equation (15). 
Following the previous procedure given in the subsection 3.1, we obtain the 

time evolution operator, then the quasi-energies and Floquet states to the first 
ameliorated order, for this system, respectively such as, 

( ) ( ) ( ) ( )

( ) ( )( )

( )( )

1 4 4 2 2
2 2

0
0 0

2

2 0 0

1 4 2 1 4 2 3
16

2

3exp 2 2 1
4

a i iU t a a a a a a a a

t a t a

it a a a a H

λ γ

ω
γ α α

µ ω

+ + + +

+

+ +

   = − − + − − + +   


+ + 


 −  × + + +    

�
�

�

�
�



 

(30) 

( ) ( )1 2
0 2 0

1 3 2 2 1
2 4

a
nE n n nω µ ω = + + + + 

 
� �

            
(31) 

( ) ( )
( )1

1
4 2 1

1 2 4

e 4 2 1

1 2 4

a
ni E t

a
n t k n k n k n

n k n k n k n

ψ
−

− − −

+ + +

=  − + − + −

+ + + + + + + 

�

       

(32) 

where 

( )( )( )2
4 1 2 3

16
k n n n nµ
− = − − −

                   
(33a) 

( ) ( )2
2 2 1 1

4
k n n nµ
− = − −

                       
(33b) 

( )0
1 02

k i t n
µω

α− = −
                           

(33c) 

( )0
1 0 1

2
k i t n

µω
α+ = − +

                        
(33d) 

( ) ( )( )2
2 2 3 1 2

4
k n n nµ
+ = − + + +

                 
(33e) 

( )( )( )( )2
4 1 2 3 4

16
k n n n nµ
+ = − + + + +

             
(33f) 

Application of the RAM Equation (9) to second ameliorated order, gives the 
expressions of the Floquet operator and quasi-energies respectively, such as: 

( ) ( )( )
( ) ( )( ) ( )

22
2 0 2 0

2 33 22 0 0
2 2 2

0

1 3 2 2 1
2 4

34 51 59 21
8 4

a R a a a a a a

a a a a a a
w

ω µ ω

ω µ ω
µ

ν

+ + +

+ + +

 = + + + + 
 

− + + + +
−

� �

� �

  

(34) 

( ) ( )

( ) ( )

2 2
0 2 0

2 3
2 3 20 0
2 2 2

0

1 3 2 2 1
2 4

34 51 59 21
8 4

a
nE n n n

n n n
w

ω µ ω

ω µ ω
µ

ν

 = + + + + 
 

− + + + +
−

� �

� �

       

(35) 

We note that the correction on quasi-energies of this system exist to first and 
second orders, and the Floquet shift levels depends on the parameters ( )2 ,µ µ  

https://doi.org/10.4236/jamp.2020.81014


M. J. Idrissi et al. 
 

 

DOI: 10.4236/jamp.2020.81014 191 Journal of Applied Mathematics and Physics 
 

and the quantum number n, which means that these energies levels are not equi-
distants. 

We also note that in the absence of the cubic and quatric anharmonic pertur-
bations ( 1 2 0µ µ= = ) we find the Floquet states and quasi-energies of the simple 
forced harmonic oscillator [15]. 

3.3. Morse Potential Expansion 

The Morse potential ( )V q , is the agreed model for diatomic molecules and is 
given by [6] [7], 

( ) ( )2
1 e q

eV q D ρ−= −
                     

(36) 

where ρ  is a parameter that controls the width of attraction (or measure the 
curvature at the bottom of the well), eD  is a parameter that controls the depth 
of the attracting well (or the depth of potential well), and q is the variation of in-
teratomic distance with respect to the equilibrium distance. 

