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Abstract 
We called graph G non-singular if adjacency matrix ( )A G  of G is non-sin- 
gular. A connected graph with n vertices and 1n − , n and 1n +  edges are 
called the tree, the unicyclic graph and the bicyclic graph. Respectively, as we 
all know, each connected bicyclic graph must contain ( ), ,a s b∞  or ( ), ,p l qθ  
as the induced subgraph. In this paper, by using three graph transformations 
which do not change the singularity of the graph, the non-singular trees, un-
icyclic graphs and bicyclic graphs are obtained. 
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1. Introduction 

This paper considers only finite undirected simple graphs. Let G be a graph with 
order n, the matrix A is defined as the adjacency matrix of graph G, which is de-
fined as follows: ( ) ( )ij n n

A G a
×

=  

1 if ,
0 others.ij

i j
a 

= 




 

Obviously, ( )A G  is a real symmetric matrix with diagonal elements of 0 and 
other elements of 0 or 1, its eigenvalues are real number. The eigenvalues of 
( )A G  are also said to be the eigenvalues of the graph G, collection n eigenva-

lues of G to form the spectrum of this graph. The number of nonzero eigenva-
lues and zero eigenvalues in the spectrum of the graph G are called the rant and 
nullity of the graph G, and denoted by ( )r G  and ( )Gη , respectively, obviously 
( ) ( )r G G nη+ = . 
The chemist discovered, ( ) 0Gη =  is a necessary condition for the chemical 

stability of the molecules shown in the graph G [1] [2]. 1957, in [2], Collatz and 
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Sinogowitz put forward a question that how to find out all singular graphs 
(equivalently, to show all the nonsingular graphs), namely, to describe all graphs 
with nullity are greater than zero, it was a very difficult problem only with some 
special results [3] [4] [5] [6] [7]. This has inspired a lot of researches on nullity 
of graph [8]-[14]. In this paper, by using three graph transformations which do 
not change the singularity, the non-singular trees, unicyclic graphs and bicyclic 
graphs are obtained. This method is different from previous. 

A connected graph of order n, the graph respectively with size 1,n n−  and 
1n +  are called the tree, the unicyclic graph and the bicyclic graph. As usual, 

nP , nC  and nK  denoted respectively the path, the cycle and the complete graph 
on n vertices. 0K  denoted the null graph (namely, a graph without vertex). The 
graph obtained by bonding the two ends of the ( )1sP s ≥  to one vertex on aC  
and bC  is recorded as ( ), ,a s b∞ , when 1s = , ( ),1,a b∞  denotes the graph 
obtained by bonding a vertex on aC  with a vertex on bC . The graphs obtained 
by bonding the starting vertices and the end vertices of the ,l pP P  and qP  are 
respectively is recorded as ( ), ,p l qθ , where { }min , , 2p l q ≥  and one of them 
at most is 2 (as shown in Figure 1). As everyone knows, each connected bicyc-
lic graph must contain ( ), ,a s b∞  or ( ), ,p l qθ  as the induced subgraph. G H  
denotes the union graph of G and H. An edge relates a vertex of degree 1, then 
the vertex is called a pendant vertex, and the vertex adjacent to the pendant vertex 
is called the quasi-pendant vertex. The notation and terminology that are not de-
scribed here are provided in [1].  

2. Some Lemmas  

Let ,A B  be two n-order real symmetric matrices, if there is an invertible ma-
trix P of order n such that TP AP B= , then we say that A is congruent to B, 
denoted by A B . 

Lemma 2.1. [15] Let ,A B  be n-order real symmetric matrices of two con-
gruent, then ( ) ( )r A r B= , ( ) ( )A Bη η= . 

Lemma 2.2. Let 1 2 tG G G G=   , where ( )1, 2, ,iG i t=   are connected 
components of G. Then ( ) ( )

1

t

i
i

G Gη η
=

= ∑ . Equivalent G is non-singular if and 
only if every ( )1,2, ,iG i t=   is non-singular. 

