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Abstract 
The purpose of this article is to present an alternative method for interven-
tion analysis of time series data that is simpler to use than the traditional me-
thod of fitting an explanatory Autoregressive Integrated Moving Average 
(ARIMA) model. Time series regression analysis is commonly used to test the 
effect of an event on a time series. An econometric modeling method, which 
uses a heteroskedasticity and autocorrelation consistent (HAC) estimator of 
the covariance matrix instead of fitting an ARIMA model, is proposed as an 
alternative. The method of parametric bootstrap is used to compare the two 
approaches for intervention analysis. The results of this study suggest that the 
time series regression method and the HAC method give very similar results 
for intervention analysis, and hence the proposed HAC method should be 
used for intervention analysis, instead of the more complicated method of 
ARIMA modeling. The alternative method presented here is expected to be 
very helpful in gaming and hospitality research. 
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1. Introduction 

An intervention model or interrupted time series model [1] is an Autoregressive 
Integrated Moving Average (ARIMA) model of a time series in which at least 
one of the predictors is a dummy variable for an event, which is thought of as an 
interruption in a pure ARIMA process. An ARIMA model in which differencing 
is not used is also called an ARMA model. 

The use of intervention analysis or interrupted time series analysis is very 
common in hospitality and tourism literature. Bonham and Gangnes [2] used 
intervention analysis to show that the 5% Hawaii hotel room tax started in 1987 
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did not significantly impact Hawaii hotel room revenues. Min’s [3] intervention 
analysis of inbound tourism data showed that both the earthquake of September 
21, 1999 and the Severe Acute Respiratory Syndrome (SARS) of 2003 had signif-
icant negative impacts on Taiwan’s inbound tourism. A thorough review of time 
series forecasting literature is provided by De Gooijer and Hyndman [4]. 
Ahlgren et al. [5] used an ARIMA model to assess the impact of a higher gaming 
tax rate in the state of Illinois on gaming volume, and concluded that the gaming 
volume experienced a significant decrease when the tax increase took effect. 
Ahlgren et al. [6] used an ARIMA model to assess the impact of a higher gaming 
tax rate in the state of Illinois on marketing expenditure by a major Illinois ri-
verboat operator. Toma et al. [7] used a seasonal ARIMA model to show that the 
book “Midnight in the Garden of Good and Evil” set in Savannah, Georgia had a 
significant positive effect on hotel tax receipts, while both 9/11 and hurricane 
Floyd had a significant negative effect. Goh and Law [8] used intervention anal-
ysis to show that relaxation of issuing out-bound visitor visas, the Asian finan-
cial crisis, the handover, and the bird flu epidemic had significant and ex-
pected impacts on Hong Kong tourism demand. Eisendrath et al. [9] used in-
tervention analysis on Las Vegas Strip gaming volume to show that 9/11 had a 
significant negative impact lasting five months. Suh et al. [10] used this ap-
proach to investigate the effects of cash revenue generated from non-comped 
diners (CASHREV), amount spent by the casino in comped-meals (COMPREV) 
on gaming volume, using major holidays and Motorcycle Rally as intervention 
predictors; their ARIMA model showed that both CASHREV and COMPREV 
were significant predictors of slot coin-in, and Motorcycle Rally had a significant 
and negative impact on slot coin-in. Zheng et al. [11] used ARIMA intervention 
analysis to study the impact of recession on restaurant stock performance. 
D’Amuri and Marcucci [12] used ARIMA modeling to assess the impact of an 
index of Google job-search intensity on the monthly US unemployment rate. 
Intervention analysis has been used in other disciplines as well. Su and Deng 
[13] used time series regression with intervention term to predict the yield of Yu 
Ebao. Huang [14] has used intervention analysis to show that government inter-
vention improved a firm’s investment efficiency. The purpose of the present ar-
ticle is to introduce a method from econometric modeling that is simpler to use 
than the ARIMA method for intervention analysis.  