Let us consider the Taylor development of exponential term in ( )V q  to 
forth order, and collecting terms in this development gives, 

( ) 2 2 3 3 4 47
12e e eV q D q D q D qρ ρ ρ= − +

              
(37) 

Then we make the following changes to the notations: 

0
2 eD
m

ω ρ=
                       

(38a) 

3

1 2
00

eD
mwm

ρ
µ

ω
= −

�

                     
(38b) 

4

2 2 3
0

7
12

eD
m
ρ

µ
ω

=
�

                       
(38c) 

where 0ω  is the vibrational constant with the reduced mass m of the diatomic 
molecule. 

With the help of Equations ((36), (37)), we obtain the similar situation given, 
by the cubic together with quatric anharmonic oscillator, in the absence of the 
time dependent perturbation ( 0µ = ), for which the Hamiltonian is given by, 

( )
2

2 2 3 3 4 4
3

7
2 12e e e
pH t D q D q D q
m

ρ ρ ρ= + − +
            

(39) 

Using Equations (24) and (35), one can obtain the full quasi-energy to second 
order as: 

( ) ( )

( )

4 2
2 2

0 2 2
0

2 6 2
2

3 4
0

2 8 3
3 2

4 5
0

1 7 2 2 1
2 16

7 11
16 30

49 34 51 59 21
1152

a e
n

e

e

D
E n n n

m w

D
n n

m w

D
n n n

m

ρ
ω

ρ

ρ
ω

 = + + + + 
 

 − + + 
 

− + + +

�
�

�

�

          

(40) 

https://doi.org/10.4236/jamp.2020.81014


M. J. Idrissi et al. 
 

 

DOI: 10.4236/jamp.2020.81014 192 Journal of Applied Mathematics and Physics 
 

The difference between two adjacent Floquet levels for the cubic and quatric 
anharmonic oscillators are given by, 

( ) ( )

( ) ( ) ( )

2 2
1

22 2
0 2 1 2

15 51 71 3 1 1 1
2 4 17

a a
n nE E E

n n nω µ µ µ

+∆ = −

  = + + − + − + +    
�

    

(41) 

We note that when n increases E∆  decreases, until becoming equal to zero 
when the energy level reached the dissociation energy of diatomic molecular 
system, then the quantum number takes the maximum value maxn . 

4. Comparisons and Numerical Evaluations 

In the previous paragraphs we have developed calculations to first and second 
orders, and presented a number of results of the quantum anharmonic oscillator 
(Floquet states, quasi-energies). Table 1 compares our results with the works, of 
some other published works that used perturbation theory method. 

The coefficients ( )A n , ( )B n , ( )C n , ( )D n , ( )E n , ( )F n , ( )G n ,  
( )H n , ( ) ( )2A n , ( ) ( )1B n  and ( ) ( )2B n , are given by Equation (15) in page (77) 

of the reference [5]. 
We observe in Table 1 that our first order states of the anharmonic (cubic and 

quatric) oscillator are similar to those obtained by the application of the statio-
nary perturbation theory given in the work of Wang et al. [5]. We also note that 
our quasi-energy expression to second order for the anharmonic oscillator 
agreed with those obtained by Wang et al. [5] for this system. 

We express ( )2a
nE  of the Equation (40) as a function of 1

2
n + 
 

 and since 

the experimental data show that the terms in 
31

2
n + 
 

 are negligible [6], we obtain 

( )
22 2 2 2

2 2 3283 1 11
18432 2 2 2

a e
n

e

D
E n n

m mD m
ρ ρρ

    ≈ − + − +    
    

� �
�

      
(42) 

 
Table 1. Comparison of our energy and quantum states with those of Wang et al. 

 Our method Wang et al. [5] 

The states nψ  

( ) ( )
( )1

1
4 3 2

1 1 2

3 4

e 4 3 2

1 1 2

3 4

a
ni E t

a
n t k n c n k n

c n c n k n

c n k n n

ψ
−

− − −

− + +

+ +

=  − + − + −
+ − + + + +

+ + + + + 
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C n n D n n
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Quasi-energies 
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2 3 20
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4 30

34 51 59 21
8
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Notations: m m→  , 0µ = , 1
0

wαµ
ω

=
�

, 2
0

wβµ
ω

=
�

, ˆ zq
L

= . 
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Table 2. Spectra parameters corresponding to (HCl) and (CO) molecules. 