Lemma 2.3. [1] Let G have a pendant vertex, H is the graph obtained by de-
leting the pendant vertex from graph G and the quasi-pendant vertex adjacent to 
it, then ( ) ( )G Hη η= . Equivalently, G is non-singular if and only if every H is 
non-singular. 

Lemma 2.4. [16] Let G be a graph containing path with four vertices of degree 
2, let the graph H be obtained from G by replacing this path with an edge (as 
shown in Figure 2). Then ( ) ( )G Hη η= . Equivalently, G is non-singular if and 
only if every H is non-singular.  

Lemma 2.5. [16] Let G be a graph containing two vertices and four edges of a 
cycle of length 4, positioned as shown in Figure 3. Let the graph H be obtained 
from G by removing this cycle. Then ( ) ( )G Hη η= . Equivalently G is non-singular 
if and only if every H is non-singular.  
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Figure 1. Graph ( ), ,p l qθ  and ( ), ,a s b∞ . 

 

 

Figure 2. Graph transformation (II) which does not change 
the singularity of the graph. 

 

 

Figure 3. Graph transformation (III) which does not change 
the singularity of the graph. 

 
We called the three graph transformations are given which does not change 

the singularity of the graph in Lemma 2.3, Lemma 2.4 and Lemma 2.5 are the 
graph transformation I, the graph transformation I and the graph transforma-
tion III, respectively. 

We called the subgraph is elementary subgraph of G in which every compo-
nent is 2K  or cycle. If a elementary subgraph of G contains all the vertices of G, 
then called this elementary subgraph that is the elementary spanning subgraph 
of G. 

Lemma 2.6. [1] If G is a graph with n vertices and adjacency matrix is ( )A G , 
then 

( )( ) ( ) ( ) ( ) ( )1 1 2 ,n p H c H

H
det A G

∈

= − −∑


 

where   is the set of elementary spanning subgraph of G, ( )p H  denotes the 
number of components of H and ( )c H  denotes the number of cycles in H. 

3. Main Theorems  

We agree 0K  is non-singular and denoted by { }1 0KΩ = . 
Theorem 3.1. If T is a tree with order n, then T is non-singular if and only if 

T is changed to 0K  by a series of the graph transformation I. 
Proof. As we all know, T is changed to 1H rK=  by a series of the graph 

transformation I, T is non-singular if and only if H is non-singular. When 0r > , 
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then H is singular, when 0r = , then 0H K=  is non-singular. So T is non- 
singular if and only if T is changed to 0K  by a series of the graph transforma-
tion I.  

Corollary 3.1. If a tree is non-singular if and only if T has a perfect matching. 
Lemma 3.1. If a cycle nC  is non-singular if and only if 4 n . 
Proof. According Lemma 2.6, we can easily calculate ( )( )3 2det A C = ,  

( )( )4 0det A C = , ( )( )5 2det A C = , ( )( )6 4det A C = − . Let 4n q r= + , 0q ≥ , 
3 6r≤ ≤ , nC  is changed to rC  by a series of the graph transformation II. There-
fore nC  is non-singular if and only if rC  is non-singular and if and only if 
4 n .  

Denoted by { }2 3 5 6, ,C C CΩ = . 
Theorem 3.2. Let G is a unicyclic graph, then G is non-singular if and only if 

it is changed to 1 2H ∈Ω Ω  by a series of the graph transformation I and the 
graph transformation II. 

Proof. As everyone knows, the unicyclic graph can always change to 1rK , nC  
or 1 nrK C  through a series of the graph transformation I, and change to  

1H rK= , sC  or ( )1 3 6srK C s≤ ≤  through a series of the graph transforma-
tion II. By the Theorem 3.1 and the Lemma 3.1, unicyclic graph G is non-singular 
if and only if H is non-singular, and if and only if 1 2H ∈Ω Ω .  

