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Abstract 
In this paper, we construct a class of semi-implicit difference method for 
time fractional diffusion equations—the group explicit (GE) difference scheme, 
which is a difference scheme with good parallelism constructed using Saul’yev 
asymmetric scheme. The stability and convergence of the GE scheme of time 
fractional diffusion equation are analyzed by mathematical induction. Then, 
the theoretical analysis is verified by numerical experiments, which shows 
that the GE scheme is effective for solving the time fractional diffusion equa-
tion. 
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1. Introduction 

The fractional anomalous diffusion model has a profound physical background 
and rich theoretical connotation. It is widely used in the fields of fluid mechan-
ics, signal processing and information recognition, fractal theory, etc. It has be-
come an important tool for describing various complex mechanical behaviors 
[1] [2] [3]. However, the analytical solutions of fractional differential equations 
are mostly difficult to give explicitly. It is necessary and important to study the 
numerical solution of fractional differential and integral equations [4] [5] [6]. 

In recent years, there have been many research results on numerical solutions 
of fractional differential equations, such as spectral methods [7], finite element 
methods [8] [9]. However, difference methods are still dominated [10] [11] [12]. 
Zhuang and Liu [13] constructed a class of implicit difference schemes with un-
conditional stability and convergence for time fractional diffusion equations. 
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Yuste [14] constructed a weighted average finite difference method for the time 
fractional slow diffusion problem by G-L approximation and proved its stability. 
Tadjeran and Meerschaert [15] constructed a numerical method with second- 
order precision in time and space for a class of variable value initial step frac-
tional diffusion equations. The method is to combine the classical CN scheme 
with the extrapolation technique. Gao and Sun [16] gave a compact difference 
scheme for the slow diffusion equation, which has fourth-order accuracy in space. 
However, due to the memory and non-locality of fractional derivatives, the com-
putational and storage quantities of numerical calculations of fractional differen-
tial equations are very large. When we simulate practical problems, the require-
ments of computational resources will be very high. However, the existing serial 
algorithm has a large amount of calculation and relatively low computational ef-
ficiency. We mainly study the fast numerical algorithm of fractional differential 
equation to improve the numerical simulation efficiency of fractional order mod-
eling this paper. 

With the rapid development of multi-core and cluster technology, parallel al-
gorithms have become one of the mainstream technologies to improve the effi-
ciency of numerical calculations [17] [18]. Zhang and Gu [19] proposed a piece-
wise implicit scheme for the integer order diffusion equations in an asymme-
trical scheme, and used alternating techniques to construct multiple explicit- 
implicit and implicit alternating parallel methods. This kind of parallel method 
has been widely used in integer order evolution equations. For fractional diffe-
rential equations, Gong and Bao [20] [21] performed parallel computation on 
the explicit difference schemes of fractional reaction-diffusion equations. The 
core content of their parallelization is parallel calculation of matrix and vector 
product, vector and vector addition. Sweilam and Moharram [22] constructed a 
parallel C-N scheme for time fractional parabolic equations. The core of the 
method is to solve the equation Ax b=  using the preconditioned conjugate 
gradient method. We do not study the parallel algorithm of equations from the 
perspective of numerical algebra, but based on the parallelization of traditional 
differential schemes for solving fractional diffusion equations numerically [23]. 

For the time fractional diffusion equation, the Saul’yev asymmetric scheme is 
given, and then the Saul’yev asymmetric scheme is used to construct the group 
explicit (GE) scheme of the time fractional diffusion equation with parallel na-
ture. The mathematical induction method is used to prove that the GE of the time 
fractional diffusion equation is unconditionally stable and convergent. Finally, the 
theoretical analysis is verified by numerical experiments, which shows that the GE 
scheme is very effective for solving time fractional diffusion equations. 

