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Abstract 
We report in this paper the ground-state energy 2s2 1S and total energies of 
doubly excited states 2p2 1D, 3d2 1G, 4f2 1I of the Helium isoelectronic se-
quence from H− to Ca18+. Calculations are performed using the Modified 
Atomic Orbital Theory (MAOT) in the framework of a variational procedure. 
The purpose of this study required a mathematical development of the Ha-
miltonian applied to Slater-type wave function [1] combining with Hylle-
raas-type wave function [2]. The study leads to analytical expressions which 
are carried out under special MAXIMA computational program. This first 
proposed MAOT variational procedure, leads to accurate results in good 
agreement as well as with available other theoretical results than experimental 
data. In the present work, a new correlated wave function is presented to ex-
press analytically the total energies for the 2s2 1S ground state and each doubly 
2p2 1D, 3d2 1G, 4f2 1I excited states in the He-like systems.The present accurate 
data may be a useful guideline for future experimental and theoretical studies 
in the (nl2) systems. 
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1. Introduction 

The resolution of the Schrödinger equation gives for the ground-state of the He-
lium atom the value E = 108.8 eV. The experimental result being equal to E0 = 
−79.0 eV, one conceives that one takes into account the electronic correlation 
term, overestimating, numerous studies provided evidence of the importance of 
the electronic correlation in the ground-state and in the doubly excited state of 
He-like series [3] [4] [5]. 

For the ground states, energy calculations of Helium isoelectronic sequence 
are performed by using several correlated wavefunction and an analytical tech-
nique calculation. Thus, Moore [6], Radzig and Smirnov [7] and Arnaud [8] 
measured the ground state energies E (1s2 1S) of two-electron systems with atomic 
number Z (2 ≤ Z ≤ 10). Combining the perturbation theory [9] to the Ritz varia-
tional method [10], Sakho et al., [11] set in motion a technic of analytical calcu-
lation of the ground state energy E (1S0), the first ionization energy J (1S0) and the 
radial correlation expectation value 1

12r−  (1S0) for the Helium-like ions from 
Hydrogen ion H− (Z = 1) to silicon Si12+ (Z = 14). Utpal and Talukdar [12] used 
an analytical approach to also calculate the ground-state energies of helium 
isoelectronic sequence from Hydrogen ion H− (Z = 1) up to the silicon ion Si12+ 
(Z = 14). For some methods using variational wavefunction like Hylleraas’s one, 
a good approximation of the eigenvalues is obtained when the minima of the 

function ( d
d

E
α

, with α a variational parameter, E is the energy) converges with  

the increasing values of the dimension D and when the function ( ),E f Dα=  
exhibits a plateau [2]. For other methods using a non variational wavefunction 
[13], the ground-state energy of He-like ions is determined by the use of proper 
core boundary conditions correct behavior for 12 0r →  and 12r →∞  and by 
taking recourse to a perturbative method. For some methods using an analytical 
technique calculation, some authors were interested in the setting in work of 
calculation techniques permitting one to succeed to an analytical expression of 
the ground-state energy of the He-like ions. Thus, an analytical calculation for 
the ground-state energy and radial expectation values of Helium isoelectronic 
sequence is managed by using a wavefunction of the type of Bhattacharyya [12] 
[14]. Besides, developing the orbital atomic theory, Slater in [15] introduced the 
notions of screen constant σ and effective quantum number n* for the calcula-
tion of the energy of an electronic configuration given containing N electrons. 