Denoted by  

( ){ ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )}

1 3,1,3 , 3, 2,3 , 3,3,3 , 3,4,3 , 3,5,3 , 3,2,5 ,

3, 4,5 , 3,1,6 , 3,2,6 , 3,3,6 , 3, 4,6 , 3,5,6 ,

5,1,5 , 5,2,5 , 5,3,5 , 5, 4,5 , 5,5,5 , 5,1,6 ,

5,2,6 , 5,3,6 , 5,4,6 , 5,5,6 , 6, 2,6 , 6, 4,6 .

Γ = ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

 

Lemma 3.2. If ( ), ,G a s b= ∞ , then G is non-singular if and only if G is 
changed to 1H ∈Γ  by a series of the graph transformation II. 

Proof. At first, we can prove graphs in the 1Γ  are non-singular. Taking  
( )3,2,6∞  as an example, it has a elementary spanning subgraph 6 3C C ; two 

3 23C K , so by Lemma 2.6, we can easily calculate  
( )( )( ) ( ) ( ) ( )9 2 423, 2,6 1 1 2 1 2 2 8det A  ∞ = − − + − × = −  . The others are similar, so 

we have following: 

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

3,1,3 4, 3,2,3 3, 3,3,3 4,

3,4,3 3, 3,5,3 4, 3,2,5 5,

3,4,5 5, 3,1,6 4, 3,2,6 8,

3,3,6 4, 3,4,6 8, 3,5,6 4,

det A det A det A

det A det A det A

det A det A det A

det A det A det A

∞ = − ∞ = ∞ =

∞ = − ∞ = − ∞ =

∞ = − ∞ = ∞ = −

∞ = − ∞ = ∞ =

 

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

5,1,5 4, 5,2,5 3, 5,3,5 2,

5,4,5 3, 5,5,5 4, 5,1,6 4,

5,2,6 8, 5,3,6 4, 5,4,6 8,

5,5,6 4, 6,2,6 16, 6,4,6 16.

det A det A det A

det A det A det A

det A det A det A

det A det A det A

∞ = ∞ = ∞ = −

∞ = − ∞ = ∞ = −

∞ = − ∞ = ∞ =

∞ = − ∞ = ∞ = −

 

Denoted by  
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( ){ ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )}

1 3,1, 4 , 3, 2, 4 , 3,3,4 , 3,4,4 , 3,5,4 , 3,1,5 , 3,3,5 ,

4,1,4 , 4,2,4 , 4,3,4 , 4, 4,4 , 4,5,4 , 4,1,5 , 4,2,5 ,

4,3,5 , 4,4,5 , 4,5,5 , 4,1,6 , 4,2,6 , 4,3,6 , 4,4,6 ,

4,5,6 , 6,1,6 , 6,3,6 , 6,5,6 .

∆ = ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

 

Then we prove graphs in the 1∆  are singular. For graph ( )4, ,s b∞  or  
( ), , 4a s∞ , we use the graph transformation III, will get a graph which contains 

1K , yet 1K  provides a zero eigenvalue, so these kind of graphs are singular. 
For the others, we have following: 

( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
3,1,5 0, 3,3,5 0,

6,1,6 0, 6,3,6 0, 6,5,6 0.

det A det A

det A det A det A

∞ = ∞ =

∞ = ∞ = ∞ =
 

At last, let 3, 3, 1a b s≥ ≥ ≥ , and ( )4 3 6a i a a′ ′= + ≤ ≤ ,  
( )4 3 6b j b b′ ′= + ≤ ≤ , ( )4 1 5s k a s′ ′= + ≤ ≤ , for graph ( ), ,a s b∞ , we repeat-

edly use the graph transformation II, will get graph ( ) 1 1, ,a s b′ ′ ′∞ ∈Γ ∆ . So 
( ), ,a s b∞  is non-singular if and only if ( ), ,a s b′ ′ ′∞  is non-singular, if and only 

