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Abstract 
The dynamic stiffness method and Transfer method is applied to study the 
vibration characteristics of the Euler-Bernoulli pipe conveying fluid in this 
paper. According to the dynamics equation of the pipe conveying fluid, the 
element dynamic stiffness is established. The vibration characteristic of the 
single-span pipe is analyzed under two kinds of boundary conditions. The 
results compared with the literature, which has a good consistency. Based on 
this method, natural frequency and the critical speed of the two types of mul-
ti-span pipe are deserved. This paper shows that the dynamic stiffness me-
thod and transfer matrix is an effective method to deal with the vibration 
problem of pipe conveying fluid. 
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1. Introduction 

Fluid-solid coupled vibration of infusion pipelines exists in the nuclear industry, 
petroleum industry, and the aviation industry. Over the years, many scholars 
have done a lot of research work in the dynamic analysis of pipe conveying fluid, 
especially Paidoussis [1] has achieved many results in linear and nonlinear dy-
namic analysis of pipe conveying fluid. In engineering, the linear vibration of 
pipe conveying fluid is also widely used. Many scholars have studied the linear 
vibration of pipe conveying fluid from different angles. In the early days, scho-
lars [2] [3] generally used a hypothetical modal method or Galerkin method to 
analyze the vibration of pipe conveying fluid, which is also a popular method for 
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dynamic analysis. Recently, Zhang [4] analyzed the vibration of a single-span 
vibration by using the characteristic method. Huang [5] analyzed the natural 
frequency of the vibration under different boundary conditions by using the 
Elimination Galerkin method. Lee [6] made a dynamic analysis of the pipe con-
veying fluid using the spectral method and discussed the stability of the spectral 
method. Q. Ni [7] studied the vibration problems of pipe conveying fluid under 
various boundary conditions using differential transformation method. For the 
linear vibration problems of complex pipe systems, Sreejith [8] analyzed the vi-
bration problems of curved pipes using the finite element method. Q. Ni [9] used 
the differential quadrature method to solve the linear vibration problem of infu-
sion curved pipes. Wu and Shih [10] applied the transfer matrix method to ana-
lyze the vibration of multi-span simply supported pipe conveying fluid. Chen 
Zhengxiang and Zhang Weiheng [11] used the finite element method to analyze 
the stability of multi-span elastic support pipes. Li-Bao Hui [12] used the dy-
namic stiffness method to analyze the Timoshenko beam multi-span pipe con-
veying fluid. Later, scholars further studied the multi-span structure [12]-[17] 
and dynamic stiffness method [18] [19] [20] [21]. 

Based on the above introduction, we can get that the research on the analysis 
method of pipe conveying fluid vibration is a hot spot. In this article, the dy-
namic stiffness method [22] [23] is used to study Euler-Bernoulli beam vibration 
problems. Based on the dynamic equation of the pipe conveying fluid, this paper 
uses the dynamic stiffness method to analyze the vibration of the single-span 
pipe conveying fluid under different boundary conditions. Combining the dy-
namic stiffness method with the transfer matrix method, the vibration problems 
of non-periodic and periodic multi-span pipes conveying fluid are analyzed. 

In this paper, the first section is exposed to research background of this pa-
per’s work and the structure of this paper. Section 2 introduces the unit dynamic 
stiffness of the infusion pipeline. In Section 3, numerical experiments were con-
ducted under different working conditions, and the corresponding frequencies 
and critical velocity were obtained and discussed. In Section 4, some conclusions 
are reached. 

2. Element Dynamic Stiffness of Pipe Conveying Fluid 

First, some system parameters of the pipe are given in Table 1. 
 