On the basis of his theory, Slater expresses analytically the total energy of an 
atomic system of N electrons according to σ and n* determined from rules that 
he established. The analytical formula of Slater permits the simple calculation of 
the ground-state energy of He-like ions for which N = 2, σ = 0.30 and n* = 1. 
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For the doubly excited states in He-like ions, since the early experiment [16] 
and theoretical explanation [17], Doubly Excited States (DES) of Helium isoe-
lectronic sequence have been the target of a number of theoretical approaches. 
Greatest attention have been concentrated on studying symmetric DES (nl2) with 
excited electrons having equal values of principal quantum number n (intrashell 
states) where the electronic correlation effect may be predominant [18]. The in-
vestigations of the intrashell states of two-electrons systems are advanced and 
due to the group theoretical method [19] which allowed intrashell states to be 
approximatively classified and some of these properties studied [20]. Theoretical 
investigations of (nl2) doubly excited states are performed by using various me-
thod. The projection operator method and group theoretical methods [20] have 
been used for energies calculations of the 2s2, 2p2 states in Helium-like ions. 
Time independent variational perturbation [21] was applied for total energies 
calculations of the 2s2, 2p2 and 3d2 states in He, Li+, Be2+ and B3+. The correlation 
part of the energies for the 2s2, 2p2, 3s2, 3p2, 3d2 states in He isoelectronic series 
have been investigated by using perturbation theory [4]. The Screening Constant 
by Unit Nuclear charge (SCUNC) method [22] used a semi-empirical procedure 
to calculate (ns2) 1Se, (np2) 1De and (Nsnp) 1P° excited state of He-like ions. Re-
cently the Modified Atomic Orbital Theory (MAOT) has been applied success-
fully in the studies of high lying 1,3P° of He-like ions [1]. In this paper, we apply 
the first MAOT variational procedure, to calculate the ground-state energy 2s2 1S 
and the total energies of the singlet DES 2p2 1D, 3d2 1G and 4f2 1I of He isoelec-
tronic sequence from H− to Ca18+. In addition, for the first time in our know-
ledge, we have also calculated theoretical the screening constant theoσ  which is 
compared with experimental Slater screening constant ( expσ ) determined from 
his rule. Our present procedure leads to analytical expression which are carried 
out under MAXIMA computational program. Our energies positions are com-
pared to other available theoretical and experimental data. 

2. Theory 
2.1. Brief Description of the MAOT Formalism 

In the framework of Modified Atomic Orbital Theory (MAOT), total energy of 
(νℓ)-given orbital is expressed in the form [1] [23]: 

( )
( ) 2

2

Z
E

σ
υ

υ

−  = −
�

�                      (1) 

For an atomic system of several electrons M, the total energy is given by (in 
Rydberg): 

( ) 2

2
1

M
i

i i

Z
E

σ

υ=

−  = −∑
�

 

With respect to the usual spectroscopic notation ( ) 2 1, SN N Lπ+′� � , this equa-
tion becomes 
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( ) 22 1

2
1

S
M i

i i

Z L
E

πσ

υ

+

=

 − = −∑                     (2) 

In the photoionization study, energy resonances are generally measured rela-
tively to the E∞ converging limit of a given (2S+1LJ)nl-Rydberg series. For these 
states, the general expression of the energy resonances is given by the formula 
[24] presented previously (in Rydberg units): 

( ) ( )

( ) ( ) ( ) ( )

2 1 2 1
1 22

2

2 1
2

1 1

1
, , ,

S S
n J J

S
J

k k

E E Z L L
nn

L n m n q
f n m q s

α

σ σ

σ

+ +
∞

+

= − − − ×


− × − × − 


∑
        (3) 

In this equation m and q (m < q) denote the principal quantum numbers of 
the (2S+1LJ)nl-Rydberg series of the considered atomic system used in the empiri-
cal determination of the σi(2S+1LJ)-screening constants, s represents the spin of 
the nl-electron (s = 1/2), E∞ is the energy value of the series limit generally de-
termined from the NIST atomic database, En denotes the corresponding energy 
resonance, and Z represents the nuclear charge of the considered element. The 
only problem that one may face by using the MAOT formalism is linked to the  

determination of the 
( )

1
, , ,k kf n m q s∑  term. The correct expression of this term  

is determined iteratively by imposing general Equation (3) to give accurate data 
with a constant quantum defect values along all the considered series. The value 
of α in the 2σ  of the last term is fixed to 1 and 2 during the iteration. The 
quantum defect δ  is calculated from the standard formula 

( ) ( )
2

2
core

n core
n

RZ RE E n Z
E En

δ
δ

∞
∞

= − ⇒ = −
−−

        (3 bis) 

In this Equation (3 bis), R is the Rydberg constant, Zcore represents the electric 
charge of the core ion. 