2. Problem Statement and Methodology 

The general form of an autoregressive moving average (ARMA) model is  

1 1

p q

t i t i i i t i
i i

Y Y a aδ φ θ− −
= =

= + + −∑ ∑  

where 

tY  = the response variable of interest. 
δ  = the intercept. 

iφ  = the autoregressive (AR) term coefficients. 

iθ  = the moving average (MA) term coefficients. 
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ia  = the random shocks. 
The above model is referred to as ARIMA(p,d = 0,q) model or ARMA(p,q) 

model [15]. 
Following steps are used in fitting an intervention model to a time series Yt of 

the response variable as a function of predictor(s) Xt and intervention variable(s) It: 
(1) The time series Yt is plotted to assess the presence of trend with time. A 

polynomial function of time t is typically used to model the trend. 
(2) A multiple linear regression (MLR) model is fitted to the data, such that 

the variance inflation factor (VIF) values of all predictors are not too high; val-
ues of VIF above 5 suggest the presence of multicollinearity [16], and values of 
VIF above 10 indicate that the MLR model suffers from serious multicollineari-
ties [17]. One typically drops predictors with highest VIF value, one by one, in 
order to get a reasonable MLR model. 

(3) The MLR model assumes that the errors are independent and normally 
distributed with 0 means and a common error variance, and the standard t-test 
is used to conduct significance tests for the coefficients of the predictors. In a 
time series data, however, the residuals are typically auto-correlated, and hence 
the use of the t-test is not valid. Plots of the auto-correlation function (ACF) and 
partial auto-correlation function (PACF) function are examined to determine 
the order of the ARIMA(p,d,q) × (P, D, Q) model; here p is the order of the 
non-seasonal auto-regressive term, d the non-seasonal differencing used, q the 
order of the non-seasonal moving average term, and P, D, Q are the corres-
ponding seasonal terms. 

(4) Once the ARIMA model has been identified, a time series regression mod-
el is fitted to the data with all predictors and the ARIMA terms in the model, and 
the residuals from this model are tested for zero auto-correlations up to h lags; 
the Ljung-Box test [18] is commonly used for this purpose. Hyndman and 
Athanasopoulos [19] recommend using h = 10 lags in the Ljung-Box test After a 
time-series regression model with uncorrelated residuals is found, the signific-
ance of all predictors is tested. 

The last or 4th step at times proves to be quite challenging, and an alternative 
approach for testing the significance of all predictors and intervention variables 
is proposed and investigated in this study.  

One of the assumptions of multiple linear regression (MLR) is that the va-
riance of the response variable is same across the range of predictor values; when 
this is not the case, we say that heteroscedasticity (or heteroskedasticity) is 
present [20]. When the error terms (residuals) from an MLR model are autocor-
related (i.e., not independent) the standard estimate of the correlation matrix 
needs to be corrected for both heteroscedasticity and the presence of autocorre-
lation. These estimators are referred to as HAC-Consistent estimators [21]. 

This approach uses three different heteroskedasticity and autocorrelation con-
sistent (HAC) estimators of the covariance matrix, used in econometric model-
ing [22], namely HAC, Kern-HAC, and Newey-West in place of Steps (3) and 
(4) above. Examples from hospitality literature as well as a synthetic time series 
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data are used to demonstrate the effectiveness of this alternative approach, and 
parametric bootstrap of time series will be used to compare the results from 
standard ARIMA-based intervention model and the results of significance test-
ing using HAC estimators. In Step (2) above, one typically keeps only the signif-
icant predictors in the MLR model; in this paper, to keep things simple, all pre-
dictors in the model are kept as long as the VIF values are less than 5.  

3. Comparison of P-Values from ARIMA Model and HAC  
Estimators  

Three different time series data sets are used to compare the ARIMA method for 
intervention analysis and significance tests using HAC estimators of the cova-
riance matrix of the estimated coefficients of the MLR. The time series in the 
first two examples are real data sets from gaming literature, the first one mod-
eled by an ARIMA(3,0,0) process with a cubic trend, and the second by an 
ARIMA(0,0,2) process with a cubic trend. For the third example, a synthetic 
monthly time series of length 84 was used.  

Following steps are used for this comparison: 
(a) The time series Yt is plotted to assess the presence of a trend. 
(b) An MLR model is fitted to Yt as a function of the predictors including a 

dummy column for the intervention term, and a polynomial trend function; 
predictors with high VIF values are removed.  

(c) ACF and PACF of the residuals from MLR are plotted for identification of 
ARIMA terms p and q.  