Table 1. Some system parameters. 

system parameter symbol system parameter symbol 

elastic modulus of pipe E Section moment I 

transverse displacement of pipe w fluid velocity U 

fluid mass per unit length fm  pipe mass per unit length pm  

vibration frequency Ω  angle of section θ  

bending moment M Shear force Q 
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For infusion straight pipes, ignoring the effects of gravity, internal resistance, 
externally applied tension, and pressure, the equation of motion can be expressed 
as [1], 

( )
4 2 2 2

2
4 2 22 0f f f
w w w wEI m U m U m m

x tx x tρ
∂ ∂ ∂ ∂

+ + + + =
∂ ∂∂ ∂ ∂

        (1) 

In which EI is the bending stiffness of the pipe, fm  is the fluid mass of the 
pipe element, mρ  is the pipe mass of the element, U is the fluid velocity, and w 
is the lateral displacement of the pipe. For a constant flow velocity, the solution 
of Equation (1) can be expressed as: 

( ) ( ) ( ), expw x t f x i t= Ω                      (2) 

where Ω  is the vibration frequency of the pipe conveying fluid. When the pipe 
is in free vibration, it is uncertain. Substituting Equation (2) into (1), we obtain 
the fourth-order ordinary differential equation 

( )
4 2

2 2
4 2

d d d2 0
dd df f f

f f fEI m U iU m m m f
xx x ρ+ + Ω −Ω + =         (3) 

The solution of Equation (3) has the following form: 

( )
4

1
e anik x

n
n

f x A
=

= ∑                        (4) 

where ( )1,2,3,4ank n =  is the complex root of the following equation: 

( )4 2 2 22 0a f a f fEIk m U k U m m mρ− − Ω −Ω + =             (5) 

From the beam bending theory, displacement w, section angle θ , bending 
moment M, and shear force Q can be expressed as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

exp , exp

exp , exp

w f x i t w f x i t

M EIw EIf x i t Q EIw EIf x i t

θ ′ ′= Ω = = Ω

′′ ′′ ′′′ ′′′= = Ω = = − Ω
     (6) 

Using Equation (6), we can establish the element node displacement and the 
node displacement column vector is [ ]T1 1 2 2, , ,l l R R e

w wθ θ=U , 
1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 1

1 21 2 3 4

2 3

2 41 2 3 4

e e e e
e e e

e e e e
e e e e

a l a l a l a l

a l a l a l a l

a R a R a R a R

a R a l a R a R

ik x ik x ik x ik x
l

ik x ik x ik x ik x
l a a a a

ik x ik x ik x ik x
R

ik x ik x ik x ik x
R a a a a

w A
Aik ik ik ik e

w A
Aik ik ik ik

θ

θ

    
    
   =    
   
     

( )exp i t Ω



   (7) 

Equation (7) can be simplified as follows: 

=U CA                            (8) 

where: 
1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

e e e e
e e e e

e e e e
e e e e

a l a l a l a l

a l a l a l a l

a R a R a R a R

a R a l a R a R

ik x ik x ik x ik x

ik x ik x ik x k x
a a a a

ik x ik x ik x ik x

ik x ik x ik x ik x
a a a a

ik ik ik ik

ik ik ik ik

 
 
 =  
 
  

C           (9) 

Similarly, in the same way, element node forces can be obtained. Let F be the 
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element node force vector. Combining Equation (6), the matrix form can be 
written as follows 

1 2 3 4

1 2 3 4

1 2 3 4

2 2 2 2
1 1 2 3 4

3 3 3 3
1 1 2 3 4

2 2 2 2
2 1 2 3 4

3
2 1

e e e e
e e e e
e e e e

a l a l a l a l

a l a l a l a l

a R a R a R a R

ik x ik x ik x ik x
l a a a a

ik x ik x ik x ik x
l a a a a

ik x ik x ik x ik x
R a a a a

R a

M EIk EIk EIk EIk
Q EIik EIik EIik EIik

M EIk EIk EIk EIk
Q EIik

− − − − 
 
  =
  − − − −
 
 
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3 3 3
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exp
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i t
A
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 (10) 

Equation (10) can be written in the following concise form 

e =F BA                           (11) 

where: 
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1 2 3 4
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      (12) 

From Equation (8), we can derive the column vector 
1−=A C U                           (13) 

Substituting Equation (13) into Equation (11), and the following equation can 
be obtained 

1
e

−=F BC U                         (14) 

Let 1
e

−=D BC , eD  is generally called the element dynamic stiffness matrix, 
which is a function of the tube vibration frequency Ω . If the structure consists 
of only one element, the following equation can be used to calculate the fre-
quency, 

( ) det 0eD Ω = =D                       (15) 

Note: for different boundary conditions, Equation (15) has different forms, 
otherwise the wrong results will be obtained. 