Zcore is directly obtained by the photoionization process from an atomic X sys-
tem pX h X peν + −+ → +  

( )2 1 , , , ,S
k k Jf f L n s m q+=  are screening constants to be evaluated empirically 

with k taking the values from 1 to q. 
LJ: denote the considered quantum state (S, P, D, F, ...). 

2.2. Variational Procedure of Calculations 

For the 2s2 1S ground state and each doubly excited states 2p2 1D, 3d2 1G, 4f2 1I, 
we constructed the basis wave functions below by combining Slater-type wave 
function [1] and Hylleraas-type wave functions [2]: 

( ) ( )( ) ( ) ( ) ( )1
1 2 1 2 1 2 1 2 1 2 1 2

0

, exp mj k
jkmn

Zr r r r r r r r
a

υ σφ
υ

−   −
= × − + + − −   ×  

r r r r   (4) 

We considered parameter 
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0

Z
a
σξ

υ
−

=
×

                          (5) 

and , ,Z σ υ  and 0a  are respectively the nucleus charge number, the screening 
constant, the principal quantum number and Bohr’s radius 

( ) ( )( ) ( )( )( ) ( )1
1 2 1 2 1 2 1 2 1 2 1 2, exp MJ K

jkmn r r r r r r r rυφ ξ−= × − + + − −r r r r    (6) 

With 2 2
1 2 1 2 1 2 122 cosr r r r θ− = + −r r  

where 1r  and 2r  denote the positions of the two electrons; 

1r  and 2r  are respectively used for 1r  and 2r , , ,J K M  are Hylleraas 
parameters with ( ), , 0J K M ≥ . 

J takes into account the distance of the two electrons from the nucleus. 
K takes into account the approximation of the two electrons from the nucleus. 
M takes into account the distance between the two electrons. 
From Equation (5) the screening constant can be expressed 

0Z aσ υξ= −                          (7) 

The final form of the wave function of the singlet doubly excited state can be 
written as follow: 

( ) ( )1 2 1 2, ,n jkm jkmn
jkm
β φΨ = ∑r r r r                   (8) 

where the coefficients jkmβ  are determined by solving the Schrödinger equa-
tion: 

( ) ( )1 2 1 2, ,n nH EΨ = Ψr r r r                     (9) 

where the Hamiltonian operator H has the form: 

H T C W= + +  with                     (10) 

( )
2

1 22
T

m
−

= ∇ +∇
�

; 
2 2

1 2

Ze ZeC
r r

 
= − + 

 
; 

2

1 2

eW =
−r r

       (11) 

where T is the kinetic energy, C is the Coulomb potential between the atomic 
nucleus and the two electrons, W is the Coulomb interaction between electrons. 

In the Hamilton operator we neglected all magnetic and relativistic effects to-
gether with the motion of the atomic nucleus. 

In this Equation (11), Z is the nuclear charge ∇1 is the Laplacian with reference 
to the coordinates of the vector radius 1r  which detect the position of the elec-
tron 1. ∇2 Laplacian defines the coordinates of the vector radius 2r  which 
detect the position of the electron 2 and 1 2−r r  inter-electronic distance. 

The representation of the Schrödinger equation on the non-orthogonal basis 
leads to the general eigenvalue equation [25]; 

( )
( ) ( ), , ,

0JKMnl JKMnl
j k m j k m

H EN
′ ′ ′

− =∑                 (12) 

With J j j′= + ; K k k ′= + ; M m m′= +  

JKMnl jkmnl j k m nlN φ φ ′ ′ ′= : is the normalization factor       (13) 
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JKMnl jkmnl j k m nlH Hφ φ ′ ′ ′= : is the matrix elements of Hamilton operator (14) 

E: is the eigenvalue of the energy 

,JKMnl jkm j k m nl JKMnl JKMnlH T C W′ ′ ′= + +                (15) 

,jkm j k m nlT ′ ′ ′ : is the matrix elements of the kinetic Energy operator of the two 
electrons 

JKMnlC : is the matrix elements of the Coulombian interaction Energy operator 
between the nucleus and the two electrons 

JKMnlW : is the matrix elements of the Coulombian interaction Energy operator 
between the two electrons 