2. GE Scheme of Fractional Diffusion Equation 
2.1. Fractional Diffusion Equation 

We consider the initial-boundary value problem of the fractional diffusion equa-
tion 
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When 1α = , Equation (1) is a well-known diffusion equation (Markovian 
process): 
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2.2. Construction of GE Scheme for Fractional Diffusion Equation 

Define , 0,1, 2, ,kt k k nτ= = � , , 0,1, 2, ,ix ih i m= = � , where T
n

τ = , Lh
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=   

are the grid sizes in time and space respectively. Let k
iu  be the numerical ap-

proximation to ( ),i ku x t . The time fractional derivative term is approximated 
by the following scheme: 
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here ( )1 , 0,1, 2, ,jb j j j nα α= + − = � . 
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Construct the Saul’yev asymmetric scheme of Equation (1): 

( ) ( )1 1 1
, 1 1 12

1, .k k k k k
h i k i i i i iL u x t u u u u f

h
α
τ

+ + +
+ + −= − − + +            (5) 
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where 1,2, , 1i m= −� , 0,1,2, , 1k n= −� . Let 2h

ατµ = , ( )2r µ α= Γ − , the 

above two types of Saul’yev asymmetric schemes can be rewritten as follows: 
When 0k = , 
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The GE scheme of the time fractional diffusion equation is designed as fol-
lows: the four “○” in Figure 1 indicate the establishment of the Saul’yev asym-
metric format (10) at point ( ), 1i k + , four “□” means that the Saul’yev asym-
metric format (9) is established at point ( )1, 1i k+ + . The grouping explicit 
scheme is a combination of these two asymmetric schemes, and the difference 
equation is the following 2 2×  equations. 
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Simplified, when 0k = , 
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Figure 1. Diagram of the GE scheme segmentation processing point. 
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From Equations (13) and (14), we can know that the value of two points 1k
iu +  

and 1
1

k
iu +
+  on the 1k + th time layer can be calculated explicitly by function val-

ues known in the previous k layers. Therefore, it can be seen that the method 
formed by Equations (9) and (10) is called a group explicit method, or GE me-
thod, and this method is easy to calculate in parallel. 

According to the parity of the number of points m, the GE method has dif-
ferent forms. 

When the number of points m is even, then 1m −  is an odd number, there 
are ( )2 2m −  GE groups, and a single point. This single point is either a right 
single point or a left single point. 

1) GER method 
It has a right single point and ( )2 2m −  GE groups. From ( )1, 1k +  to  

( )2, 1m k− +  using GE scheme ( )2 2m −  times consecutively, the value of right 
single point ( )1, 1m k− +  is calculated by the asymmetric scheme (9), see figure. 
The GER method can be expressed as the following matrix form: 

( ) ( )1 1
1 2 1, 1, 2,3,k k k kI rG U I rG U h f b k+ ++ = − + + + = �  
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T

1 2 1, , ,k k k k
mh h h h − =  � . 

2) GEL method 
It has a left single point, except that the value of the point ( )1, 1k +  is calcu-

lated by the asymmetric scheme (10), from ( )2, 1k +  to ( )1, 1m k− +  using GE 
scheme ( )2 2m −  times consecutively. 

( ) ( )1 1
2 1 2 , 1, 2,3,k k k kI rG U I rG U h f b k+ ++ = − + + + = � , 

where 
T1

2 0 ,0, ,0,k k
mb ru ru+ =  � . 

When the number of points m is odd, and 1m −  is even, there are ( )1 2m −  
or ( )3 2m −  GE groups, including two single-point calculations, that is, there 
are both right single points and left single points. 

3) GEU method 
Except for ( )3 2m −  GE groups, it has both right single points and left sin-

gle points. GEU (group explicit with both ungrouped ends) scheme: 
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3. Stability Analysis of GE Scheme 

In this section, we analyze the stability of the GE scheme. Taking GER scheme as 
an example, the stability of GER scheme is analyzed. Assume  

( )0,1,2, , ; 0,1, 2, ,k
iu i m k n= =� � �  is the numerical solution of GER scheme. Er-
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In summary, we have 1 0kE E+

∞ ∞
≤ . Therefore, when 1r ≤ , GE scheme of 

the fractional diffusion equation is stable. Then, we can get Theorem 1. 
Theorem 1. When 1r ≤ , GE scheme of fractional diffusion equation is sta-

ble. 

