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Abstract 
In this paper, we provide and analyze a new scaled conjugate gradient method 
and its performance, based on the modified secant equation of the Broy-
den-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified 
nonmonotone line search technique. The method incorporates the modified 
BFGS secant equation in an effort to include the second order information of 
the objective function. The new secant equation has both gradient and func-
tion value information, and its update formula inherits the positive definite-
ness of Hessian approximation for general convex function. In order to im-
prove the likelihood of finding a global optimal solution, we introduce a new 
modified nonmonotone line search technique. It is shown that, for non-
smooth convex problems, the proposed algorithm is globally convergent. 
Numerical results show that this new scaled conjugate gradient algorithm is 
promising and efficient for solving not only convex but also some large scale 
nonsmooth nonconvex problems in the sense of the Dolan-Moré perfor-
mance profiles. 
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1. Introduction 

The conjugate gradient method (CG) and Quasi-Newton method are two major 
popular iterative methods for solving smooth unconstrained optimization prob-
lems, and Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is one of the most 

How to cite this paper: Woldu, T.G., 
Zhang, H.B. and Fissuh, Y.H. (2020) A 
Scaled Conjugate Gradient Method Based 
on New BFGS Secant Equation with Mod-
ified Nonmonotone Line Search. American 
Journal of Computational Mathematics, 10, 
1-22. 
https://doi.org/10.4236/ajcm.2020.101001 
 
Received: September 24, 2019 
Accepted: January 5, 2020 
Published: January 8, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2020.101001
https://www.scirp.org/
https://doi.org/10.4236/ajcm.2020.101001
http://creativecommons.org/licenses/by/4.0/


T. G. Woldu et al. 
 

 

DOI: 10.4236/ajcm.2020.101001 2 American Journal of Computational Mathematics 
 

efficient quasi-Newton methods for solving small and medium sized uncon-
strained optimization problems [1] [2] [3] [4]. The iterative method is computed 
by  

1 ,k k k kx x dα+ = +                         (1) 

where kα  is a step size and kd  is a search direction. For continuously diffe-
rentiable function : nh R R→ , the minimization problem:  

( )min
nx R

h x
∈

                          (2) 

has been well studied for several decades. Conjugate gradient method is among 
the preferable methods for solving problem (2) with search direction kd  given 
by  

1 if 1,
if 0,

k k k
k

k

h d k
d

h k
β −−∇ + ≥

= −∇ =
                (3) 

where kh∇  is the gradient of an objective function ( )h x  at k iterate and kβ  
is a scalar describing the attributes of the CG methods. 

Some well-known formulas for the scalar kβ  are the Hestenes-Stiefel (HS) 
[5], Fletcher-Reeves (FR) [6], Polak-Ribière and Polak (PRP) [7], and Dai-Yuan 
(DY) [8] given by  

T T

T 2
1 1

, ,HS PRPk k k k
k k

k k k

h y h y
d y h

β β
− −

∇ ∇
= =

∇
 

2 2

2 T
11

, ,k kFR DY
k k

k kk

h h
d yh

β β
−−

∇ ∇
= =

∇
 

where ( ) ( )1k k ky h x h x −= ∇ −∇  and ⋅  denotes the Euclidean norm. Due to 
their simplicity and low memory requirement, CG methods are more effective 
and desirable for large scale unconstrained smooth problems [9] [10]. The global 
convergence properties of nonlinear CG methods have been analyzed under the 
weak Wolfe line search  

( ) ( )
( )

T

T T

,

,

k k k k k k k

k k k k k k

h x d h x h d

h x d d h d

α ςα

α ρ

 + ≤ + ∇

∇ + ≥ ∇

                (4) 

and the strong Wolfe line search: 

( ) ( )
( )

T

T T

,

,

k k k k k k k

k k k k k k

h x d h x h d

h x d d h d

α ςα

α ρ

 + ≤ + ∇

∇ + ≤ ∇

                (5) 

where 0 1ς ρ< < < . CG methods use relatively little memory for large scale 
problems and require no numerical linear algebra, so each step is quite fast. 
However, they do not have second order information of the objective function, 
and typically converge much more slowly than Newton or quasi-Newton me-
thods. 

The quasi-Newton method is an iterative method with second order informa-
tion of the objective function, and BFGS is the effective quasi-Newton method 
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with the search direction  

,k k kd B h= − ∇                         (6) 

where kB  is an approximation of the Hessian matrix of h at kx . The update 
formula for kB  is defined by 

T T

1 T T ,k k k k k
k k

k k k k k

B s s y y
B B

s B s y s+ = − +                   (7) 

where ks  is defined as 1k k ks x x+= − , and the Hessian approximation 1kB +  of 
(7) satisfies the standard secant equation  

1 ,k k kB s y+ =                          (8) 

if T 0k ky s > , which is known as the curvature condition. The BFGS method has 
very interesting properties and remains one of the most respectable qua-
si-Newton methods for unconstrained optimization [11]. The theory of BFGS 
method and its global convergence have been established by many researchers 
(see [12]). For convex objective function, using some special inexact line search, 
it has been proved that the BFGS method is globally convergent (see [13] [14] 
[15]). However, when the objective function is nonconvex, the BFGS method 
under exact line search may fail to converge [16]. Moreover, Dai [17] proved 
that the BFGS method may fail for nonconvex functions with Wolfe line search 
techniques given in (4) and (5) [18]. Wolfe line search technique is the most 
common monotone line search technique, and it may leads to small steps with-
out making significant progress to the minimum when the contours of the ob-
jective functions are a family of curves with large curvature (see [19] [20] [21] 
[22]). In order to overcome this drawback, the first nonmonotone line search 
technique was proposed by Grippo et al. [19] for Newton’s method. With this 
initiative, many nonmonotone line search techniques have been proposed in re-
cent years [23]. Yuan et al. [24] developed a modified limited memory BFGS 
method with the update formula that has a higher order approximation to exact 
Hessian, and its convergence property is analyzed under the nonmonotone line 
search type. However, the method converges for only uniformly convex func-
tions. Li et al. [25] proposed a new BFGS algorithm with modified secant equa-
tion which achieves both global and superlinear convergence for generally con-
vex functions under the nonmonotone line search of [19]. Su and Rong [26] in-
troduced and established a new spectral CG method and its implementation un-
der a modified nonmonotone line search technique. They introduced a new 
spectral conjugate gradient direction  

1

0

if 1,
if 0,

k k k k
k

h d k
d

h k
θ β −− ∇ + ≥

= −∇ =
                (9) 

where  
T

21 ,k k k
k

k

d h
h

β
θ

∇
= +

∇
                      (10) 
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( )