Thus following the form of the basis wave function above (4), we have con-
structed for each state a special wave function and then calculated the matrix 
elements JKMnlN , JKMnlC , JKMnlW , ,jkm j k m nlT ′ ′ ′  

For example on 2p2 states: 2; 1n lυ= = =  
The wave function is written as follow: 

( ) ( ) ( )( )( ) ( )21 1 2 1 2 1 2 1 2 1 2 1 2, exp MJ K
jkm r r r r r r r rφ ξ= × − + + − −r r r r    (16) 

The matrix elements of the normalization factor is written as follow: 

21 21 21JKM jkm j k mN φ φ ′ ′ ′=                     (17) 

( ) ( )3 3
21 1 2 21 1 2 21 1 2d d , ,JKM jkm j k mN r r φ φ ′ ′ ′= ×∫∫∫ r r r r            (18) 

( ) ( ) ( ) ( )( )23 3
21 1 2 1 2 1 2 1 2 1 2 1 2d d exp 2MJ K

JKMN r r r r r r r r r rξ= + − − × − +∫∫∫ r r  (19) 

With ( )
2

3 2 2

0 0

d d sin d d 4 d 1, 2i i i i i i i ir r r r r iθ θ ϕ
π π

= = π =∫∫∫ ∫ ∫ ∫ ∫       (20) 

The matrix elements of the Coulombian interaction Energy operator between 
the nucleus and the two electrons is written as follow: 

( ) ( )21 1 2 21 1 2, ,JKMnl jkm j k mC Cφ φ ′ ′ ′= r r r r               (21) 

( ) ( )2
21 21 1 2 21 1 2

1 2

1 1, ,JKM jkm j k mC Ze
r r

φ φ ′ ′ ′

 
= − + 

 
r r r r         (22) 

( ) ( )2 3 3
21 1 2 21 1 2 21 1 2

1 2

1 1d d , ,JKM jkm j k mC Ze r r
r r

φ φ ′ ′ ′

 
= − + 

 
∫∫∫ r r r r       (23) 

The matrix elements of the Coulombian interaction Energy operator between 
the two electrons is expressed as follow: 

( ) ( )21 21 1 2 21 1 2
1 2

1, ,JKM jkm j k mW φ φ ′ ′ ′=
−

r r r r
r r

           (24) 

( ) ( )3 3
21 1 2 21 1 2 21 1 2

1 2

1d d , ,JKM jkm j k mW r r φ φ ′ ′ ′

 
=   − 
∫∫∫ r r r r

r r
        (25) 

The matrix elements of the kinetic Energy operator of the two electrons is ex-
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pressed as follow: 

( ) ( ) ( )
2

, 21 21 1 2 1 2 21 1 2, ,
2jkm j k m jkm j k mT

m
φ φ′ ′ ′ ′ ′ ′

−
= ∇ +∇

�r r r r        (26) 

Calculations for the other matrix elements of other states were obtained in the 
same procedure. 

The mathematical development of the Hamiltonian applied to each wave 
function of each states leads to simplified analytical expressions which are car-
ried out under MAXIMA computational program. 

Concerning the screening constant σ and the variational parameter ξ, the 
procedure is as follow: 

From the Slater condition 0.3 1σ≤ ≤ , and taken into account Equation (5), 
the parameter ξ can be expressed as follow: 

1Z Z
n n

ξ−
≤ ≤                         (27) 

In order to obtain the theoretical screening constant theoσ , the exponential 
parameter ξ and the minimum eigenvalue in which we are interested, the ana-
lytical expressions of each matrix elements of each state are carried out by our 
self MAXIMA computational program. 

MAXIMA is a computer algebra system for the manipulation of symbolic and 
numerical expressions, including differentiation, integration, ordinary differen-
tial equations, and matrix elements. MAXIMA yields high precision numeric 
results by using exact fractions, arbitrary precision integers, and variable preci-
sion floating point numbers. Our MAXIMA source code is compiled on win-
dows systems. 