4. Error Analysis of GE Scheme 

Let ( )( ), 1, 2, , 1; 1,2, ,i ku x t i m k n= − =� �  is analytical solution of time frac-
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For GE scheme, firstly we analyze the accuracy of the two types of Saul’yev 
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asymmetric schemes. 
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+ + +

+ +

 ∂ ∂= Γ − − 
∂ ∂  

 ∂ ∂ ∂
− − +  ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ − + + +
∂ ∂ ∂   

When Saul’yev asymmetric scheme 2I : 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 12

2 2 3 42
1 1 1 1

2 2 3

3 42
1 1 2 2

22 4

1 , , , ,

, , , ,
2 6

, ,
,

2 24

i k i k i k i k

i k i k i k i k

i k i k

u x t u x t u x t u x t
h

u x t u x t u x t u x th
h x t hx x t x t

u x t u x th C h
x t x

α

τ τ τ

τ τ

+ + − +

+ + + +

+ + −

 − − + 

 ∂ ∂ ∂ ∂
= + − + −  ∂ ∂∂ ∂ ∂ ∂ ∂ 

∂ ∂
− + + +

∂ ∂ ∂  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
1 11

2

2 3 42
1 1 1

2 3

3 42
1 1 2 2

2 4

, ,
2

, , ,
2 6

, ,
.

2 24

i k i kk
i

i k i k i k

i k i k

u x t u x t
R

t x

u x t u x t u x th
h x t h x t x t

u x t u x th C h
x t x

α
α

α

α

τ α

τ τ τ

τ τ τ

+ ++

+ + +

+ +

 ∂ ∂= Γ − − 
∂ ∂  

 ∂ ∂ ∂
− − + −  ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ − + + +
∂ ∂ ∂   

It can be seen that there are three terms in the Saul’yev asymmetric scheme 1I  

and 1k
iR +  in and of which have the same form but opposite signs ( ( )2

1,i ku x t
h x t
τ +∂

∂ ∂
 

etc.), so inner errorscan be eliminated by simultaneous 1I  and 2I , so there is 

no term of 
h
τ 
 
 

, that is ( )1 2 2k
iR C hατ τ+ ≤ + . 

In summary, for the GE scheme we have ( )2 2 , 1, 2, ,k
iR C h k mατ τ≤ + = � . 

Lemma 1. ( )1 2 2
1 , 1, 2, ,k

ke Cb h k nατ τ−
−∞

≤ + = � . Where 
1 1
maxk k

ii m
e e

∞ ≤ ≤ −
= , 

C is a constant. 
Proof. Using mathematical induction. When 1k = , let 1 1 1

1 1
maxl ii m

e e e
∞ ≤ ≤ −
= = , 

We will consider 1
le  in two cases. 

When Saul’yev asymmetric scheme 1I : 

( )
( )

( )

1 1 1
1

1 1
1

1 1 2 2
0

1

1

.

l l l

l l

i

e r e r e

r e re

R Cb hατ τ

+

+

−

≤ + −

≤ + −

= ≤ +
 

Similarly, when Saul’yev asymmetric scheme 2I , we have ( )1 1 2 2
0le Cb hατ τ−≤ + . 

Assume that ( )1 2 2 , 1, 2, ,j
je Cb h j kατ τ−

∞
≤ + = �  and 1 1

1 1
maxk k

l ii m
e e+ +

≤ ≤ −
= . 

From the property of jb  we can know that 1 1, 0,1, 2, ,j kb b j k− −≤ = � . 