T
1

2 T
1 1 1

,
1

k k
k

k k k

h y
h d y

β
τ τ

−

− − −

∇
=

− ∇ +
               (11) 

and [ ]0,1τ ∈ . It is not difficult to notice that the denominator of (11) is the 
convex combination of the denominator of the conjugate parameters in HS and 
PRP conjugate gradient methods. The choice of spectral parameter given (10) 
ensures the sufficient descent property of the search direction without depen-
dence of line search. The convergence property of their method analyzed under 
a new modified nonmonotone line search with some mild conditions. However, 
this spectral CG method has only first order information, and excludes second 
order information. When the number of dimension is large, the CG methods are 
more effective compared to the BFGS methods in term of the CPU-time but in 
term of the number of iterations and the number of function evaluations, the 
BFGS methods are better. In order to incorporate the remarkable properties of 
the CG and BFGS methods and to overcome their drawbacks, many hybrid of 
CG and BFGS methods are introduced for unconstrained smooth optimization 
[27] [28] [29]. However, the usage of these methods is mainly restricted to solve 
smooth optimization problems. Recently, Yuan et al. [30] [31] [32] [33] intro-
duced some CG approaches to solve nonsmooth convex large scale problems 
using the smoothing regularization, and under some assumptions, the global 
convergence properties of these approaches are analyzed. Yuan and Wei [34] 
proposed the Barzilai and Borwein (BB) gradient method with nonmonotone 
line search to solve nonsmooth convex optimization problems. Some imple-
mentable quasi-Newton methods are also introduced for solving the same prob-
lem (see [35] [36] [37] [38]). More recently, Ou and Zhou [39] introduced a 
modified scaled BFGS preconditioned CG algorithm, and under appropriate as-
sumptions, the method is proven to possess global convergence for nonsmooth 
convex functions. 

Motivated by the work of Ou and Zhou [39], in this paper, we propose a hy-
brid approach of the a scaled CG method and a modified BFGS method to com-
bine the simplicity of CG method and the Hessian approximation of BFGS me-
thod. Our work is mainly focused in developing the scaled conjugate search di-
rection that includes the second order information of the objective function by 
incorporating the modified secant equation of BFGS method. Opposing the 
work of Ou and Zhou [39], our method has both the function and gradient value 
information of the objective function. Moreover, our method leads to better 
descent direction than the CG methods proposed so far. To the best of our 
knowledge, this is the first work to incorporate the scaled CG algorithm with the 
BFGS secant equation which contains both the function and gradient value in-
formation of the objective function for solving large scale nonsmooth optimiza-
tion. Under the new modified nonmonotone line search technique, the global 
convergence of the algorithm is analyzed for nonsmooth convex problems. 

The paper is organized as follows. In the next section, we consider a non-
smooth convex problem and review their basic results. In Section 3, we propose 
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a new scaled CG algorithm that incorporates the BFGS secant equation which 
has both function value and gradient information of the objective function via 
the smoothing regularization. Using the new modified nonmonotone line search 
technique, we prove the global convergence of our new algorithm for non-
smooth convex problems. Numerical results and related comparisons are re-
ported in Section 4. Finally, Section 5 concludes our work. 

2. Nonsmooth Convex Problems and Their Basic Results 

In this section, we consider the unconstrained optimization problem 

( )min ,
nx R

f x
∈

                         (12) 

where : nf R R→  is a possibly nonsmooth convex function. This problem is 
equivalent to the following problem  

( )min ,
nx R

F x
∈

                         (13) 

where : nF R R→  is the Moreau-Yosida regularization of f [40], which is de-
fined by  

( ) ( ) 21= min ,
2nz R

F x f z z x
λ∈

 + − 
 

               (14) 

where λ  is a positive parameter. The function F is a finite-valued, continuous-
ly differentiable convex function even though the function f is nondifferentiable 
(see [40]). Let ( )p x  be the unique solution of (14). In what follows, we can ex-
press ( )F x  as  

( ) ( )( ) ( ) 21 .
2

F x f p x p x x
λ

= + −                 (15) 

Moreover, the gradient of F is globally Lipschitz continuous, i.e.,  

( ) ( ) 1 ,  , ,ng x g y x y x y R
λ

− ≤ − ∀ ∈               (16) 

where 

( ) ( ) ( )
.

x p x
g x F x

λ
−

= ∇ =                    (17) 

The point nx R∈  is an optimal solution to (12) if and only if ( ) 0g x =  (see 
[40]). Furthermore, under reasonable conditions the gradient of F is semismooth 
and some of its remarkable properties are given in [41] [42]. 

Several methods have been proposed to solve (13) by incorporating bundle 
methods and quasi-Newton methods ideas [43] [44] [45], but it is burdensome 
to evaluate the exact value of ( )p x  at any given point x [46]. Luckily, for each 

nx R∈  and any 0ε > , we can have ( ), np x Rα ε ∈  such that  

( )( ) ( ) ( )
21, , .

2
f p x p x x F xα αε ε ε

λ
+ − ≤ +              (18) 

Therefore, we can approximate ( )F x  and ( )g x  by 
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( ) ( )( ) ( )
21, , , ,

2
F x f p x p x xα α αε ε ε

λ
= + −             (19) 

and 

( ) ( ),
, ,

x p x
g x

α
α ε

ε
λ

−
=                     (20) 

respectively. Implementable algorithms to define such a ( ),p xα ε  for non-
smooth convex model can be seen in [47]. The noticeable attributes of ( ),F xα ε  
and ( ),g xα ε  by the following proposition [48].  

Proposition 1. Let ( ),p xα ε  be a vector that satisfies (18), and let ( ),F xα ε  
and ( ),g xα ε  be defined by (19) and (20), respectively. Then we obtain  

( ) ( ) ( ), ,F x F x F xα ε ε≤ ≤ +                   (21) 

( ) ( ), 2 ,p x p xα ε λε− ≤                    (22) 

and 

( ) ( ), 2 .g x g xα ε ε λ− ≤                    (23) 

Proposition 1 shows that the approximations of ( ),F xα ε  and ( ),g xα ε  
can be made arbitrarily close to the exact values of ( )F x  and ( )g x  respec-
tively.  

3. A Scaled CG Method Based on New BFGS Secant Equation 

In this section, we introduce the new scaled CG search direction that incorpo-
rates the modified BFGS secant equation, and then describe the new algorithm 
for solving nonsmooth problems. We make use of a modified nonmonotone line 
search technique introduced by [23] to compute a step size. Based on the above 
approximations, we redefine the search direction of CG method (3) to solve 
problem (13) as follows:  

( )
( )

1 1 1
1

1 1

, if 1,

, if 0,
k k k k

k
k k

g x d k
d

g x k

α

α

ε β

ε
+ + +

+
+ +

− + ≥= 
− =

            (24) 

where ε  is an appropriately chosen positive number. Ou and Zhou [39] pro-
vided a search direction defined by 

( )
( )
1 1 1

1
1 1

, if 1,

, if 0,
k k k

k
k k

Q g x k
d

g x k

α

α

ε

ε
+ + +

+
+ +

− ≥= 
− =



              (25) 

where 1
n n

kQ R ×
+ ∈  is defined  

T T T T

1 1 1 1T T T1 ,k k k k k k k k
k k k k

k k k k k k

w s s w w w s s
Q I

w s w s w s
θ θ θ+ + + +

 +
= − + + 

 
            (26) 

with 
T

1 T ,k k
k

k k

s s
w s

θ + =  

where 
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.k k k kw y t s∗= +                         (27) 

The vector ky∗  and kt  in (27) are defined as  

( ) ( )1 1, ,k k k k ky g x g xα αε ε∗
+ += −                 (28) 

and 

( )
T

2max ,0 0 .k k
k

k

s y
t t t

s

  = + > 
  

                  (29) 

It is easy to observe that the (27) has only gradient value information. In order 
to have both gradient and function value information, we replace (27) and (29) 
by  