At the beginning, the variational parameter ξ is determined as shown (27). For 
each value of Z and n, we know a limited area of the variational parameter ξ. 
Thus for each value of Z, n and ξ, the program calculated directly the screening 
constant σ as shown the Equation (7) and then the eigenvalue E. To obtain the 
minimum eigenvalue and the theoretical screening constant in which we are in-
terested and quoted in tables 1 - 4, the variational parameter ξ and the Hylleraas 
parameters (J, K, M) are slightly varied that exhibit a plateau for the energy. 

3. Results and Discussions 

The main results of our calculations for the theoretical screening constant, the 
variational parameter ξ  and energies concerning the 1s2 1S ground-state and 
the Doubly Excited State for 2p2 1D, 3d2 1G and 4f2 1I of helium isoelectronic se-
quence are quoted respectively in Tables 1-4. Our present results are compared 
with other theoretical calculations and experimental data. Then our results are 
converted into Rydberg for direct comparison by using the infinite Rydberg 1Ry 
= 0.5 a.u = 13.605698 eV. Table 1 shows a comparison of the present calculation 
for the 1s2 1S ground-state energy with the experimental data [6] [7] [8], and the 
theoretical results [9] [10] [11] [12] [15]. In addition the theoretical screening  
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Table 1. Variational parameter ξ and ground energies for 1s2 1S states of Helium isoelectronic sequence. The values are reported in 
Rydberg (Ry). 1Ry = 13.605698 eV. The screening constant sigma (σtheo = 0.3101). 

 
Theory Experiment 

ξ −EMAOT −ESakho −Ee −Ec −Ed −ESlater −Ef −Eexp −Ea,b 

H− 0.6899 1.0098 1.1406   1.0164  0.9745   

He 1.6899 5.7951 5.8872 5.8071 5.8078 5.7784 5.7799 5.7233 5.8063 5.8071a 

Li+ 2.6899 14.5063 14.6401 14.5593 14.5615 14.5321 14.6049 14.4726 14.4645 14.5593b 

Be2+ 3.6899 27.2554 27.3907 27.3113 27.3150 27.2844 27.4260 27.2224 27.2238 27.3120b 

B3+ 4.6899 43.9813 44.1403 44.0616 44.0690 44.0352 44.2542 43.9720 43.9815 44.0683b 

C4+ 5.6899 64.7582 64.8904 64.8125 64.8228 64.7860 65.0896 64.7221 64.7449 64.8294b 

N5+ 6.6899 89.5054 89.6403 89.5624 89.5779 89.5367 89.9314 89.4720  89.5999b 

O6+ 7.6899 118.3513 118.3908 118.2886 118.3342 118.2872 118.7803 118.2952  118.3834b 

F7+ 8.6899 151.0853 151.1403 151.0631 151.0903 151.0374 151.6357 150.9721  151.2366b 

Ne8+ 9.6899 187.9563 187.8903 187.8840 187.8477 187.7874 188.4974 187.7221  188.0050b 

Na9+ 10.6899 228.6006 228.6395  228.6056 228.5373 228.9797 228.4719   

Mg10+ 11.6899 273.4513 273.3906  273.3648 273.2877 273.7801 273.2222   

Al11+ 12.6899 322.0992 322.1407  322.1245 322.0378 322.5802 321.9724   

Si12+ 13.6899 374.9353 374.8907  374.8855 374.7878 375.3802 374.7224   

P13+ 14.6899 431.4453         

S14+ 15.6899 492.1952         

Cl15+ 16.6899 556.9453         

Ar16+ 17.6899 625.6953         

K17+ 18.6899 698.4452         

Ca18+ 19.6899 775.1954         

EMAOT: Energy E of the Modified Atomic Orbital Theory (MAOT), present work. Esakho (Sakho, 2006) [11]; Ee (Pekeris, 1962); Ec (Drake, 1988) [9]; ESlater 
(Minkine, 1982) [15]; Ea,b Experimental data (Radzig, 1985 [7]; Arnaud, 1993) [8]; Eexp (Moore, 1971) [6]; Ed (Utpal and Talukdar, 1999) [12]; Ef (Roothaan 
et al., 1960) [10]. 
 