Similarly we consider 1k
le +  in two cases. For Saul’yev asymmetric scheme 1I : 

( )
( )

( )

( )

1 1 1
1

1 1
1

1
1

1 1 1
1

1
1

1 1
1

1

1

1

1

k k k
l l l

k k
l l

k
k k k j k
l l j l l

j

k
k k k j k
l l j l l

j

e r e r e

r e re

r b e re c e R

r b e re c e R

+ + +
+

+ +
+

−
− +

− +
=

−
− +

+
=

≤ + −

≤ + −

= − − + + +

≤ + − + + +

∑

∑
 

( )

( ) ( )

( )

1
1

1 1
1

1
2 2

1 1
1

1 2 2

1

1

.

k
k k j k
l j l l

j

k
k k j

j
j

k

b e c e R

b e c e C h

Cb h

α

α

τ τ

τ τ

−
− +

+
=

−
−

+∞ ∞
=

−

≤ − + +

≤ − + + +

≤ +

∑

∑

 
Similarly, when Saul’yev asymmetric scheme 2I , we have  
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( )1 1 2 2k
l ke Cb hατ τ+ −≤ + . 
So for both types of Saul’yev asymmetric schemes, we have  

( )1 1 2 2k
l ke Cb hατ τ+ −≤ + , k Tα ατ ≤  and 

( ) ( )
1 1 1

1 1 11

1lim lim lim lim .
111 11 1

k

k k k k

b k k k
k kk k

k

α

α α αα αα

− − − −

− − −−→∞ →∞ →∞ →∞
= = = =

−−+ −  + − 
   

Therefore, we have 

( ) ( ) ( )2 2 2 2 2 2ke Ck h Ck h CT hα α α α α α ατ τ τ τ τ− −

∞
≤ + = + ≤ +� � � , 

where C is a constant. 
Theorem 3. Assume k

iu  is an approximate solution calculated from the GE 
scheme of the fractional diffusion equation, then 

( ) ( )2 2,k
i i ku u x t C hατ −− ≤ + . 

5. Numerical Experiment 

In this section, we will compare and analyze the analytic solutions of GE scheme 
and the classical implicit scheme by numerical examples. It shows that GE 
scheme in this paper is effective for solving time fractional diffusion equations. 
GE scheme can also be applied to other types of time fractional equations. 

Consider the following time fractional diffusion equation [13]: 

( ) ( )2

2

, ,
,0 2,0 .

u x t u x t
x t

t x

α

α

∂ ∂
= ≤ ≤ <

∂ ∂
               (15) 

The boundary conditions are: ( ) ( )0, 2, 0u t u t= = , and the initial conditions 
are: 

( ) ( ) ( )
2 ,0 0.5,

,0
4 2 3,0.5 2.
x x

u x g x
x x
≤ ≤= =  − ≤ ≤

             (16) 

The function ( )g x  indicates that the heat source is at point 0.5x = . 
Through finite sine transform and Laplace transform, we can obtain the ana-

lytical solution of the time fractional diffusion Equation (15) under the above 
boundary condition (16): 

( ) ( ) ( ) ( ) ( )2 2
0

1

2, sin sin d
L

n
u x t E a n t anx g r anr r

L
α

α

∞

=

= −∑ ∫ ,       (17) 

where ( )E zα  is Mittag-Leffler function ( ) ( )0 1

k

k

zE z
kα α

∞

=

− =
Γ +∑ , a L= π . 

Take 0.5t =  and 0.5α = , the analytical solution is compared with the nu-
merical solution of implicit scheme and GE scheme given in this paper. Al-
though there is an analytical solution for this type of fractional diffusion equa-
tion, it can be seen from the form that the analytic solution is very complicated. 
For the convenience of calculation, only the first 20 terms are taken for the analyt-
ical solution formula (3). For the numerical solution, only 40 and 1000 of space 
and time are considered. Compare and analysis of analytical solution and two nu-

https://doi.org/10.4236/jamp.2020.81012


L. F. Wu et al. 
 

 