{ }max ,0 ,k k k kw y t s∗ ∗ ∗= +                     (30) 

and 

( ) ( ) ( ) ( )( )T

1

2

6 3 , ,
,k k k k k k k k k k k

k
k

F x F x d g x d g x s
t

s

α αα α ε ε+∗
 − + + + + =   (31) 

respectively. Thus, the BFGS method with the secant equation  

1 ,k k kB s w∗
+ =                         (32) 

and the update formula  
T T

1 T T ,k k k k k
k k

k k k k k

B s s w w
B B

s B s w s

∗ ∗

+ ∗= − +                  (33) 

has both gradient and function value information, and the matrix 1kB +  inherits 
the positive definiteness of kB  for generally convex functions. Using the secant 
Equation (32), we propose the new search direction is defined by  

( )
( )
1 1 1 1 1

1
1 1

, ,  if 1,

, , if 0,
k k k k k k k

k
k k

g x d w k
d

g x k

α

α

θ ε β ϑ

ε

∗
+ + + + +

+
+ +

− + − ≥= 
− =



      (34) 

where 

( )
( )

( )TT
1 1 1 1

1 2

1 1

, ,
2 ,

,
k k k k k k

k
k kk k

d g x g x w
d wg x

α α

α

ε ε
θ

ε

∗
+ + + +

+ ∗

+ +

 
 = −
 
 

          (35) 

( )T
1 1

1 T

,
,k k k

k
k k k k

g x w
d w d y

α ε
β

∗
+ +

+ ∗ ∗
=

+
                   (36) 

and 

( )T
1 1

1

,
.k k k

k
k k

d g x
d w

α ε
ϑ + +

+ ∗
=                     (37) 

Now, based on the above search direction, we describe our new scaled CG al-
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gorithm with a modified nonmonotone line search for solving problem (13) as 
follows.  

Algorithm 1 
Step 0. Given ( ) ( ) ( )0, 0,1 , 0,1 , 0,1β ε σ> ∈ ∈ ∈ , and a point 0

nx R∈ . Set 
( )0 0 0,d g xα ε= −  and : 0k = . 

Step 1. If ( ),k kg xα ε <  , then stop, else go to the next step. 
Step 2. Compute the search direction kd  by using (34)-(37). 
Step 3. Set trial step size 1kα = .  
Step 4. Set 1k k k kx x dα+ = +  and choose a scalar 1kε +  such that  

10 k kε ε+< < .  
Step 5. Let ( ]0,1µ ∈ , 1M ≥  is a positive integer, define  
( ) { }min 1,m k k M= + , and choose  

( )
( ) 1

0
,  0, 1, 2, , 1, 1.

m k

ki ki
i

i m kµ µ µ
−

=

≥ = − =∑  

Let 0kα ≥  be bounded above and satisfy:  

( )

( )
( )

( ) ( )

1

1
T

0

,

max , , , , .

k k k k

m k

k k ki k i k i k k k k
i

F x d

F x F x g x d

α

α α α

α ε

ε µ ε σα ε

+

−

− −
=

+

 
≤  

 
∑

     (38) 

If (38) does not holds, define k kα βα=  and go to step 5. 
Step 6. Set K := k + 1 and go to step 1.  
It can be observed that the line search technique in step 5 of Algorithm 1 is a 

nonmonotone line search technique with some modifications. 

Convergence Analysis 

In this subsection, we establish the global convergence of our method for non-
smooth convex problem (12). To prove the global convergence of Algorithm 1, 
the following Lemmas are needed.  

Lemma 1. Assume that the search direction kd  is generated by Algorithm 1, 
then for all 0k ≥ , we have  

( ) ( )
2T

1 1 1 1 1, , ,k k k k kg x d g xα αε ε+ + + + +≤ −               (39) 

and 

( )1 1 15 , .k k kd g xα ε+ + +≤                    (40) 

Proof. If 0k = , then  

( ) ( ) ( ) ( )
2T T

0 0 0 0 0 0 0 0 0, , , , ,g x d g x g x g xα α α αε ε ε ε= − = −  

and 

( ) ( ) ( )0 0 0 0 0 0 0, , 5 , .d g x g x g xα α αε ε ε= − ≤ ≤  

Let 1k ≥ , then from (34) we have  
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( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

T
1 1 1

2 T T
1 1 1 1 1 1 1 1 1

T
2 T1 1

1 1 1 1 1T

T
T1 1

1 1

T
2 1

1 1

,

, , ,

,
, ,

,
,

,
2 ,

k k k

k k k k k k k k k k k

k k k
k k k k k k

k k k k

k k k
k k k

k k

k k k
k k

g x d

g x g x d g x w

g x w
g x g x d

d w d y

d g x
g x w

d w

d g x
g x

α

α α α

α
α α

α
α

α
α

ε

θ ε β ε ϑ ε

ε
θ ε ε

ε
ε

ε
ε

+ + +

∗
+ + + + + + + + +

∗
+ +

+ + + + +∗ ∗

+ + ∗
+ +∗

+
+ +

= − + −

≤ − +
+

−

= − +





( ) ( )T1
1 1,k k k

k k

g x w
d w

α ε+ ∗
+ +∗

 

( ) ( )

( ) ( )

( ) ( ) ( )

( )
( )

( )

T
T1 1

1 1T

T
T1 1

1 1

T
2 T1 1

1 1 1 1T

2
2 1 1

1 1

2

1 1

,
,

,
,

,
2 , ,

,
2 ,

, .

k k k
k k k

k k k k

k k k
k k k

k k

k k k
k k k k k

k k k k

k k
k k k k

k k

k k

g x w
g x d

d w d y

d g x
g x w

d w

g x w
g x g x d

d w d y

g x
g x d w

d w

g x

α
α

α
α

α
α α

α
α

α

ε
ε

ε
ε

ε
ε ε

ε
ε

ε

∗
+ +

+ +∗ ∗

+ + ∗
+ +∗

∗
+ +

+ + + +∗ ∗

+ + ∗
+ + ∗

+ +

+
+

−

= − +
+

 
 ≤ − +   
 

= −

 

Once more, (34) yields that  

( )

( ) ( ) ( )

( ) ( )

( )
( )

( )

1 1 1 1 1 1

T T
1 1 1 1

1 1 1 T

1 1 1 1 1

3

1 1
1 1 2

1 1

,

, ,
,

, 2 ,

,
4 ,

,

k k k k k k k k

k k k k k k
k k k k k

k k k k k k

k k k k k

k k k k
k k

k kk k

d g x d w

g x w d g x
g x d w

d w d y d w

g x g x

d w g x
g x

d wg x

α

α α
α

α α

α
α

α

θ ε β ϑ

ε ε
θ ε

θ ε ε

ε
ε

ε

∗
+ + + + + +

∗
+ + + + ∗

+ + + ∗ ∗ ∗

+ + + + +

∗
+ +

+ + ∗
+ +

= − + −

= − + −
+

≤ +

 
 ≤ +   
 

≤







( )1 15 , .k kg xα ε+ +

 

Thus, the proof is completed. 
Lemma 1 shows that the search direction kd  developed in (34)-(37) leads to 

the most sufficiently descent direction and it belongs to a trust region.  
Lemma 2. Let the step size kα  satisfy (38), then there exist 0β >  satisfy a  