Here, the dynamic stiffness method and transfer matrix method are combined 
to analyze the dynamic characteristics of the pipeline. The dynamic stiffness ma-
trix of a large element (per span) is calculated by the transfer matrix method. 
Assuming that the number of small elements in a large element is 40, according 
to the previous theory, the dynamic stiffness matrix of the i-th small element is 

1 2

3 4

, 1, 2. ,L L

R Ri

i n
    

= =    
    

�
F WK K

K KF W
              (16) 

Based on the above equation, after proper mathematical processing, the ele-
ment transfer matrix is obtained 

[ ]
1 1

2 2
1 1

3 4 2 1 4 2

, 1, 2 ,R L L
i

R R Ri i ii

i n
− −

− −

      − −
= = =      

− −      
�

W W WK K
T

F W WK K K K K K
  (17) 

From the transfer matrix of the small element, the transfer matrix between the 
left value of the initial node of the large element and the end node is obtained, let 
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[ ] [ ] [ ] [ ]1 1
1 1

R L L
n n

R L L
−

     
= =     

     
�

W W W
T T T T

F F F
           (18) 

The transfer matrix T in Equation (18) is decomposed into displacement and 
force vectors. 

After mathematical processing, the dynamic stiffness matrix of the large ele-
ment is obtained. 

1 1
2 2

1 1
3 4 2 4 2

, 1, 2, ,7L L

R RI II

I
− −

− −

−     −
= =    

− −    
�

F WT T
F WT T T T T

        (19) 

where I denotes a span element (large element). 
Assuming that the structure is composed of many elements, we need to as-

semble the element stiffness matrix into the global dynamic stiffness matrix, and 
the processing method is similar to the usual finite element method. The fol-
lowing examples give calculation details. 

3. Analysis of Examples 
3.1. Critical Velocity of Single-Span Straight-Pipe 

To verify the effectiveness of the proposed method, in the first example, the first 
fourth-order frequency of a simple-supported single-span infusion straight pipe 
is calculated. The calculation results in this paper will be compared with the re-
sults of previous studies [1]. Figure 1 shows a single-span simply-supported in-
fusion pipe with a pipe length of 4 ml = , where the material density of the pipe 
is 37850 kg mpρ = , the Young’s modulus is 9200 10 PaE = × , the external di-
ameter of the pipe is 355.6 mmD = , the thickness of the pipe wall is  

9.0 mmwt = , the cross-section of the diameter of the tube is ( )4 4
0 64iI d d= π −

4 41.4726 10 m−= × , the mass of pipe element is 76.9 kg mmρ = , and the mass 
of fluid in pipe element is 89.5 kg mf fm Aρ= = . According to the existing li-
terature, when the internal flow velocity increases, the natural frequency of the 
system becomes smaller. When the flow velocity is large enough, the first-order 
natural frequency drops to zero and buckling instability occurs. At this time, the 
velocity is the critical velocity. To obtain the natural frequency and critical 
speed, the pipe is divided into 4 elements with a length of 4l  and 5 nodes. 

From the previous theory, the global stiffness matrix of the pipe is assembled 
from the element stiffness matrix ( )1,2,3,4i i =D . In this example, the simply 
supported boundary condition is expressed as 

1 5

1 5

0
0, 0

w w
θ θ

= =
 ≠ ≠

                        (20) 

 

 
Figure 1. Single-span simple support pipe. 
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1 5

1 5

0, 0
0

Q Q
M M

≠ ≠
 = =

                       (21) 

Substituting the above expressions (20) and (21) into equation (15), the natu-
ral frequency equation is changed to the following form 

( ) det 0K Ω = =G                       (22) 

where G  is the matrix obtained by the simplification of the global stiffness 
matrix D  by applying the boundary condition (20) (21). The author is limited 
to space, and this expression is omitted. 