constant σtheo = 0.3101 is also presented and agree very good with the experi-
mental screening constant of Slater σSlater = 0.30 determined from his rule (σSlater 
= 0.30 for 1s2 state, n = 1). For H− (Z = 1), our results at −1.0098 Ry are com-
pared with those of [10] [11] [12], respectively at −1.14069 Ry; −1.01648 Ry and 
−0.97459 Ry and it can see the good agreement. Comparison indicates that 
MAOT results agree well with each other up to Z = 10. For 10 < Z ≤ 14, our re-
sults are compared with those of [10] [11] [15]. Comparison indicates that for Z 
= 14, our total energy at −374.9353 Ry agree with [11] at −374.89072 Ry, with [9] 
at −374.88558 Ry, with [15] at −375.38022 Ry and with [10] at −374.72241 Ry. 
Generally, this good agreement enables to expect our results with MAOT calcu-
lation for ground-state energy up to Z = 20 to be accurate. 

In Table 2, we presented the theoretical screening constant σtheo = 0.3512 and 
reported the value of the variational parameter ξ and total energies for 2p2 1D  
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Table 2. Parameter ξ and total energies E for doubly excited 2p2 1D states. The values are 
reported in Rydberg (Ry). 1Ry = 13.605698 eV. The screening constant sigma (σtheo = 
0.3512). 

 
Theory Experiment 

ξ −EMAOT −SCUNC −EBIA −Ec −Eg −Eh −Ee,f −ERay 

H− 0.3244 0.2335        

He 0.8244 1.3841 1.4052 1.4097   1.4266 1.4052e 1.3728 

Li+ 1.3244 3.5398 3.5418 3.5565 3.5110 3.5411 3.5565 3.5396f 3.3906 

Be2+ 1.8244 6.6838 6.6788 6.6993 6.6545 6.6751 6.6861  6.5097 

B3+ 2.3244 10.8132 10.8153 10.8403 10.7976 10.8072 10.8160  10.6266 

C4+ 2.8244 15.9892 15.9514 15.9793   15.9455   

N5+ 3.3244 22.0819 22.0885 22.1186   22.0753   

O6+ 3.8244 29.1999 29.2252 29.2568   29.2046   

F7+ 4.3244 37.3396 37.3615 37.3946   37.3350   

Ne8+ 4.8244 46.5156 46.4981 46.5327   46.4643   

Na9+ 5.3244 56.6209        

Mg10+ 5.8244 67.7463        

Al11+ 6.3244 79.9033        

Si12+ 6.8244 93.0931        

P13+ 7.3244 107.2076        

S14+ 7.8244 122.3587        

Cl15+ 8.3244 138.4988        

Ar16+ 8.8244 155.6603        

K17+ 9.3244 173.8364        

Ca18+ 9.8244 193.0401        

EMAOT: Energy E of the Modified Atomic Orbital Theory (MAOT), present work. SCUNC (Sakho, 2008) 
[22]; EBIA (Biaye et al., 2005) [2]; ERay Experimental data (Ray et al., 1991) [21]; Ec (Roy et al., 1997) [26]; Eg 
(Ho and Bhatia, 1991) [27]; Eh (Ivanov and Safronova, 1993) [4]; Ee Experimental data (Hicks and Comer, 
1975) [28]; Ef Experimental data (Diehl et al., 1999) [29]. 

 
doubly excited states of He-like ions up to Z = 20. For this state, comparison 
shows that MAOT results agree well with the theoretical results of [2] [4] [21] 
[22] [26] [27] and also the experimental data of [28] [29]. For Z ≤ 10, compari-
son indicates that results agree well with each other. In addition, we calculated 
the energy of the ion Hydrogen H− where there is no available data for compari-
son. For Z = 10, our results at −46.5156 Ry are compared with those of [2] [4] 
[22] respectively at −46.49816 Ry; −46.53271 Ry and −46.46435 Ry. Thus, this 
good agreement allowed us to expect our results up to Z = 20 to be also accurate. 

Table 3 indicates the present MAOT calculation for the 3d2 1G DES that are 
compared with those of [2] [4] [21] [30] [31]. Here, except the ion Hydrogen H− 
(Z = 1) where there is no available results, the agreements between the calculation 
are generally good up to Z = 5. Thus for 5 < Z ≤ 10, our results are compared with  
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Table 3. Parameter ξ and total energies E for doubly excited (3d2 1G) states. The values 
are reported in Rydberg (Ry). 1Ry = 13.605698 eV. The screening constant sigma (σtheo = 
0.3512). 

