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Abstract 
Drought monitoring represents a challenge for water and agricultural sector 
as this natural hazard accelerates water deficiency and leads to adverse envi-
ronmental and socioeconomic impacts. The use of remote sensing data and 
geospatial techniques to monitor and map drought severity expanded in the 
last decades with progressive developments in data sources and processing. 
This study investigates the correlations among drought indices derived with 
soil moisture stress (K) obtained from ground data collected from fields cul-
tivated with barley. The study, carried out in Yarmouk basin in the north of 
Jordan, includes NDVI, PDI, MPDI and PVI derived from Landsat 8-OLI and 
Sentinel 2-MSI. Results showed different behavior among the indices and 
throughout the 2016/2017 growing season, with maximum correlation be-
tween PDI and MPDI followed by NDVI with PVI. Correlations among the 
remote sensing indices and K for different soil depths during March-April 
were significant for most indices with a maximum (R2) of 0.82 for K30-50 and 
MPDI, followed by K30-50 with NDVI. Drought severity maps for the month of 
March showed different trends for the different indices, with similarities be-
tween MPDI and PDI. The map of drought severity combined from the re-
mote sensing indices and K showed that PDI and soil moisture could signifi-
cantly explain 56% of variations in spatial patterns of drought, while the 
combination of MPDI, PDI and NDVI could significantly explain up to 59% 
of variations in drought severity map. Therefore, the study recommends the 
adoption of these remotely sensed indices for monitoring and mapping of 
agricultural droughts. 
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Drought Map, Jordan 

 

1. Introduction 

Drought is a natural disaster that has many interrelated environmental and so-
cioeconomic impacts related to the lack or shortage of water. With time, defini-
tions of drought included four types that are: meteorological, agricultural, hy-
drological and socioeconomic [1]. The scientific consensus on drought defines 
this phenomenon as the condition of insufficient moisture caused by deficit pre-
cipitation over a period of time. Therefore, agricultural drought remains the 
most important type as the level of soil moisture content largely controls plant 
growth through the growing season. Since agricultural drought is highly corre-
lated with soil moisture, monitoring of drought using soil moisture observations 
or indices related to soil moisture can provide important information for 
drought early warning systems. 

Among many challenges that stand as obstacles for monitoring soil moisture 
conditions and drought severity during the different seasons is the good spatial 
distribution of instruments for measuring soil moisture and high cost of in-situ 
measurements for large geographical areas. The alternatives for the in-situ soil 
moisture measurements are the land surface models that integrate climatic and 
remote sensing data [2]. These coupled and uncoupled models for soil moisture 
estimation are limited by the level of accuracy which is highly limited by the in-
put data for initial conditions and the coarse spatial resolution [3]. Alternatively, 
several techniques have revealed the ability of remote sensing data to extract in-
dices that could indicate soil moisture and reflect drought conditions. The ad-
vantages of remote sensing techniques as potential tool for detecting for drought 
monitoring are their abilities to reveal the main three characteristics of drought 
which are intensity, duration and spatial coverage [4]. The techniques of remote 
sensing data are based on the assimilation of digital numbers (DNs), representing 
surface spectral reflectance at certain wavelength, to derive indices that are re-
lated to drought and reflecting soil moisture conditions. Most of these indices 
are derived from the red and near-infrared bands and assumed to reflect vegeta-
tion fractions and conditions. 

During the last two decades, progressive developments in the geospatial tech-
niques of remote sensing and geographic information systems (GIS) encouraged 
the use of remote sensing indices for monitoring drought and modeling its spa-
tial patterns at different spatial and temporal scales [5]. 

The use of remote sensing data also increased due to its availability at reason-
able or no cost. Good examples of these data are those of Landsat 8 and Senti-
nel-2, which are available free charge at spatial resolutions of 30 and 10 meters, 
respectively and temporal resolutions of 16 and 7 days, respectively. The most 
commonly used index that was derived from remote sensing and extensively 
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used for monitoring vegetation condition is the Normalized Difference Vegeta-
tion Index (NDVI). The index shows good response to cumulative rainfall, ex-
cept in arid areas or in environments with dense vegetation [6]. 

For drought monitoring, the concept of perpendicular drought index (PDI) 
was proposed to reflect moisture distribution in the red (R)-near-infrared (NIR) 
space [7]. The limitations of PDI are related to the assumptions of homogenous 
land cover and soil types. Therefore, a modified perpendicular drought index 
(MPDI) that considers vegetation fraction and soil moisture content was pro-
posed for drought monitoring [8] The MPDI derived from the Landsat En-
hanced Thematic Mapper Plus (ETM+) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS) showed better performance than PDI in terms of 
drought monitoring [8]. 