For better comparison with other scholars’ literature results, several dimen-
sionless parameters are defined 

1
2 2, ,f f

f

m m mMu UL L
EI m m EI

ρ

ρ

β ω
+ = = = Ω  + 

         (23) 

The first three-order natural frequency of a single-span simply-supported in-
fusion tube as a function of flow rate is shown in Figure 2(a). Figure 2(a) shows 
the effect of the internal fluid velocity on the natural frequency of the first three 
orders of the system. Based on the above algorithm, the obtained critical velocity 
of the fluid is 3.1415cru = , and the critical velocity of the simply supported in-
fusion pipe is cru = π  [1], so the results obtained by the current algorithm have 
good consistency with the literature analysis results. 

Similarly, based on this method, the relationship between the flow velocity 
and frequency of the pipe conveying fluid under other boundary conditions can 
also be obtained. Note that in the actual calculation, equations (20) and (21) 
need to be changed according to different boundary conditions. Figure 2(b) 
shows the first three order frequencies of the clamped support pipe based on this 
algorithm. 

To better compare the algorithms in this paper, when the flow velocity is u = 
0, the pipe becomes a straight beam and the natural frequency of the pipe can be 
analyzed. For comparison, when u = 0 is considered, the first four-order dimen-
sionless frequency calculated in this paper are compared with the DQM solution 
and the true analytical solution [24], as shown in Table 2. As can be seen from 
Table 2, the accuracy of the results obtained in this paper is very high. The algo-
rithm in this paper can also be applied to vibration analysis of other boundary 
conditions of single-span in pipe conveying fluid. 

3.2. Multi-Span Pipe Conveying Fluid 

Figure 3 shows the multi-span intermediate simply supported pipe conveying 
fluid model under two different working conditions. In Figure 3, the total length 
of the pipe is 40 mL =  with 7 spans in which the length of each span is  
( )1, 2,3, 4,5,6il i = . Let 1 4 ml = , 2 4 ml = , 3 4 ml = , 4 16 ml = , 5 4 ml = ,  

6 4 ml = , 7 4 ml = , so that is a non-period pipe. The other data of the pipe con-
veying fluid are consistent with the data of the single-span pipe conveying fluid  
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Figure 2. Effects of fluid velocity on the natural frequencies. (a) The first-third order 
frequency of a simply supported pipe; (b) First third-order frequency of clamped support 
pipe. 

 
Table 2. Natural frequency of the pipe conveying fluid at flow velocity u = 0. 

Boundary conditions algorithm 1ω  2ω  3ω  4ω  

simply support present 9.8696 39.4784 88.8264 157.9137 

DQM 9.8716 39.4863 88.8442 157.9454 

Analytical solution 9.8696 39.4784 88.8264 157.9137 

clamped support present 27.3733 61.6728 120.9034 199.8594 

DQM 22.3778 61.6852 120.9276 199.8995 

Analytical solution 27.3733 61.6728 120.9034 199.8594 
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in section 3.1 of this article. Figure 3(b) shows the clamped support on both 
sides, with a total length of 40 mL =  and a total of 10 spans. Each span has a 
length of ( )4 m 1,2,3,4,5,6,7,8,9,10il i= = , that is, a periodic span. 

This article studies Figure 3(a) first. Assume that each span is a large element 
with a total of 7 large elements, and then the pipe is divided into 40 small ele-
ments with a length of 1 m. The processing of calculating the dynamic stiffness 
matrix of large element (per span) is similar to Section 3.1. 