( ) ( )T

2

,1
min 1, .

k k k

k
k

g x d

L d

α εσ β
α

 − ≥  
  

             (41) 

Proof. If 1kα =  satisfies the formula (38), then the proof is completed. Oth-
erwise, there exist β  such that  
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( )
( )

( ) ( )

( ) ( )

1

1
T

0

T

,

max , , , ,

, , .

k
k k k

m k
k

k k ki k i k i k k k
i

k
k k k k k

F x d

F x F x g x d

F x g x d

α

α α α

α α

α
ε

β
α

ε µ ε σ ε
β

α
ε σ ε

β

+

−

− −
=

 
+ 

 
  > + 
  

> +

∑  

Thus, 

( ) ( )T
1, , , .k k

k k k k k k k kF x d F x g x dα α αα α
ε ε σ ε

β β+
 

+ − > 
 

       (42) 

Using mean value theorem, we have  
( ) ( )

( ) ( )( ) ( )

( )

1

T T
10

T22

, ,

, , d ,

1 , .
2

k k k k k

k k k k k k k k k

k k k k

F x d F x

g x td g x d t g x d

L d g x d

α α

α α α α

α

α ε ε

ε ε α ε

α α ε

+

+

+ −

= + − +

≤ +

∫  

Combining the above inequality with (42), we have  

( ) ( )T

2

,1
min 1, .

k k k

k
k

g x d

L d

α εσ β
α

 − ≥  
  

 

Thus, the proof is completed.  
Lemma 3. Assume that the sequence { }kx  is generated by Algorithm 1, then 

we have 
( )
( ) ( ) ( )

( ) ( )

2 T T
0 0 1 1 1 1

0
1 T

0 0
0

,

, , ,

, , .

k k
k

i i i i k k k k
i
k

r i i i
i

F x

F x g x d g x d

F x g x d

α

α α α

α α

ε

ε µσ α ε σα ε

ε µσ α ε

−

− − − −
=
−

=

≤ + +

≤ +

∑

∑

 

Proof. We prove this lemma by induction. For 1k = , by (38) and 1µ ≤ , we 
have  

( ) ( ) ( )
( ) ( )

T
1 1 0 0 0 0 0 0

0 0 0 0 0 0

, , ,

, ,

F x F x g x d

F x g x d

α α α

α α

ε ε σα ε

ε µσα ε

≤ +

≤ +
 

Assume the equation holds for 1,2, , k , and we need to show for 1k + . To 
show the condition, we have considered two cases. 

Case 1: 

( )
( )

( ) ( )
1

0
max , , , , .

m k

k k ki k i k i k k
i

F x F x F xα α αε µ ε ε
−

− −
=

 
= 

 
∑  

Then, from (38), we have  

( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( )

1 1 1
T

1 T T
0 0

0

T
0 0

0

, ,
, ,

, , ,

, , .

k k k k k k

k k k k k k
k

i i i i k k k k
i
k

i i i i
i

F x F x d
F x g x d

F x g x d g x d

F x g x d

α α

α α

α α α

α α

ε α ε
ε σα ε

ε µσ α ε σα ε

ε µσ α ε

+ + +

−

=

=

= +

≤ +

≤ + +

≤ +

∑

∑
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Case 2: 

( )
( )

( )
( )

( )
1 1

0 0
max , , , , ,

m k m k

k k ki k i k i ki k i k i
i i

F x F x F xα α αε µ ε µ ε
− −

− − − −
= =

 
= 

 
∑ ∑  

let [ ]min , 1n k m= − . Then, again from (38), 

( ) ( )

( ) ( )

( ) ( )
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1 1 1

T
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2
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0 0
0 0

T T
1 1 1 1

, ,

, ,

, ,
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=
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
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


+ +


∑
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Thus, by imposing 

( ) ( ) ( ){ }1,2, , 1, 2, , 2 , : 0 ,0 2 ,n k n j i j n i k n× − − ⊂ ≤ ≤ ≤ ≤ − −   

and 

0
1, ,

n

kj kj
j
µ µ µ

=

= ≥∑  

we have 
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( ) ( )
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=
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0
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T
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=

−
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−

=

=

≤ +

+ +

= + +

≤ +

∑

∑

∑

∑

 

Theorem 1. Assume that the sequences { }kx  and { }kd  are generated by 
Algorithm 1. Let F is bounded below on the level set  

( ) ( ){ }0 0|nx R F x F x= ∈ ≤  and  

lim 0.kk
ε

→∞
=  

Then  

( )Tlim , 0.k k kk
g x dα ε

→∞
=                      (43) 

Proof. Suppose that (43) is not true. Then there exist constants 0γ >  and 

0k  such that  
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( )T
0, ,   .k k kg x d k kα ε γ≤ − ∀ >                  (44) 

From Lemma 3, we have  

( ) ( ) ( )
1 T

0 0
0

, , , .
k

k k r i i i
i

F x F x g x dα α αε ε µσ α ε
−

=

− ≥ − ∑          (45) 

By (40), (41) and (44), we have  

( ) ( )

( )

( ) ( )

( )

0 0
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0 0

T
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2
0

1

0
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,1
min 1,

1
min 1, .

25
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i i i i i
i i

k k k k
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k

i

F x F x

g x d

g x d

L d

L

α α

α

α

ε ε

µσ α ε µσγ α

εσ β
µσγ

σ β
µσγ
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= =

−

=

−

=

−

≥ − ≥

 − ≥  
  

−  ≥  
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∑ ∑

∑

∑

 

Letting k →∞ , we have 

( ) ( ) ( )0 0
0 0

1
min 1, , , ,

25 k k
k k

F x F x
L

α ασ β
µσγ ε ε

∞ ∞

= =

−   ≤ − 
  

∑ ∑  

and this contradicts our assumption on F. Hence the theorem is proved.  
Theorem 2. Let the conditions in Lemma 1 and Theorem 1 hold, then Algo-

rithm 1 converges for nonsmooth problem (12). 
Proof. From Lemma 1 and Theorem 1, we have  

( )( ) ( )
2 T0 lim , lim , 0.k k k k kk k

g x g x dα αε ε
→∞ →∞

≥ − ≥ =  

Then, 

( )lim , 0.k kk
g xα ε

→∞
=                       (46) 

Thus, (23) and convergence of sequence { }kε  yield  

( ) ( )0 lim , lim 2 0.k k kk k
g x g xα ε ε λ

→∞ →∞
≤ − ≤ =  

Hence, 

( )lim 0.kk
g x

→∞
=                         (47) 

Let x∗  be an accumulation point of { }kx . Then there exists a subsequence 
{ }k K

x  satisfying  

,
lim .kk K k

x x∗
∈ →∞

=                         (48) 

Thus, (17), (43) and (47) yield ( )x p x∗ ∗= . Therefore x∗  is an optimal so-
lution of nonsmooth problem (12).  