In Jordan, adverse trends of climate changes and increased frequency and se-
verity of droughts are expected to add more stresses to the countries scarce water 
resources [9] [10]. The country’s water sector policy for drought management 
emphasized the need for a national drought early warning system to form the 
basis for decision-making and effective drought management planning [11]. 
This would require the adoption and use of credible indices that can detect 
drought and reflect soil moisture conditions, for the case of rainfed areas. At 
present, a unit for monitoring agricultural droughts is operating at the National 
Agricultural Research Center (NARC). The maps produced by this unit are 
based on the NDVI data of MODIS with spatial resolution of 1000. In these 
maps, severity of drought is based on the degree of NDVI deviation from the 
long-term means [12]. 

As a possible improvement in drought mapping, the drought monitoring unit 
at NARC started to use the 250 m resolution data of MODIS to produce maps of 
drought [13]. The maps were not assessed in terms of accuracy or correlation 
with soil moisture. For small geographical areas, the moderate resolution data of 
Landsat showed to be more accurate than MODIS data [14]. The use of either 
Landsat or MODIS data would depend on calibration and validation of indices 
using ground data. 

The use of active remote sensing data of RADARSAT II to monitor soil mois-
ture was also investigated in Jordan and showed accurate predictions [15]. 
However, several factors might restrict the use of such data sources including the 
low temporal resolution, the shallow soil depth represented by these data and the 
relatively high cost of moderate resolution data. Therefore, this study aims to 
assess different remotely sensed indices, derived from passive data, and their 
correlation with soil moisture for the purpose of agricultural drought monitor-
ing in the north of Jordan. In addition, the study compares maps of drought 
generated from the different indices in terms of spatial distribution and rainfall 
gradient along the study area. 

2. Study Area 

The study was carried out in an area of 210 km2 inside the Yarmouk River Basin 
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(YRB). The basin inside the Jordan’s border has an area of 1147 km2 (Figure 1), 
and covers the areas of Ramtha and Irbid in the north, and Mafraq in the east. 
The study area inside YRB was selected to cover rainfed crop of barley across the 
rainfall gradient inside the basin. The study area was selected as the rainfed areas 
inside this basin are under the threat of drought and desertification [15] [16]. 
The mean annual rainfall in the basin ranges between 150 mm in the east to 400 
mm in the west, while the selected area has an annual rainfall of 230 - 350 mm. 
The study area has mean annual minimum and maximum temperatures of 
12.3˚C and 23.1˚C, respectively. 

The annual potential evaporation at the basin’s level ranges from 1500 to 2150 
mm/year [16]. The study area is flat and forms part of Horan plains with an al-
titude range of 560 - 600 m. Soils of the study area are deep in the west and shal-
low (depth < 70 cm) in the east with moderate to high clay contents. Both of 
 

 
Figure 1. Location of the study area in the Yarmouk River Basin [11]. 
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climate and land topography made the basin and the study area important agri-
cultural areas where rainfed and irrigated agriculture are practiced. The main 
rainfed crops are field crops, olives and vegetables. The eastern part of the study 
area is cultivated with rainfed barley that is used to support grazing herds. The 
rainy season in this area starts in November and ends by early May, with most 
rainfall occurring in December-February. 

Rainfall for 2016/2017 season ranged between 107 mm in the east to 301 mm 
in the west. The season of barley cultivation starts by sowing in Novem-
ber-December and ends by harvesting in the Middle of May. 

In the eastern parts of the basin and the study area, a transhumant system of 
cultivation is practiced where barley is usually cultivated for straw rather than 
for grain, to support the grazing herds of sheep, especially when drought is de-
trimental to grain yield. 

3. Methods 

The study methodology included a sequence of steps and procedures of data 
collection and analysis, as summarized in Figure 2. The data used in the study 
included satellite images of Landsat 8-Operational Land Imager (OLI), Sentinel 
2-Multispectral Instrument (MSI) and climatic data from Jordan Meteorological 
Department (JMD) and Ministry of Water and Irrigation (MWI), in addition to 
ground data collected during several field visits. The following subsections in-
clude detailed description of these steps and procedures. 
 