 
Theory 

ξ −EMAOT −ESakho −Ea −Eb −Ec −Ed −ERay 

H− 0.2162 0.0152 - - - - - - 

He 0.5495 0.6260 0.6104 0.6166 0.6308 0.6303 0.5849 0.6232 

Li+ 0.8829 1.6004 1.5486 1.5538 1.5837 1.5618 1.5247 1.4601 

Be2+ 1.2162 2.9529 2.9313 2.9320 2.9762 2.9377 2.9085 2.8421 

B3+ 1.5495 4.7596 4.7585 4.7540 4.8105 4.7581 4.7360 4.6669 

C4+ 1.8829 7.1927 7.0301 7.0180 7.0875 7.0229   

N5+ 2.2162 9.8973 9.7461 9.7280 9.8079 9.7321   

O6+ 2.5495 13.0334 12.9066 12.882 12.9718 12.8858   

F7+ 2.8829 16.5999 16.5116 16.4800 16.5797 16.4840   

Ne8+ 3.2162 20.5969 20.5609 20.5200 20.6316 20.5265   

Na9+ 3.5495 25.0246       

Mg10+ 3.8829 29.8814       

Al11+ 4.2162 35.1721       

Si12+ 4.54959 40.8918       

P13+ 4.88293 47.0424       

S14+ 5.21626 53.6234       

Cl15+ 5.54959 60.6351       

Ar16+ 5.88293 68.0777       

K17+ 6.21626 75.9507       

Ca18+ 6.54959 84.2544       

EMAOT: Energy E of the Modified Atomic Orbital Theory (MAOT), present work. Esakho (Sakho,2010) [30]; Ea 
(Bachau et al., 1991) [31]; Eb (Biaye,2005) [2]; Ec (Ivanov and Safronova, 1993) [4]; Ed (Ho, 1989) as quoted 
in (Biaye, 2005) [2]; ERay (Ray et al., 1991) [21]. 

 
those of [2] [4] [30] [31] and it can be seen that the present MAOT results agrees 
well with each other. Comparison indicates that (Z = 10) our results at −20.5969 
Ry agrees very well with them respectively at −20.56099 Ry, −20.52000 Ry, 
−20.63354 Ry and −20.52658 Ry for [4]. In addition, the theoretical screening 
constant is also calculated (σtheo = 0.3512). This good agreement allows us to ex-
pect our results with MAOT calculation for 3d2 1G doubly excited state up to Z = 
20 to be accurate. 

In Table 4, we present our calculation for the 4f2 1I doubly excited state and 
compare our results with theoretical results of [2] [30] and [32]. In our know-
ledge, experimental data are not available yet and also for the ion Hydrogen H− 
(Z = 1). Here the agreements between the calculations are seen to be very satis-
factory. As far as comparisons with the SCUNC results of [2] [30] and [32] are  
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Table 4. Parameter ξ and total energies E for doubly excited 4f2 1I states. The values are 
reported in Rydberg (Ry). 1Ry = 13.605698 eV. The screening constant sigma (σtheo = 
0.3508). 

 
Theory 

ξ −EMAOT −ESakho −EBiaye −EHo 

H− 0.1623 0.04848 - - - 

He 0.4123 0.32906 0.32380 0.3591 0.34080 

Li+ 0.6623 0.85937 0.83464 0.89778  

Be2+ 0.9123 1.63938 1.59547 1.68285  

B3+ 1.1623 2.66909 2.60631 2.71550  

C4+ 1.4123 3.95001 3.86714 3.99645  

N5+ 1.6623 5.47766 5.37798 5.52616  

O6+ 1.9123 7.25650 7.13881 7.30493  

F7+ 2.1623 9.28507 9.14965 9.33300  

Ne8+ 2.4123 11.56332 11.41048 11.61005  

Na9+ 2.6623 14.09130    

Mg10+ 2.9123 16.86898    

Al11+ 3.1623 19.89637    

Si12+ 3.4123 23.17405    

P13+ 3.6623 26.70029    

S14+ 3.9123 30.47681    

Cl15+ 4.1623 34.50304    

Ar16+ 4.4123 38.77898    

K17+ 4.6623 43.30464    

Ca18+ 4.9123 48.07999    

EMAOT: Energy E of the Modified Atomic Orbital Theory (MAOT), present work. ESakho (Sakho, 2010) [30]; 
EBiaye (Biaye et al., 2005) [2]; EHo (Ho, 1989) as quoted in (Biaye et al., 2005) [2]. 