4. Numerical Experiments for Large Scale Nonsmooth  
Problems 

In this section, we present some numerical experiments to examine the efficien-
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cy of Algorithm 1 for some large scale nonsmooth academic test problems which 
are introduced in [49]. The details of these large scale nonsmooth academic test 
problems with their initial points ( )1

ix  and the minimum values ( )f x∗  are 
listed as follows: 

Problem 1  

( ) 2

1
max ii n

f x x
≤ ≤

=  

( )1
ix i=  for 1, , 2i n=   and 
( )1
ix i= −  for 2 1, ,i n n= +   

( ) 0.f x∗ =  

Problem 2  

( )
1 1
max

1

n
j

i n i

x
f x

i j≤ ≤ =

=
+ −∑  

( )1
ix i=  for = 1, ,i n . 

( ) 0.f x∗ =  

Problem 3  

( ) ( ){ }
1

2 2
1 1 1

1
max , 1

n

i i i i i i
i

f x x x x x x x
−

+ + +
=

= − − − − + + −∑  

( )1 0.5ix = −  for = 1, ,i n ; 

( ) ( )2 1 .f x n∗ = − −  
Problem 4  

( ) ( ) ( ){ }1
1 2 24 2

1 1
1

max , 2 2 ,2e i i
n

x x
i i i i

i
f x x x x x +

−
− +

+ +
=

= + − + −∑  

( )1 2ix =  for = 1, ,i n ; 

( ) ( )2 1 .f x n∗ = −  
Problem 5  

( ) ( ) ( ) ( )( ) ( )1
1 1 12 24 2

1 1
1 1 1

max , 2 2 , 2e i i
n n n

x x
i i i i

i i i
f x x x x x +

− − −
− +

+ +
= = =

 = + − + − 
 
∑ ∑ ∑  

( )1 2ix =  for = 1, ,i n ; 

( ) ( )2 1 .f x n∗ = −  
Problem 6  

( ) ( )
1 1
max ,

n

i ii n i
f x g x g x

≤ ≤ =

  = −  
  
∑ , 

where ( ) ( )ln 1g y y= + ; 
( )1 1ix =  for = 1, ,i n ; 

( ) 0.f x∗ =  
Problem 7 

( ) ( )2 2
1

1 1 1
1

1

i i
n x x

i i
i

f x x x+
−

+ +
+

=

= +∑  
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( )1 1ix = −  when ( ) ( )mod ,2 1, 1, ,i i n= =   and 
( )1 1ix =  when ( ) ( )mod ,2 0, 1, ,i i n= =  ; 

( ) 0.f x∗ =  
Problem 8 

( ) ( )( )
1

2 2 2 2
1 1

1
2 1 1.75 1

n

i i i i i
i

f x x x x x x
−

+ +
=

= − + + − + + −∑  

( )1 1ix = −  for = 1, ,i n ; 

( ) .f x varies∗ =  
Problem 9 

( ) ( )( ) ( )( )1 12 22 2
1 1 1 1

1 1
max 1 1 , 1 1

n n

i i i i i i
i i

f x x x x x x x
− −

+ + + +
= =

 = + − + − − − − + + 
 
∑ ∑  

( )1 1.5ix = −  when ( ) ( )mod ,2 1, 1, ,i i n= =   and 
( )1 2.0ix =  when ( ) ( )mod ,2 0, 1, ,i i n= =  ; 

( ) 0.f x∗ =  
Problem 10 

( ) ( ) ( ){ }1 2 22 2
1 1 1 1

1
max 1 1, 1 1

n

i i i i i i
i

f x x x x x x x
−

+ + + +
=

= + − + − − − − + +∑  

( )1 1.5ix = −  when ( ) ( )mod ,2 1, 1, ,i i n= =   and 
( )1 2.0ix =  when ( ) ( )mod ,2 0, 1, ,i i n= =  ; 

( ) 0.f x∗ =  
The problems 1 - 5 are convex functions, and the others are nonconvex func-

tions. We test the above problems with the dimension of 1000n = , 3000n = , 
5000n = , 6000n = , 10000n = , 12000n = , 20000n = , 50000n = , 
60000n =  and 100000n = . For convenience sake, we denote Algorithm 1 by 

scaled conjugate gradient method based on modified secant equation of BFGS 
method (SCG-MBFGS), and in order to demonstrate validity of our algorithm, 
we also list the results of other three algorithms MPRP in [30], MHS in [31] and 
MSBFGS-CG in [39]. All algorithms were implemented in Fortran 90 and run 
on a PC with an intel(R) Core(TM)i3-3110M CPU at 2.40 GHz, 4.00 GB of 
RAM, and the Windows 7 operating system. We stopped the iteration when the 
condition ( ) 10, 10k kg xα ε −≤  was satisfied. The parameters for  
SCG-MBFGS were chosen as 10 0.6, 0.85 1M β σ λ µ= = = = = . All parameters 
for other three methods are chosen as in [30] [31] and [39] respectively. Table 1 
shows the numerical results of SCG-MBFGS, MPRP, MHS and MSBFGS-CG 
on the given test problems. The columns in Table 1 have the following mean-
ings: 

Dim: the dimensions of problem. 
NI: the total number of iterations. 
NF: the number of function evaluations. 
TIME: the CPU time in seconds. 
( )f x : the value of ( )f x  at the final iteration. 

From the numerical results in Table 1, it is not difficult to see that  
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Table 1. Numerical results for 10 problems with given initial points and dimensions. 

No. Dim 
Algorithm 3.1 MHS MPRP MSBFGS−CG 

NI/NF/f(x)/TIME NI/NF/f(x)/TIME NI/NF/f(x)/TIME NI/NF/f(x)/TIME 

1 1000 213/4351/6.9117E−8/0.3034E+0 225/4710/6.9354E−8/0.4358E+0 225/4710/6.7102E−6/0.6947E+0 186/1601/2.6568E−9/0.5977E+0 

 3000 219/4509/1.9754E−8/0.2356E+0 238/5273/6.6915E−8/1.1157E+0 228/5196/6.5327E−6/1.6902E+0 219/2310/2.2089E−9/1.3871E+0 

 5000 224/4597/5.7735E−7/1.6248E+0 246/5284/8.1495E−7/1.2650E+0 250/5253/9.0184E−7/1.9379E+0 242/2725/1.2183E−9/1.6962E+0 

 6000 227/4608/6.81679E−8/1.1756E+0 253/5298/6.7261E−8/1.2323E+0 252/5308/5.8563E−6/2.0417E+0 248/2849/1.8972E−8/2.0233E+0 

 10,000 230/4719/3.0882E−6/1.9051E+0 264/5387/7.3580E−6/1.8361E+0 261/5466/3.4089E−8/2.2684E+0 253/2996/3.4045E−9/2.1527E+0 

 12,000 234/4841/8.5011E−8/2.1084E+0 264/5529/6.5042E−8/2.4321E+0 266/5573/9.0925E−7/2.3537E+0 261/3328/4.9085E−9/2.2886E+0 

 20,000 243/5150/7.7681E−8/2.43061E+0 275/5830/6.9187E−8/2.6893E+0 270/5769/5.68982E−8/2.8049E+0 275/4573/6.1823E−10/2.6981E+0 

 50,000 268/5539/1.0736E−8/2.9909E+0 289/6002/7.6945E−7/2.8937E+0 286/5991/8.0015E−6/3.0539E+0 283/5597/7.0687E−8/2.9298E+0 

 60,000 277/5913/5.9244E−8/3.1618E+0 294/6125/6.4520E−8/2.9931E+0 295/6110/9.6412E−7/3.2291E+0 288/6018/1.7851E−8/3.1037E+0 