 
Figure 2. Flowchart of steps and methods for the study area. 
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3.1. Image Processing 

Landsat 8-OLI and Sentinel 2-MSI images for the 2016/2017 seasons were 
downloaded and processed to derive different drought indices that were corre-
lated with soil moisture. The 30 m spatial resolution of the OLI data was consi-
dered as high resolution for drought mapping. However, due to cloud cover in 
some periods during the winter season, the MSI data with 10 m resolution was 
used for these periods. The two were characterized by having high correlated 
spectral data for atmospherically corrected images, i.e. data of spectral reflec-
tance at ground level [17]. Since the study was based on multi-temporal images, 
atmospheric corrections were carried out using ground readings for reference 
objects collected by a hand held radiometer for one image and carrying out an 
image-to-image correction for the remaining images [10]. The images were also 
geometrically corrected using Ground Control Point’s (GCP’s) collected with a 
Global Positioning System (GPS) that had an accuracy of ± 3 m. A second order 
transformation model was used to correct the images that were resampled to 30 
m pixel size. The images included multispectral bands with different wave-
lengths. In this study, only the red and the NIR bands were used for deriving the 
indices used for drought monitoring. The data covered the period October 
2016-May 2017, corresponding the 2016/2017 growing season (see Table 1). 

3.2. Derivation of Drought Indices 

The processed data of OLI and MSI was used to derive four indices selected for 
drought monitoring as summarized in the following points.  

1) NDVI 
This is the most commonly used index to monitor vegetation. The index was 

calculated by using red and NIR bands as follows [6]: 

( )
( )
NIR R

NDVI
NIR R

−
=

+
                        (1) 

where NIR and R are the reflectance of near-infrared red bands, respectively. 
2) PVI 
The perpendicular vegetation index (PVI) is distinct; orthogonal to the soil 

line and can be used for computing the maximum signals of the green vegetation 
taking into account the effect of soil background.  The index was calculated as 
follows [18]: 

( ) ( )2 2
s v s vPVI R R NIR NIR= − + −               (2) 

where the subscripts s and v refer to the soil and vegetation reflectance, respec-
tively. The soil line was generated by extracting the values of red and NIR bands 
for the study area to derive the slope and intercept. Locations of the sampled 
sites, in terms of red and NIR reflectance, were plotted on this cure to study the 
variations in vegetation cover among the sampled sites and to determine which 
of these sites would be highly affected by possible drought or soil moisture 
stress. 
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Table 1. Specification remote sensing data used in the study. 

Source 
Band 

(Nominal: wavelength, µm) 
Dates 

(DD-MM-YY) 

Landsat 8-OLI 
4 (Red: 0.636 - 0.673) 
5 (NIR: 0.851 - 0.879) 

16-10-2016, 20-01-2017, 
05-02-2017, 21-02-2017, 
26-04-2017, 12-05-2017, 

28-05-2017 

Sentinel 2-MSI 
4 (Red: 0.665 - 0.695) 
8 (NIR: 0.842 - 0.957) 

23-10-2016, 12-11-2016, 
22-11-2016, 22-12-2016, 
11-01-2017, 12-03-2017 

 
3) PDI 
This drought index was derived using spatial characteristics of the soil mois-

ture in Red and NIR feature space to assess soil moisture stress. The equation to 
derive PDI is [7] [19]: 

( )( )
2

1

1
PDI R M NIR

M
= − ×

+
                 (3) 

where M is the slope of the soil line in the Red-NIR spectral feature space. The 
value (1.30) was derived from using the linear relationship between R and NIR 
[14]. 

4) MPDI 
This index considers vegetation fraction and soil moisture content and does 

not assume uniform vegetation and soil types. Depending on the area under 
consideration, MPDI may perform better than PDI. The Fraction of Vegetation 
(fv) was calculated, using the maximum and minimum NDVI values of the 
scene, according to the following equation [20]: 

0.6175
max

max min

1v
NDVI NDVI

f
NDVI NDVI

 −
= −  − 

.                 (4) 

The range of fv is 0 (bare soil) to 1 (full vegetation cover). After deriving the fv 
layer, the MPDI was calculated as follows [8]: 

( )( )
( ) 21 1

v v v

v

R M NIR f R M NIR
MPDI

f M

+ × − + ×
=

− +
.               (5) 

3.3. Ground Data Collection 

Soil moisture samples were collected from ten sites (fields) in the study area 
during the 2016/2017 season. The sites were selected to represent an east-west 
transect that covers the rainfall gradient in the study area, with a distance of 3 - 4 
km between the field and the other (Figure 3). Also, the selection included the 
fields that were planted on the same data (10th of December 2016). These in-
cluded eight rainfed fields cultivated with barley, one field cultivated with barley 
under supplemental irrigation and one bare field that included natural grasses 
used for grazing. The sites were characterized by flat topography and fine to me-
dium soil texture that had high water holding capacity. 

https://doi.org/10.4236/ojg.2019.913105


I. A. Farhan, J. Al-Bakri 
 

 

DOI: 10.4236/ojg.2019.913105 1055 Open Journal of Geology 
 

 
Figure 3. Distribution of sampling sites over the study area overlaid onto MSI image. 