In the actual calculation, it should be noted that because the length of the span 
element is different, the calculated span-element dynamic stiffness matrix is dif-
ferent. After the element dynamic stiffness matrix is obtained, it is assembled 
into the global stiffness matrix according to the previous idea, and then the nat-
ural frequency and the critical velocity of instability can be calculated by apply-
ing the simple support condition. 

Table 3 shows the first five order dimensional natural frequencies of the 
simply supported system at both sides of the type of Figure 3(a) at different flow 
velocity. Figure 4(a) shows the relationship between the flow velocity U0 and the 
first two order frequencies of the system, which is based on the data listed in Ta-
ble 3. 

From Figure 2(a), the continuously increasing flow velocity U0 reduces the 
natural frequency of the system. The impact of the flow velocity U0 on the system’s  

 

 
Figure 3. Model of multi-span the pipe conveying fluid. (a) Non-period support both 
pined-pined ends; (b) Period support with clamped-clamped ends. 

 
Table 3. Effect of fluid velocity on the first five natural frequencies. 

Flow velocity 
U0 

Natural frequency 

1ω  2ω  3ω  4ω  5ω  

0.0 29.8729 84.6254 167.5864 259.3869 274.0480 

30 29.4345 84.1936 167.1276 258.9441 273.5749 

60 28.0996 82.8921 165.7491 257.2281 271.7400 

80 26.6814 81.5341 164.3128 255.4375 269.8285 

100 24.8009 79.7723 162.4559 253.1184 267.3579 

130 20.9732 76.3603 158.8626 248.6189 262.5803 

160 15.5063 71.8903 154.2619 242.8382 258.4737 

190 6.0670 66.2903 148.5919 235.6913 248.9730 
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Figure 4. Effect of fluid velocity on the natural frequencies. (a) First two order frequen-
cies of non-uniform multi-span with simply supported at both sides; (b) First-order fre-
quency of uniform multi-span pipe with clamped support on both sides. 

 
first-order frequency 1ω  greatly exceeds the other natural frequencies, and when 
the velocity U0 = 195.702 m/s, the first-order frequency approaches zero. This 
means that when the velocity U0 exceeds 195.702 m/s, buckling instability occurs 
in the inhomogeneous multi-span simply supported pipe conveying fluid [1]. 

For the same reason, a similar method can be used for Figure 3(b), but it 
should be noted that the application of boundary conditions should be different 
from the foregoing. Figure 4(b) shows the relationship between the flow velocity 
U0 of the simply supported system at both sides and the first two order frequen-
cies of the system. The critical velocity of the first-order frequency close to zero 
is U0 = 461.61 m/s. 
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4. Conclusions 

In this article, the dynamic stiffness element method based on Euler beam is 
used to analyze the free vibration of the pipes conveying fluid. The method in 
this paper has a strong practical application background. It can be used to ana-
lyze the vibration of single-span pipes conveying fluid with different boundary 
conditions, as well as periodic and non-periodic multi-span pipes conveying 
fluid. 

1) The results of the natural frequency and critical velocity of the single-span 
pipes were compared with the results of DQM and other literature, and good 
agreement was achieved. By combining the dynamic stiffness method with the 
transfer matrix method, the natural frequency and critical velocity of the mul-
ti-span pipes conveying fluid are obtained. 

2) In the calculation example given, the multi-span is closer to the actual en-
gineering problem. Under the condition of simple support, the corresponding 
dynamic stiffness matrix is obtained, and its natural frequency and critical flow 
velocity of instability are analyzed. It can be concluded that the continuously in-
creasing flow velocity reduces the natural frequency of the system and has the 
greatest effect on the first-order frequency. When the system flow velocity ex-
ceeds the critical flow velocity of instability, the inhomogeneous multi-span simply 
supported pipe conveying fluid will buckle and instability. 

3) The current work demonstrates that the dynamic stiffness element method 
can deal with simple and more complex conditions of the pipes conveying fluid, 
and supplements the application environment of the dynamic stiffness method 
and transfer matrix. 
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