 
concerned, our results for Z = 2, at −0.32906 Ry, agree well with them respec-
tively at −0.32380 Ry; −0.35913 Ry and −0.34080 Ry. For 2< Z ≤ 10, it can be 
seen the present MAOT results agrees with each other, and the agreement can be 
seen up to Z = 10 between our results at −11.56322 Ry and that from theoretical 
calculations [30] and [2] respectively at −11.41048 Ry, and −11.61005. As a re-
sult, our listed data up to Z = 20 are expected to be also accurate. In addition the 
screening constant is also calculated σtheo = 0.3508. The good agreement between 
the results quoted in Tables 1-4 indicate the validity of this MAOT variational 
procedure and his merit to calculate the (nl2) ground-state and doubly excite 
state energies. 

4. Summary and Conclusion 

In this work, the variational procedure of the Modified Atomic Orbital Theory 
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(MAOT) has been applied for the first time to the calculations of the ground- 
state energy 2s2 1S and excitation energies of the doubly 2p2 1D, 3d2 1G, 4f2 1I ex-
cited states of the Helium isoelectronic sequence from Hydrogen ion H− to Cal-
cium ion Ca18+. It has demonstrated the possibilities to construct a new corre-
lated wave function adapted to the correct description of the electron-electron 
correlations phenomena in the ground and in the doubly excited nl2 states of the 
He-like systems. These very important results obtained in this work indicate the 
possibility to apply the MAOT variational procedure to the treatment of atomic 
spectra in two electron systems and probably in more complex atomic systems. 
The good results give also the possibility to analyze resonance energies via a very 
MAOT flexible procedure, in contrast to the complex procedures of experimen-
tal and theoretical methods based on the determination of the photoionization 
cross-section. 
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List of the Symbols 

σtheo: (theo = theory): screening constant σ determined theoretically 
E: Energy 
H: Hamilton operator 
N: Normalization factor 
T: Kinetic Energy 
W: Coulombian interaction potential operator between the two electrons 
C: Coulombian interaction potential between the nucleus and the two electrons 
∇i: denotes the Laplacian operator ∇ with reference to the coordinates of the vector radius ri which detect 

the position of the electron i. 
∇1: is the Laplacian with reference to the coordinates of the vector radius r1 which detect the position of 

the electron 1. 
∇2: Laplacian defines the coordinates of the vector radius r2 which detect the position of the electron 2. 
ri = denotes the position r of the electron i relative to the nucleus 
r1 and r2 = denote respectively the position r of the electron 1 and the electron 2 relative to the nucleus. 

1 2−r r : is an inter-electronic distance. 
;i iθ ϕ  = angular variables of the electron i 

S: total spin 
�  = reduced Planck constant such as 2h= π�  with h the Planck constant 
N = principal quantum number 
l = orbitalar quantum number 
Θ12: angle between electron 1 and electron 2. 
ξ : variational parameter zeta, a Greek alphabet 
H−: Hydrogen ion 
He: Helium atom 
Li+: Lithium ion 
Be2+: Beryllium ion 
B3+: Boron ion 
C4+: Carbon ion 
N5+: Nitrogen ion 
O6+: Oxygen ion 
F7+: Fluorine ion 
Ne8+: Neon ion 
Na9+: Sodium ion 
Mg10+: Magnesium ion 
Al11+: Aluminium ion 
Si12+: Silicon ion 
P13+: Phosphorus ion 
S14+: Sulfur ion 
Cl15+: Chlorine ion 
Ar16+: Argon ion 
K17+: Potassium ion 
Ca18+: Calcium ion 
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