DOI: 10.4236/jamp.2020.81012 168 Journal of Applied Mathematics and Physics 
 

merical solutions are shown in Table 1, whose curves are show in Figure 2. 
It can be seen from Figure 2 that the surface of GE scheme solution is smooth, 

which is same as the surfaces of analytical solution and the implicit scheme solu-
tion, which shows that GE scheme is feasible to solve the fractional diffusion 
equation. In terms of accuracy, it can be seen from Table 1 that the difference 
scheme solution is very close to the analytical solution (in the case of the first 20 
terms). It can be seen that difference scheme is effective for solving time frac-
tional diffusion equation. In terms of calculation time (CPU time), it can be seen 
that when the first 20 terms of the analytical solution formula are taken, the cal-
culation time is 21.5483 s, which shows that the calculation amount is very large. 
The computation time of the two difference schemes is less than 1 s. It can be 
seen that the difference method is effective numerical methods for solving the 
time fractional diffusion equation. 

By comparing GE scheme of this paper with the analytical solution and the 
implicit difference scheme, it can be seen from Table 1 that the absolute error of 
the numerical solution of two schemes is between 10−3 - 10−4 , but the calculation 
amount (CPU time) of GE scheme given in this paper is only 57.1% of implicit 
difference scheme. Because GE schemein this paper has the property of parallel 
computing, compared with the implicit difference scheme, GE scheme of the 
fractional diffusion equation improves the computing efficiency by about 43% 
when the calculation accuracy is equivalent. When performing long term calcu-
lations, the advantages of parallel computing in GE scheme will be more ob-
vious. 

 
Table 1. Compare and analysis of two difference scheme solutions and analytical solutions. 

 0.25 0.5 0.75 1 1.25 1.5 CPU time 

Exact solution 0.101019 0.178867 0.215642 0.214990 0.185472 0.134982 21.5483 

Implicit scheme 0.100705 0.178342 0.214823 0.214068 0.184616 0.134329 0.8341 s 

GE scheme 0.101206 0.179110 0.215611 0.214716 0.185052 0.134556 0.4761 s 

 

 
Figure 2. Curves of solutions of analytic solution and two difference schemes. 
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Table 2. Order of time convergence of GE scheme ( 100m = ). 

τ  E∞  
( )
( )2

,
log

, 2
E h

E h
τ
τ

∞

∞  

1/400 1.027403e−3 — 

1/800 3.596508e−4 1.514334 

1/1600 1.269148−4 1.502736 

1/3200 4.468048e−5 1.506144 

 
Table 3. Order of convergence of GE scheme ( 2000n = ). 

h E∞  
( )
( )2

,
log

, 2
E h

E h
τ
τ

∞

∞  
1/20 1.2124 e−003 — 

1/40 3.0265e−004 2.0096 

1/80 7.1816e−005 2.0963 

1/160 2.0297e−005 2.1867 

 
The convergence of GE scheme and its definition is verified in following. De-

fine ( ) ( )
0

, max , N
i N ii M

E h u x t uτ∞ ≤ ≤
= − . A spatial division of 80 is selected to ana-

lyze the time convergence of GE scheme, a time division of 2000 is selected to 
verify the convergence of GE scheme in the spatial direction. The calculation 
results are shown in Table 2 and Table 3. From Table 2, we can see that GE 
scheme converges linearly in the time direction. From Table 3, we can see that 
GE scheme converges squarely in the spatial direction. The numerical results are 
consistent with the theoretical analysis. 

6. Conclusion 

In this paper, the group explicit (GE) scheme of the time fractional diffusion 
equation is constructed by applying the Saul’yev asymmetric scheme. We ana-
lyzed the stability and convergence of GE scheme. GE scheme has the property 
of parallel computing, and its computation efficiency is nearly 60% less than that 
of the classic implicit scheme. The numerical experimental results are consistent 
with the theoretical analysis. GE scheme has 2 α−  order of convergence in time 
and second order of convergence in space. Theoretical analysis and numerical 
experiments show that GE scheme is effective for solving time fractional diffu-
sion equations. Especially for long term history and large computational domain 
problems, the advantages of GE scheme for parallel computing will be more ob-
vious. 
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