 100,000 309/6884/8.6471E−8/4.1954E+0 324/7018/6.7620E−8/3.0068E+0 311/6983/5.1947E−7/4.7095E+0 311/6836/6.6109E−8/3.6814E+0 

2 1000 58/1507/8.0315E−8/5.3728E+1 96/1605/8.0248E−9/5.4181E+1 91/1482/6.1664E−9/2.9639E+1 94/1301/4.0582E−9/4.1905E+1 

 3000 66/1682/6.7354E−9/5.3848E+2 110/1917/6.9902E−9/5.8991E+2 105/11760/8.8715E−6/1.7785E+2 103/1420/3.0085E−9/2.5608E+2 

 5000 77/1920/5.9738E−7/6.8072E+2 115/1963/7.1280E−5/8.8693E+2 111/1938/5.0135E−7/7.8101E+2 119/1499/2.6731E−9/9.6649E+2 

 6000 84/2007/8.3699E−9/2.3108E+3 118/2103/8.45247E−9/2.5384E+3 112/1966/6.3507E−7/1.5338E+3 129/1573/1.9629E−9/1.9867E+3 

 10,000 93/2235/5.6492E−6/2.9875E+3 126/2302/6.0153E−7/5.5084E+3 120/2127/4.8937E−8/3.3185E+3 141/1901/4.8003E−9/4.7503E+3 

 12,000 96/2276/9.3619E−9/1.0518E+4 127/2310/9.5284E−9/1.1372E+4 123/2162/7.0430E−5/1.0882E+4 147/2243/6.1285E−8/1.2026E+4 

 20,000 108/2419/8.9409E−9/1.6564E+4 165/2676/7.9950E−9/1.7582E+4 130/2296/2.1027E−8/1.0947E+4 155/2489/3.0318E−8/1.3732E+4 

 50,000 119/2693/9.0057E−6/1.9714E+4 185/2709/5.8276E−8/1.8972E+4 141/2604/4.8826E−5/1.4608E+4 168/2707/5.6590E−7/1.5809E+4 

 60,000 121/2701/9.9354E−9/2.0018E+4 215/2786/6.9338E−9/2.0358E+4 148/2651/3.0798E−5/1.5101E+4 173/2842/3.7206E−7/1.8104E+4 

 100,000 127/2820/8.9262E−9/2.1883E+4 240/3008/6.9393E−9/2.2960E+4 195/2907/8.7203E−8/3.1048E+4 189/2803/6.6907E−8/2.1061E+4 

3 1000 16/79/6.2899E−9/5.0301E−2 37/114/7.2687E−9/4.8344E−2 37/114/7.2687E−9/0.3916E−1 37/110/2.3278E−9/0.2861E−1 

 3000 23/82/5.6856E−7/3.1106E−2 37/123/5.3594E−9/4.4758E−2 37/116/8.5786E−9/0.56813E−1 37/113/4.0082E−9/0.4193E−1 

 5000 28/89/8.3625E−8/4.4800E−2 39/123/6.0082E−6/6.1701E−2 39/120/9.0931E−9/0.6191E−1 39/116/5.9987E−9/0.5518E−1 

 6000 31/90/6.8937E−9/5.4075E−2 40/123/5.4561E−9/7.6563E−2 39/121/8.4838E−9/0.8434E−1 39/117/6.1096E−9/0.6991E−1 

 10,000 39/110/5.9901E−7/1.107E−1 40/125/4.9830E−8/1.1071E−1 40/123/9.0941E−9/0.5089E+0 40/121/1.6943E−9/0.4805E+0 

 12,000 40/113/1.5721E−9/1.125E−1 40/125/1.6369E−9/1.3819E−1 40/125/8.6969E−9/0.7394E+0 40/123/1.8803E−9/0.6097E+0 

 20,000 44/135/6.0317E−9/2.011E−1 50/157/6.5211E−9/1.5450E−1 48/151/7.1062E−9/0.6928E+0 41/149/3.9088E−9/0.6681E+0 

 50,000 47/158/7.0052E−9/8.062E−1 50/160/5.9735E−6/6.1943E−1 55/153/6.1343E−9/0.7906E+0 49/161/6.1874E−9/0.6714E+0 

 60,000 49/161/6.0976E−9/8.3069E−1 50/165/5.1158E−9/7.4703E−1 59/158/6.1999E−9/0.8005E+0 53/161/6.607E−9/0.6968E+0 

 100,000 55/180/6.1437E−9/1.169E+0 60/174/6.0371E−9/1.0152E+0 60/166/5.1093E−9/1.5108E+0 62/173/7.0773E−9/1.3005E+0 

4 1000 5/74/2.8725E+3/0.0416E+0 7/89/2.5699E+3/0.3053E−1 7/89/1.9980E+3/0.1489E−1 7/89/1.8835E+3/0.1069E−1 

 3000 5/74/1.9435E+4/0.0522E+0 7/89/2.3654E+4/0.4348E−1 7/89/1.7105E+3/0.1863E−1 7/89/1.7098E+3/0.1306E−1 

 5000 5/74/1.5184E+5/0.0637E+0 7/89/1.6941E+4/0.4463E−1 7/89/1.7329E+4/0.2814E+0 7/89/1.8026E+3/0.2804E+0 

 6000 5/85/1.5352E+4/0.0696E+0 7/89/1.5433E+4/0.48906E−1 7/89/1.1998E+4/0.3819E+0 7/89/1.4620E+4/0.2997E+0 

 10,000 6/89/1.2674E+4/0.1009E+0 7/89/2.0593E+4/0.8813E−1 7/89/1.8801E+5/0.4097E+0 7/89/1.3806E+4/0.3991E+0 
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 12,000 6/89/2.99787E+4/0.1047E+0 7/89/3.0868E+4/0.9556E−1 7/89/2.3998E+4/0.5523E+0 7/89/2.2855E+4/0.4895E+0 