4An ARIMA(p,0,q) time series regression model is fitted, with p and q deter-
mined in Step (c) above. The P-values for each predictor term in the ARIMA 
model are calculated. 

(d) ACF of the residuals from the ARIMA model of Step (d) is plotted to show 
that these residuals are not auto-correlated, which is followed by running the 
L-B test for 10 lags. If the P-values from the L-B test exceed 0.05 at each lag, 
these residuals are deemed not auto-correlated, which validates the correctness 
of the P-values computed in Step (d).  

(e) P-values for each term in the MLR model of Step (b) are computed using 
the HAC estimators of the covariance matrix of the estimated coefficients.  

(f) P-values computed in Steps (d) and (f) are compared. 
The package Sandwich of the statistical software environment R [23] was used 

to compute the P-Values using the HAC estimators. 
In addition, for each time series data set, 1000 bootstrap samples are generat-

ed, and Steps (a)-(f) are repeated for each bootstrap sample. Histograms of the 
1000 P-values computed in Steps (d) and (f) are plotted to compare the ARIMA 
method to the HAC-method of intervention analysis.  

4. Examples from Tourism and Hospitality Literature 

Example 1: Impact of 9/11 on Las Vegas Strip Gaming Revenue 
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Eisendrath et al. [9] used Las Vegas Strip slot coin-in data, complied from the 
Nevada Gaming Control Reports for the period January 1990 through Novem-
ber 2004. In this study, data for the period July 1997 to November 2005 are used. 
The potential predictors of Las Vegas Strip coin-in are dummy variables for 
months February, March, …, December, a cubic trend, and a dummy column 
D9_11 for 9/11 that was set to 1 for 6 months starting from September 2011, and 
0 for all other months. A time-series plot of Las Vegas Strip coin-in for the sam-
pling period, with all six points labeled as 1 corresponding to the interrupted 
time-series (Figure 3, top left plot) shows two bends, suggesting the presence of 
a cubic term in the time series. In order to keep VIF values small, the variable t 
(indicating month number) was standardized first, and then squared and cubed: 
(Table 1) 

( )( ) ( ) , 1, 2, ,101Zt t mean t sd t t= − =   

( )22Zt Zt=  

( )33Zt Zt=  

Figure 1 is a plot of the ACF and PACF values for lags 1 to 20; this graph 
suggests using ARIMA(3,0,0) model for the residuals [22].  

The final Time Series Regression model is shown in Table 2; it can be seen 
from Table 2 that  

 
Table 1. MLR model fitted to Las Vegas Strip Slot Coin-in Data. 

Term Coeff SE t-stat P-Value 

(Intercept) 178,074 4253.1 41.87 0.00 

Zt 5321 2823.7 1.88 0.06 

Zt2 3371 1334.7 2.53 0.01 

Zt3 12,251 1455 8.42 0.00 

DFeb −15,827 5626.7 −2.81 0.01 

DMar 10,343 5663.9 1.83 0.07 

DApr −7969 5665.2 −1.41 0.16 

DMay 949 5666.9 0.17 0.87 

DJun −10,794 5669.2 −1.90 0.06 

DJul −521 5504.4 −0.10 0.92 

DAug −3477 5503.7 −0.63 0.53 

DSep −1103 5477.2 −0.20 0.84 

DOct 2524 5479.8 0.46 0.65 

DNov −6164 5483.9 −1.12 0.26 

DDec −24,787 5626.7 −4.41 0.00 

D9_11 −11,474 5126 −2.24 0.03 
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Table 2. ARIMA(3,0,0) regression model fitted to Las Vegas Strip Slot Coin-in Data. 

Term Coeff SE t-stat P-Value 

ar1 −0.16 0.10 −1.64 0.10 

ar2 0.20 0.10 2.14 0.03 

ar3 0.35 0.10 3.55 0.00 

intercept 178,540 4103.90 43.50 0.00 

Zt 6052 3663.60 1.65 0.10 

Zt2 3763 1663.70 2.26 0.02 

Zt3 11,731 1772.80 6.62 0.00 

DFeb −15,770 5431.90 −2.90 0.00 

DMar 9228 4707.30 1.96 0.05 

DApr −7972 4362.70 −1.83 0.07 

DMay 793 5191.00 0.15 0.88 

DJun −11,732 4862.10 −2.41 0.02 

DJul −1369 4739.50 −0.29 0.77 

DAug −4392 4763.40 −0.92 0.36 

DSep −1814 5019.50 −0.36 0.72 

DOct 1863 4253.80 0.44 0.66 

DNov −6755 4559.50 −1.48 0.14 

DDec −26,473 5427.20 −4.88 0.00 

D9_11 −12,800 4694.60 −2.73 0.01 

 