Molecule ( )eVeD  ( )amum  ( )1mρ −  

HCl [17] 4.61907 0.9801045 1.86769967 × 1010 

CO [17] 11.2256 6.8606719 2.29939732 × 1010 

 
Table 3. Maximum quantum numbers, theoretical dissociation energy and dissociation 
energy with respect to the zero point level corresponding to (HCl) and (CO) molecules. 

Molecule maxn  ( )eVth
eD  ( )0 eVE  ( )0 eVD  

HCl 24 4.6126 0.1835 4.4291 

CO 83 11.2244 0.1341 11.0903 

 
Let us consider the values of the parameters corresponding of (HCl) and (CO) 

diatomic molecules given in Table 2, 
The derivative of Equation (42) with respect to n and setting it equal to zero 

gives the vibrational level associated with the dissociation limit maxn , which al-
lowed us to find the values of the theoretical dissociation energy corresponding 
to the equilibrium point ( th

eD ) and the dissociation energy with respect to the 
zero-point level ( 0 0

th
eD D E= − ) which are given in Table 3. 

5. Conclusions 

The Floquet theory is one of the most useful tools which provides an alternative 
way for solving the Schrödinger equation of quantum systems with time-periodic 
Hamiltonian. In this paper, this approach was applied to driven quantum an-
harmonic oscillators. We have given the Floquet operators, solutions of the 
Schrödinger evolution equation, with the help of the RAM applied to first and to 
second ameliorated orders approximation and then we have calculated the Flo-
quet states and the corresponding quasi-energies as well as the wave functions. 
Indeed, the approach used in our study determined, in a natural way, the explicit 
expressions for the time-dependent states of the anharmonic potential systems. 
It can be noticed that when we switch off the time-perturbation, we obtain the 
conservative energies of the cubic and the quatric anharmonic potential, and 
that the energy levels spacing decrease with increasing values of n and allows us 
to estimate the dissociation energy of the molecule. 

The comparisons of our expressions with published works by other authors, 
which have used different methods [1] [2] [5] revealed a good concordance, and 
the numerical evaluation carried out for the values of the parameters of (HCl) 
and (CO) diatomic molecules, illustrated clearly our results. This approach can 
be a useful tool to solve the Schrödinger equation of other types of driven time- 
dependent quantum systems. Therefore, it can be applied to investigate transi-
tions between excited states and evaluate the dissociation energy of diatomic and 
polyatomic molecules. The goal of future work will be the application of the es-
tablished approach to the driven Mathieu oscillator. 
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Appendix 

( )H t : Time-dependent Hamiltonian. 

0H : Unperturbed Hamiltonian. 
( )H t′ : Interaction Hamiltonian. 

λ : Amplitude of the perturbation. 
� : Reduced Planck's constant. 

( )n tφ : Eigenstates of the operator R. 

nE : Eigenvalues of R (Quasi-energies). 
n : Sates of the unperturbed system. 

( )n tψ : Floquet states. 
( ) ( )2a U t : Second order ameliorated evolution operator. 
p: Impulsion operator. 
q: Position operator. 
m: Mass of the system 

0ω : Unperturbed oscillator frequency. 

1µ : Amplitude of the cubic anharmonic oscillator. 
µ : Amplitude of the time-dependent perturbation. 
ν : Frequency of the time-dependent perturbation. 
a: Annihilation operator. 
a+ : Creation operator. 

2µ : Amplitude of the quatric anharmonic oscillator. 

eD : Depth of potential well. 
ρ : Parameter that controls the width of attraction. 

th
eD : Theoretical dissociation energy corresponding to the equilibrium point. 

0E : Zero-point energy (n = 0). 

0D : Dissociation energy with respect to the zero-point level. 
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