 20,000 6/89/2.9304E+4/0.4095E+0 7/89/8.3594E+4/0.3845E+0 7/89/1.6858E+5/0.9945E+0 7/89/1.5008E+4/0.8028E+0 

 50,000 7/89/1.9998E+5/0.4569E+0 7/89/5.0973E+4/0.4611E+0 7/89/2.0017E+4/1.2931E+0 7/89/1.8801E+4/1.1561E+0 

 60,000 7/89/2.0953E+5/0.9996E+0 7/89/1.5435E+5/0.6831E+0 7/89/1.1999E+5/1.3883E+0 7/89/1.4096E+5/1.3468E+0 

 100,000 7/89/1.9468E+5/3.5798E+0 7/89/2.04359E+5/3.4358E+0 7/89/2.0071E+5/6.1947E+0 7/89/2.1188E+6/6.1609E+0 

5 1000 5/22/1.9899E+3/0.6409E−2 7/86/2.5699E+3/0.7187E−3 7/85/1.9980E+3/0.6281E−1 7/86/1.1063E+4/0.5437E−1 

 3000 7/29/2.3548E+3/0.1138E−1 17/95/1.9353E+4/0.2854E−2 16/95/2.7126E+3/0.7897E−1 16/94/2.0019E+4/0.7669E−1 

 5000 14/42/3.0083E+3/0.1307E−1 21/114/2.0891E+4/0.6341E−2 21/114/1.8462E+4/0.8633E−1 21/114/1.1192E+4/0.6675E−1 

 6000 15/58/1.6253E+4/0.15625E−1 21/114/1.5433E+4/0.6912E−2 21/114/1.1999E+4/0.9487E−1 21/114/1.0930E+4/0.9036E−1 

 10,000 15/87/2.5984E+3/0.1171E+0 21/114/4.8327E+5/0.1088E+0 21/114/1.5827E+4/0.1984E+0 21/114/2.3072E+4/0.1772E+0 

 12,000 16/92/3.0879E+4/0.1299E+0 21/114/3.0868E+4/0.1108E+0 21/114/2.3998E+4/0.2789E+0 21/114/2.1984E+4/0.2683E+0 

 20,000 19/96/1.9348E+5/0.1515E+0 21/114/2.9306E+4/0.1935E+0 21/114/1.7102E+5/0.3195E+0 21/114/1.5120E+5/0.2956E+0 

 50,000 22/101/2.1184E+4/0.4091E+0 21/114/1.8256E+5/0.3638E+0 21/114/1.5293E+5/0.4093E+0 21/114/2.0968E+5/0.3885E+0 

 60,000 22/115/1.9356E+5/0.6657E+0 21/114/1.5434E+5/0.52975E+0 21/114/1.1999E+5/0.5383E+0 21/114/2.3001E+5/0.4896E+0 

 100,000 25/117/2.0009E+5/1.3158E+0 21/114/1.6972E+5/1.4358E+0 21/114/1.7582E+5/4.9145E+0 21/114/2.2293E+5/3.6984E+0 

6 1000 59/1047/6.1866E−9/2.8017E−1 78/1047/6.3785E−9/2.0109E−1 77/1026/6.8037E−9/1.0741E−1 71/891/3.6735E−9/0.1009E+0 

 3000 63/1216/6.2814E−9/2.9565E−1 85/1168/5.6373E−9/2.4364E−1 81/1153/7.0961E−9/5.9417E−1 77/921/6.8083E−9/0.5067E+0 

 5000 66/1290/8.5604E−9/1.1307E+0 91/1308/7.9629E−8/1.0254E+0 90/1281/7.8404E−9/1.3245E+0 82/937/7.9864E−9/1.2838E+0 

 6000 68/1374/6.9799E−9/1.1864E+0 92/1323/8.2692E−9/1.0613E+0 91/1316/5.5483E−9/1.5115E+0 86/998/7.8405E−9/1.3644E+0 

 10,000 88/1457/8.0915E−8/2.1735E+0 94/1430/6.6018E−7/2.1506E+0 96/1401/9.9366E−9/2.9348E+0 88/1208/5.7163E−9/2.8861E+0 

 12,000 95/1492/6.8749E−9/2.2673E+0 99/1452/5.6143E−9/2.2001E+0 97/1440/8.5456E−9/3.1554E+0 93/1417/9.9355E−9/3.1047E+0 

 20,000 106/1504/4.5481E−9/3.5061E+0 107/1671/6.9926E−9/3.3804E+0 104/1597/6.7138E−9/5.1947E+0 105/1531/6.8017E−9/5.0093E+0 

 50,000 110/1691/5.2964E−7/1.2993E+1 110/1688/8.0153E−6/1.2054E+1 110/1665/6.1343E−9/1.1832E+1 112/1682/7.7084E−9/1.1570E+1 

 60,000 112/1702/6.7549E−9/1.3608E+1 112/1707/6.4697E−9/1.2916E+1 112/1698/7.5022E−9/1.3527E+1 112/1704/5.9938E−9/1.2643E+1 

 100,000 117/1808/6.9354E−8/8.968E+1 119/1793/7.0642E−9/1.0054E+2 116/1731/6.7139E−9/9.4368E+1 120/1750/8.8802E−9/9.1146E+1 

7 1000 30/81/6.7682E−9/1.4821E−1 38/117/7.2687E−9/1.2581E−1 38/117/7.2687E−9/0.7074E+0 35/114/1.5021E−9/0.6621E+0 

 3000 36/85/5.8186E−9/1.0918E−1 39/121/6.5165E−9/1.7375E−1 39/121/9.2894E−9/0.8198E+0 37/116/3.8037E−9/0.6997E+0 

 5000 38/94/7.1437E−8/2.2432E−1 41/123/6.2047E−7/5.3942E−1 40/123/9.0932E−9/1.8426E+0 39/120/5.2352E−9/1.6801E+0 

 6000 39/102/5.9864E−9/2.7029E−1 41/126/5.4561E−9/7.1584E−1 40/123/9.8411E−8/4.6316E+0 40/123/7.0942E−9/4.3308E+0 

 10,000 41/117/9.9318E−5/1.9885E+0 46/129/6.1533E−8/1.0827E+0 41/125/1.8188E−8/5.9017E+0 41/126/2.1136E−9/5.8892E+0 

 12,000 44/122/8.2994E−9/2.0108E+0 48/131/8.1848E−9/1.3739E+0 46/130/9.1246E−9/8.4288E+0 46/129/1.8277E−9/7.8591E+0 

 20,000 46/142/6.9354E−8/2.1563E+0 54/162/6.9354E−8/5.5384E+0 49/142/7.8906E−9/9.9472E+0 47/138/5.0472E−9/9.0988E+0 

 50,000 51/163/6.8141E−8/9.9182E+0 67/185/7.0255E−7/8.2977E+0 55/153/9.0948E−8/1.5013E+1 58/160/6.5509E−9/1.6395E+0 

 60,000 51/169/6.9354E−8/1.0056E+1 72/191/6.9354E−8/9.7955E+0 57/160/1.7923E−8/2.1545E+1 60/164/1.4301E−9/1.9896E+1 

 100,000 64/1905/6.9354E−8/1.4891E+1 87/2012/6.9354E−8/1.4358E+1 66/1936/1.8862E−8/7.4791E+1 71/1942/2.0446E−9/7.0104E+1 

8 1000 31/77/−2.9735E+2/1.5502E−2 36/114/−2.4974E+2/3.2875E−2 37/114/−2.4975E+4/3.9808E−2 38/116/−5.3979E+3/3.5074E−2 

 3000 34/84/−2.1068E+2/2.9607E−2 39/118/−1.8852E+2/3.7518E−2 38/115/−2.0965E+4/7.17093E−2 39/119/−2.4796E+4/4.6310E−2 

 5000 37/88/−1.7664E+3/3.3509E−2 39/122/−1.5326E+3/6.3006E−2 39/120/−1.24995E+5/1.9137E−1 41/123/−3.2153E+4/1.7892E−1 
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 6000 37/94/−1.4998E+3/3.8201E−2 39/123/−1.4998E+3/7.9009E−2 39/120/−1.2488E+5/2.0213E−1 41/126/−1.9248E+4/1.8068E−1 