 
Figure 1. ACF and PACF plots of residuals from the MLR model for Strip Coin-in. 

https://doi.org/10.4236/ojs.2020.101003


A. K. Singh, R. J. Dalpatadu 
 

 

DOI: 10.4236/ojs.2020.101003 37 Open Journal of Statistics 
 

1) the months February, June and December are statistically significant, each 
with lower average slot coin-in than the other ten months, 2) the terrorist attack 
of September 2011 (predictor D9_11) had a significant and negative impact on 
slot coin-in, and 3) the ARIMA terms AR2 and AR3 are statistically significant.  

Figure 2 shows the ACF of the residuals from the ARIMA(3,0,0) Time Series 
Regression Model of Table 2, and also the P-values of the Ljung-Box (LB) test 
for 10 lags. The ACF plot shows that the residuals from the ARIMA(3,0,0) Time 
Series Regression Model are not auto-correlated, which is confirmed by the LB 
test since P-values at lags 1 through 10 are all above 0.05. 

Table 3 shows the results of t-tests using the HAC estimator of the covariance 
matrix; these results are very similar to the ones obtained from ARIMA model 
(Table 2). 

Figure 3 shows plots of the Las Vegas Strip Coin-in and five bootstrap sam-
ples generated from it using the estimated ARIMA(3,0,0) model given in Table 
2. The bootstrap samples are seen to have the same general pattern as the Las 
Vegas Strip Coin-in time series. Figure 4 shows the histogram of 1000 P-values 
for D9_11 obtained from 1000 bootstrap runs. Since D911 term is highly signifi-
cant (see Table 2 and Table 3), the P-values from bootstrap samples are ex-
pected to be small. The term D11 (dummy column for November) is not signifi-
cant (see Table 2 and Table 3), and hence the 1000 P-values for D11 are ex-
pected to exceed 0.05. Figure 4 and Figure 5 clearly show that all of the inter-
vention analysis methods yield similar results.  

 
Table 3. Results of significance tests using the three HAC estimators for Las Vegas Strip 
Slot Coin-in Data. 

  P-Value 

Term Coeff HAC Kern-HAC Newey-West 

(Intercept) 178,074 0.00 0.00 0.00 

Zt 5321 0.06 0.04 0.05 

Zt2 3371 0.01 0.00 0.00 

Zt3 12,251 0.00 0.00 0.00 

DFeb −15,827 0.00 0.00 0.00 

DMar 10,343 0.05 0.04 0.04 

DApr −7969 0.07 0.08 0.04 

DMay 949 0.84 0.84 0.82 

DJun −10,794 0.02 0.02 0.01 

DJul −521 0.91 0.91 0.90 

DAug −3477 0.50 0.49 0.45 

DSep −1103 0.82 0.83 0.81 

DOct 2524 0.43 0.40 0.31 

DNov −6164 0.26 0.29 0.24 

DDec −24,787 0.00 0.00 0.00 

D9_11 −11474 0.00 0.00 0.00 
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Figure 2. Plots of ACF and P-values of L-B test for residuals from the 
ARIMA(3,0,0) model for Strip Coin-in. 

 

 
Figure 3. Time series plots of Strip Coin-in (top left) and five bootstrap samples. 
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Figure 4. Histograms of P-values of the intervention term D9_11 for the four 
methods considered in this paper from 1000 parametric bootstrap samples 
generated from the Strip Coin-in data. 