if ( ) 1, ,a s b′ ′ ′∞ ∈Γ .  
Denoted by  

( ){ ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )}

2 2,3,5 , 2,3,6 , 2,4,4 , 2,4,6 , 2,5,6 ,

2,6,6 , 3,4,4 , 3,4,5 , 4,4,4 , 4,4,5

θ θ θ θ θ

θ θ θ θ θ

Γ =
 

Lemma 3.3. Let ( ), ,G p l qθ= , then G is non-singular if and only if G is 
changed to 2H ∈Γ  through a series of the graph transformation II. 

Proof. First of all, we can prove that the graphs in the 2Γ  are non-singular. 
Taking ( )2,3,5θ  as an example, it has a elementary spanning subgraph 6C ; 
two 23K , so by Lemma 2.6, we can calculate  

( )( )( ) ( ) ( ) ( )6 1 32,3,5 1 1 2 1 2 4det A θ  = − − + − × = −  . The others are similar, so 
we have following: 

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

2,3,6 4, 2,4,4 1, 2,4,6 1,

2,5,6 4, 2,6,6 9, 3,4,4 4,

3,4,5 4, 4,4,4 9, 4,4,5 4.

det A det A det A

det A det A det A

det A det A det A

∞ = ∞ = − ∞ =

∞ = ∞ = − ∞ = −

∞ = ∞ = ∞ = −

 

Denoted by  

( ){ ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )}

2 2,3,3 , 2,3, 4 , 2,4,5 , 2,5,5 , 3,3,3 ,

3,3,4 , 3,3,5 , 3,5,5 , 4,5,5 , 5,5,5 .

θ θ θ θ θ

θ θ θ θ θ

∆ =
 

We can easily prove that graphs in the 2∆  are singular. 
At last, let 2, 3, 3p l q≥ ≥ ≥ , and ( )4 2 5p i p p′ ′= + ≤ ≤ ,  

( )4 2 5l j l l′ ′= + ≤ ≤ , ( )4 2 5q k q q′ ′= + ≤ ≤ , for graph ( ), ,p l qθ , we repeatedly 
use the graph transformation II, will get graph ( ) 2 2, ,p l qθ ′ ′ ′ ∈Γ ∆ . So,  
( ), ,p l qθ  is non-singular if and only if ( ), ,p l qθ ′ ′ ′  is non-singular, if and on-

ly if ( ) 2, ,p l qθ ′ ′ ′ ∈Γ .  
Denoted by 3 1 2Ω = Γ Γ . 
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Theorem 3.3. Let G be a bicyclic graph, then G is non-singular if and only if 
G is changed to 1 2 3H ∈Ω Ω Ω   by a series of the graph transformation I 
and the graph transformation II. 

Proof. As everyone knows, the bicyclic graph can always change to 1rK , nC , 
( ), ,a s b∞ , ( ), ,p l qθ , 1 nrK C , ( )1 , ,rK a s b∞  or ( )1 , ,rK p l qθ  through 

a series of the graph transformation I, and change to 1H rK H ′=  ,  
( ){ }0 1 1 2 2, 3 6rH K C r′∈ ≤ ≤ Γ ∆ Γ ∆     through a series of the graph trans-

formation II. By the Lemma 2.3 and the Lemma 2.4, bicyclic graph G is non- 
singular if and only if H is non-singular, and by the Theorem 3.1, Theorem 3.2, 
Lemma 3.2 and the Lemma 3.3, H is non-singular if and only if  

1 2 3H H ′= ∈Ω Ω Ω  .  

4. Conclusion 

By using three graph transformations which do not change the singularity of the 
graph, we found the non-singular trees, unicyclic graphs and bicyclic graphs. 
After writing this paper, I am very inspired; therefore, I want to do further re-
search on the rank of graphs of more complex structures and so on. 
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