 10,000 39/101/−1.5683E+3/1.0021E−1 40/126/−2.7053E+3/1.1906E−1 40/123/−2.4997E+5/3.0749E−1 43/129/−2.0127E+4/2.9976E−1 

 12,000 40/107/−2.9998E+3/1.0131E−1 40/126/−2.9998E+3/1.5488E−1 40/123/−1.4887E+5/4.7906E−1 43/131/−2.4998E+4/3.7175E−1 

 20,000 40/113/−2.9231E+3/4.1561E−1 41/138/−2.9409E+3/3.4008E−1 41/126/−2.5827E+6/9.0468E−1 46/137/−2.5037E+5/6.5936E−1 

 50,000 40/120/−2.0583E+3/7.0931E−1 42/154/−1.8099E+3/5.9141E−1 43/157/−1.24997E+6/9.3709E−1 47/165/−1.7036E+5/7.9384E−1 

 60,000 41/137/−1.9357E+3/8.5164E−1 42/160/−1.4999E+3/6.8471E−1 57/161/−1.24995E+6/9.9741E−1 54/174/−1.4881E+5/8.8056E−1 

 100,000 41/152/−1.5094E+3/1.0171E+0 46/197/−2.9354E+3/9.8405E−1 71/196/−1.499E+5/9.4011E−1 66/205/−1.6068E+5/9.0985E−1 

9 1000 36/47/9.0397E−9/4.5592E−2 39/174/9.04688E−9/3.265E−2 37/114/5.4897E−9/4.6481E−2 34/101/7.0463E−9/3.9807E−2 

 3000 39/55/6.5101E−9/4.9901E−2 39/176/6.8510E−9/3.375E−2 38/117/5.4993E−9/6.1903E−2 36/106/5.5439E−9/4.364E−2 

 5000 39/61/8.2853E−9/8.8256E−2 41/181/7.0387E−9/7.9083E−2 39/120/6.8294E−9/9.9665E−2 36/113/3.8145E−9/5.1750E−2 

 6000 40/67/5.9491E−9/9.6753E−2 42/183/6.7514E−9/9.4875E−2 39/121/6.9655E−9/1.6048E−1 39/114/5.6824E−9/1.2194E−1 

 10,000 40/88/6.5687E−8/1.7263E−1 43/185/8.6588E−8/1.6537E−1 40/123/6.8253E−9/1.6047E−1 39/120/4.3654E−9/1.4481E−1 

 12,000 42/96/6.8993E−9/1.806E−1 43/186/6.7466E−9/1.5463E−1 42/139/6.7574E−9/1.8889E−1 42/127/5.8553E−9/1.6617E−1 

 20,000 46/112/6.9506E−9/2.9899E−1 53/195/6.9307E−9/2.03582−1 47/145/6.7908E−9/4.7286E−1 45/139/6.1085E−9/3.6828E−1 

 50,000 53/137/9.0249E−8/5.5128E−1 58/204/6.1284E−9/6.1639E−1 56/157/8.5275E−9/8.0077E−1 56/151/7.0083E−9/7.6994E−1 

 60,000 55/146/7.9419E−9/8.9897E−1 59/220/8.4274E−9/8.5912E−1 57/168/9.6814E−9/8.3438E−1 56/166/8.8087E−9/8.5238E−1 

 100,000 66/203/8.5929E−9/1.0168E+0 74/242/7.9908E−9/1.0008E+0 69/214/8.7106E−9/1.047E+0 73/211/7.8997E−9/1.0183E+0 

10 1000 31/84/6.7887E−9/5.3011E−2 39/120/6.8185E−9/3.2375E−2 39/120/6.8184E−9/4.9791E−2 37/112/6.0424E−9/3.3661E−2 

 3000 32/91/6.8185E−9/4.0807E−2 41/124/7.1982E−9/3.7025E−2 40/123/6.9058E−9/8.1673E−2 38/117/6.0885E−9/6.0898E−2 

 5000 34/98/8.4897E−9/6.7185E−2 42/127/6.4897E−9/5.0688E−2 41/126/8.5258E−9/3.2518E−1 39/121/1.8205E−9/2.8856E−1 

 6000 34/102/5.1906E−9/8.8093E−2 42/129/5.1156E−9/6.3125E−2 41/126/8.6835E−9/4.5537E−1 40/123/1.5825E−9/3.8677E−1 

 10,000 37/118/8.6826E−9/1.4077E−1 43/130/5.0362E−9/1.0055E−1 42/129/8.5262E−9/5.0619E−1 42/125/2.6473E−9/4.6409E−1 

 12,000 40/120/6.0162E−9/1.7186E−1 43/132/5.1157E−9/1.3838E−1 42/130/6.2721E−9/6.1254E−1 42/126/3.5262E−9/5.2537E−1 

 20,000 46/139/5.9398E−9/4.0125E−1 51/164/6.8235E−9/2.7099E−1 50/149/6.7894E−9/9.4011E−1 53/139/5.8502E−9/8.8816E−1 

 50,000 74/188/5.2798E−9/9.0155E−1 84/216/6.8873E−9/7.9928E−1 87/222/5.3291E−9/1.0004E+0 78/197/6.0074E−9/8.9038E−1 

 60,000 76/197/7.0307E−9/9.9906E−1 87/220/6.3948E−9/8.8975E−1 87/226/5.3563E−9/1.1664E+0 88/204/5.5493E−9/1.1107E+0 

 100,000 84/225/6.3793E−9/1.0626E+0 97/244/6.4077E−9/1.0037E+0 99/255/5.0979E−9/1.4198E+0 94/222/4.9906E−9/1.2684E+0 

 
SCG-MBFGS is superior or competitive to the other three methods in solving 
the given problems in terms of number of iteration, number of function evalua-
tions and CPU time. Furthermore, to directly illustrate the performances of our 
method, we employed the tool provided by Dolan and Moré [50] to analyze and 
compare the efficiency of the method in terms of the number of iterations, 
number of function evaluations and CPU time. Figures 1-3 represent the com-
putational performance profiles of the above algorithms regarding the number 
of iterations, number of function evaluations and CPU time respectively. From 
the 3 figures, we can observe that for the given test problems, SCG-MBFGS is 
competitive or superior to other three methods in terms of number of iteration, 
function evaluations and CPU time respectively. 
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From Figure 1 and Figure 2, we also notice that SCG-MBFGS performs bet-
ter than the other methods do in terms of the numbers of iterations and function 
evaluations. Figure 3 indicates that MHS is comparable to SCG-MBFGS in 
terms of CPU time, and since the search direction of MHS is developed with 
only first order information while SCG-MBFGS, MPRP and MSBFGS-CG are 
with second order information, it is reasonable to need less CPU time for MHS. 
 

 
Figure 1. Performance profiles of these three methods based on NI. 

 

 
Figure 2. Performance profiles of these three methods based on NF. 

 

 
Figure 3. Performance profiles of these three methods based on CPUTIME. 
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5. Conclusion 

In this paper, we propose a new scaled conjugate gradient method which incor-
porates a modified secant equation of BFGS method. This modified secant equa-
tion contains both function value and gradient information of the objective 
function, and its Hessian approximation update generates positive definite ma-
trix. Under a modified nonmonotone line search and some mild conditions, the 
strong global convergence of the proposed method is analyzed for nonsmooth 
convex problems. The search direction of our new method generates sufficiently 
descent condition and belongs to a trust region. Compared with existing non-
smooth CG methods, the search direction of our approach is more descent di-
rection. Numerical results and related comparisons show that the proposed me-
thod is effective for solving large scale nonsmooth optimization problems.  
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