 

 
Figure 5. Histograms of P-values of the dummy variable for November for 
the four methods considered in this paper from 1000 parametric bootstrap 
samples generated from the Strip Coin-in data. 
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Example 2: Impact of tax rate increase on Marketing Expenditure 
Ahlgren et al. [6] used secondary data for the period January 2000 to Decem-

ber 2006, provided by a major Illinois riverboat operator, to assess the impact of 
a gaming tax rate increase in the state of Illinois on marketing expenditure by 
the riverboat operator. A time series regression model was fitted to marketing 
expenditure; the predictors were a cubic trend, eleven dummy columns for the 
months of February through December (see Example 1), a dummy column 
DTax for Illinois tax increase which was 1 for months 43 through 67 and 0 for all 
other months, and an interaction term between the linear term and the DTax 
column.  

Table 4 shows the MLR model fitted to the Marketing Expenditure data. The 
cubic trend is significant, along with the month of July, the intervention event 
DTax and the interaction term.  

Figure 6 shows plots of ACF and PACF of the residuals from the MLR model of 
Table 4. The behavior of the autocorrelation functions suggests an ARIMA(0,0,1) 
process but the residuals turned out to be auto-correlated. An ARIMA(0,0,2) 
process provided good fit to the Marketing Expenditure data, as can be seen from 
Figure 7. 

Table 5 shows the fitted ARIMA model. The intervention term DTax is highly 
significant, and the quadratic trend component Zt2 is not significant (P-value = 
0.91). The t-tests using HAC estimators yield similar results (see Table 6).  

 
Table 4. MLR model fitted to Marketing Expenditure Data. 

Term Coeff SE t-stat P-Value 

(Intercept) 2,401,290 85,168 28.20 0.00 

DFeb 50,976 102,531 0.50 0.62 

DMar 186,509 102,626 1.82 0.07 

DApr 193,334 102,780 1.88 0.06 

DMay 156,254 102,991 1.52 0.13 

DJun 139,804 103,258 1.35 0.18 

DJul 270,399 103,991 2.60 0.01 

DAug 170,899 103,471 1.65 0.10 

DSep 91,241 103,587 0.88 0.38 

DOct 116,540 103,771 1.12 0.27 

DNov 162,265 104,030 1.56 0.12 

DDec 174,118 104,369 1.67 0.10 

DTax −872,334 99,982 −8.73 0.00 

Zt −79,785 79,378 −1.01 0.32 

Zt2 −10,461 30,231 −0.35 0.73 

Zt3 107,666 38,177 2.82 0.01 

Zt × DTax 574,225 140,373 4.09 0.00 
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Table 5. ARIMA(0,0,2) regression model fitted to Marketing Expenditure Data. 

Term Coeff SE t-stat P-Value 

ma1 0.79 0.13 6.04 0.00 

ma2 0.40 0.13 3.08 0.00 

intercept 2,336,700 96,680 24.17 0.00 

DFeb 53,826 60,783 0.89 0.38 

DMar 190,250 86,570 2.20 0.03 

DApr 191,670 98,658 1.94 0.05 

DMay 149,160 98,846 1.51 0.13 

DJun 127,250 99,162 1.28 0.20 

DJul 258,060 99,678 2.59 0.01 

DAug 199,570 99,452 2.01 0.04 

DSep 114,340 99,455 1.15 0.25 

DOct 133,910 99,579 1.34 0.18 

DNov 169,570 88,794 1.91 0.06 

DDec 174,830 64,935 2.69 0.01 

DTax −919,370 125,930 −7.30 0.00 

Zt −211,180 113,700 −1.86 0.06 

Zt2 5014 43,350 0.12 0.91 

Zt3 162,250 53,238 3.05 0.00 

Zt × DTax 945,590 190,680 4.96 0.00 

 
Table 6. t-test results from the three HAC estimators for Marketing Expenditure Data. 

    P-Value 

Term Coeff SE t-stat HAC Kern-HAC Newey-West 

(Intercept) 2,401,290 86,223 27.85 0.00 0.00 0.00 

DFeb 50,976 52,603 0.97 0.34 0.35 0.30 

DMar 186,509 69,202 2.70 0.01 0.01 0.00 

DApr 193,334 101,366 1.91 0.06 0.08 0.04 

DMay 156,254 99,852 1.56 0.12 0.12 0.08 

DJun 139,804 109,682 1.27 0.21 0.14 0.10 

DJul 270,399 107,795 2.51 0.01 0.01 0.00 

DAug 170,899 120,226 1.42 0.16 0.13 0.08 

DSep 91,241 130,436 0.70 0.49 0.47 0.41 

DOct 116,540 113,469 1.03 0.31 0.27 0.21 

DNov 162,265 98,990 1.64 0.11 0.05 0.03 

DDec 174,118 50,850 3.42 0.00 0.00 0.00 

DTax −872,334 134,931 −6.47 0.00 0.00 0.00 

Zt −79,785 157,052 −0.51 0.61 0.74 0.70 

Zt2 −10,461 48,646 −0.22 0.83 0.86 0.84 

Zt3 107,666 68,712 1.57 0.12 0.32 0.25 

Zt × DTax 574,225 109,356 5.25 0.00 0.00 0.00 
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Figure 6. ACF and PACF plots of residuals from the MLR model for 
Marketing Expenditure. 

 

 
Figure 7. Plots of ACF and P-values of L-B test for residuals from the 
ARIMA(3,0,0) model for Marketing Expenditure. 
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Figure 8 shows the Marketing Expenditure time series (top left) and five 
bootstrap samples generated from it using the estimated ARIMA(0,0,2) model 
given in Table 5. 

Figure 9 shows the histograms of 1000 bootstrap P-values for ARIMA and 
HAC methods for the statistically significant term DTax; Figure 10 shows the 
same for the insignificant term Zt2. Both of these figures show that the ARIMA 
and HAC methods provide similar results.  

Example 3: Synthetic time series 
The advantages of working with a simulated (synthetic) time series are that the 

truth is known and hence the estimates can be compared to the corresponding 
true parameter values. 

The synthetic time series was generated from the following model:  

0 5000 20 3000 DJun 3200 DJul 2500 DAug
        1000 DSep 4500 DE

tY t
e

= + × + × + × + ×

+ × + × +
 

where 
1,2, ,84t =   with 1 representing January month of Year 1 and 84 representing 

December of Year 7. 
DE = dummy variable for the intervention event E. 
DE = 1 for 43,44, ,67t =  ; 0 otherwise. 
e = ARIMA(2,0,2) error process with 1 0.8897φ = , 2 0.4858φ = − , 

1 0.2279θ = − , 2 0.2488θ =  and sd 1000σ = . 
 

 

Figure 8. Time series plots of Marketing Expenditure (top left) and five 
bootstrap samples. 
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Figure 9. Histograms of P-values of the intervention term DTax for the four 
methods considered in this paper from 1000 parametric bootstrap samples 
generated from the Marketing Expenditure data. 

 

 
Figure 10. Histograms of P-values of the dummy variable for the quadtratic 
term Zt2 for the four methods considered in this paper from 1000 parametric 
bootstrap samples generated from the Marketing Expenditure data. 
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Figure 11, plots of the ACF and PACF functions, suggest an ARIMA(2,0,2) 
model, and Figure 12 shows that ARIMA(2,0,2) model yields uncorrelated resi-
duals. Note that the synthetic time series was generated from an ARIMA(2,0,2) 
process. 

Tables 7-9 show the fitted MLR model, the ARIMA(2,0,2) model, and the 
significance test results from the HAC estimators, respectively. The true values 
used to generate the synthetic time series are also shown in these three tables. It 
can be seen from this table that all of the estimated coefficients are close to their 
corresponding true values. The intervention term DE is seen to be highly signif-
icant, and DNov is not significant.  

Figure 13 shows the synthetic time series and five bootstrap samples generat-
ed from the synthetic series and the estimated ARIMA(2,0,2) model of Table 8. 
The histograms of 1000 bootstrap P-values for the intervention term DE and the 
dummy variable for November (DNov) are shown in Figure 14 and Figure 15, 
respectively. Both of these figures again show that the ARIMA and HAC me-
thods provide similar results.  

5. Discussion 

For each of the three examples presented in this paper, the ARIMA method of 
intervention analysis and HAC methods yielded similar results. The four me-
thods (ARIMA, HAC, Kern-HAC, and Newey-West) also yielded similar results 
for 1000 bootstrap samples from the original time series in each case. These re-
sults demonstrate that the simpler HAC method can be used for intervention 

 
Table 7. MLR model fitted to the synthetic data. 

Term True value Estimated Coeff SE t-stat P-Value 

(Intercept) 5000 5052.46 474.93 10.64 0.00 

t 20 22.69 5.55 4.09 0.00 

DFeb 0 782.41 613.40 1.28 0.21 

DMar 0 −210.10 613.47 −0.34 0.73 

DApr 0 −418.36 613.60 −0.68 0.50 

DMay 0 −202.43 613.78 −0.33 0.74 

DJun 3000 3325.94 614.00 5.42 0.00 

DJul 3200 3690.96 614.93 6.00 0.00 

DAug 2500 3304.80 614.60 5.38 0.00 

DSep 1000 1466.00 614.98 2.38 0.02 

DOct 0 302.53 615.40 0.49 0.62 

DNov 0 −300.60 615.88 −0.49 0.63 

DDec 0 −734.41 616.40 −1.19 0.24 

DE 4500 4054.31 292.26 13.87 0.00 
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Table 8. ARIMA(0,0,2) regression model fitted to the synthetic data. 

Term True value Estimated Coeff SE t-stat P-Value 

ar1 0.8897 0.86 0.26 3.29 0.00 

ar2 −0.4858 −0.54 0.17 −3.08 0.00 

ma1 −0.2279 −0.20 0.29 −0.67 0.50 

ma2 0.2488 0.22 0.18 1.20 0.23 

intercept 5000 5196.30 451.88 11.50 0.00 

t 20 20.52 6.14 3.34 0.00 

DFeb 0 659.54 383.31 1.72 0.09 

DMar 0 −369.36 543.55 −0.68 0.50 

DApr 0 −533.84 619.73 −0.86 0.39 

DMay 0 −255.27 614.44 −0.42 0.68 

DJun 3000 3296.66 566.10 5.82 0.00 

DJul 3200 3619.11 534.03 6.78 0.00 

DAug 2500 3186.39 556.57 5.73 0.00 

DSep 1000 1327.86 605.77 2.19 0.03 

DOct 0 228.50 617.62 0.37 0.71 

DNov 0 −247.24 552.31 −0.45 0.65 

DDec 0 −599.44 405.99 −1.48 0.14 

DE 4500 4125.18 319.54 12.91 0.00 

 
Table 9. Results of significance tests using the three HAC estimators for the synthetic 
data. 

     P-Value 

Term True value Estimated Coeff SE t-stat HAC Kern-HAC Newey-West 

(Intercept) 5000 5052.46 524.70 9.63 0.00 0.00 0.00 

t 20 22.69 6.48 3.50 0.00 0.13 0.06 

DFeb 0 782.41 673.07 1.16 0.25 0.17 0.18 

DMar 0 −210.10 799.27 −0.26 0.79 0.77 0.75 

DApr 0 −418.36 554.21 −0.75 0.45 0.40 0.36 

DMay 0 −202.43 504.41 −0.40 0.69 0.76 0.74 

DJun 3000 3325.94 595.24 5.59 0.00 0.00 0.00 

DJul 3200 3690.96 542.29 6.81 0.00 0.00 0.00 

DAug 2500 3304.80 641.68 5.15 0.00 0.00 0.00 

DSep 1000 1466.00 474.09 3.09 0.00 0.01 0.01 

DOct 0 302.53 516.78 0.59 0.56 0.57 0.53 

DNov 0 −300.60 404.99 −0.74 0.46 0.19 0.26 

DDec 0 −734.41 389.84 −1.88 0.06 0.00 0.00 

DE 4500 4054.31 239.75 16.91 0.00 0.00 0.00 
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Figure 11. ACF and PACF plots of residuals from the MLR model for the 
synthetic data. 

 

 
Figure 12. Plots of ACF and P-values of L-B test for residuals from the 
ARIMA(3,0,0) model for the synthetic data. 
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Figure 13. Time series plots of the synthetic data Y0 (top left) and five 
bootstrap samples. 

 

 
Figure 14. Histograms of P-values of the intervention term DE for the four 
methods considered in this paper from 1000 parametric bootstrap samples 
generated from the synthetic data. 
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Figure 15. Histograms of P-values of the dummy variable for DDec for the four 
methods considered in this paper from 1000 parametric bootstrap samples 
generated from the synthetic data. 

 
analysis instead of the ARIMA model, especially in situations where finding the 
right ARIMA model turns out to be challenging.  
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