 
The variations in soil content of clay were obvious where maximum contents 

of clay were in the high rainfall area in the west. A summary of some soil physi-
cal properties of the selected sites are shown in Table 2. In addition to soil sam-
pling, measurements were made for plant heights inside the 10 sites using a di-
agonal transect inside each site during January-May. Gravimetric soil samples 
were collected in the days coincided with the satellite overpass. Samples were 
taken by an auger from three depths extending from surface down to 50 cm (0 - 
10, 10 - 30 and 30 - 50). Physical characterization for particle size distribution, 
bulk density and volumetric water contents at field capacity and permanent 
wilting point was also carried out for the collected samples. 

The volumetric soil moisture content (θv) was measured for each soil sample 
and the equivalent soil moisture content (W) was then calculated for each depth 
and for each sampling site. Soil moisture stress (K) was calculated using the fol-
lowing equation [21]: 

1 p

h p

W W
K

W W
−

= −
−

                           (6) 

where, W is the equivalent soil moisture content for a particular soil depth or 
layer, Wh and Wp are the Field Capacity (FC) and Permeant Wilting Points 
(PWP), respectively, for that soil depth or layer. When the value of K approaches 
zero then plant will not suffer from water stress, while values closer to one indi-
cate conditions of water stress resulting from low levels of soil moisture. 

3.4. Drought Severity Mapping 

A map of drought severity was produced for the month of March using the maps 
of drought level based on PDI, MPDI, PVI and K maps and using the ranges  
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Table 2. Summary of some soil physical properties of the sampling sites in the study area. 

Site* 
Harvesting 

(DD-MM-YY) 
Clay 
(%) 

Silt 
(%) 

Sand (%) Soil Texture 
FC 

(cm/cm) 
PWP 

(cm/cm) 

1 28-05-2017 52.3 42.2 5.5 Silty clay 0.39 0.25 

2 N/A 57.3 38.4 4.3 Clay 0.45 0.32 

3 28-05-2017 39.6 52.9 7.5 Silty clay loam 0.30 0.17 

4 12-05-2017 18.9 65.9 15.2 Silt loam 0.32 0.19 

5 28-05-2017 41.5 51.7 6.8 Silty clay 0.37 0.22 

6 28-05-2017 34.8 55.5 9.7 Silty clay loam 0.40 0.20 

7 10-04-2017 33.1 54.8 12.1 Silty clay loam 0.36 0.18 

8 28-05-2017 30.2 60.8 9.0 Silty clay loam 0.43 0.20 

9 28-05-2017 28.4 60.3 11.3 Silty clay loam 0.35 0.20 

10 28-05-2017 33.1 56.8 10.1 Silty clay loam 0.34 0.19 

Site* 
Harvesting 

(DD-MM-YY) 
Clay 
(%) 

Silt 
(%) 

Sand (%) Soil Texture 
FC 

(cm/cm) 
PWP 

(cm/cm) 

1 28-05-2017 52.3 42.2 5.5 Silty clay 0.39 0.25 

2 N/A 57.3 38.4 4.3 Clay 0.45 0.32 

3 28-05-2017 39.6 52.9 7.5 Silty clay loam 0.30 0.17 

4 12-05-2017 18.9 65.9 15.2 Silt loam 0.32 0.19 

5 28-05-2017 41.5 51.7 6.8 Silty clay 0.37 0.22 

6 28-05-2017 34.8 55.5 9.7 Silty clay loam 0.40 0.20 

7 10-04-2017 33.1 54.8 12.1 Silty clay loam 0.36 0.18 

8 28-05-2017 30.2 60.8 9.0 Silty clay loam 0.43 0.20 

9 28-05-2017 28.4 60.3 11.3 Silty clay loam 0.35 0.20 

10 28-05-2017 33.1 56.8 10.1 Silty clay loam 0.34 0.19 

 
shown in Table 3. The NDVI was excluded as drought classification using this 
index would require the use of long historical record and the use of seasonal 
deviations from the long term mean assuming normal distribution of data [12]. 
The indices used for drought mapping, on the other hand, did not require the 
assumption of normal distribution and the map of drought could be carried out 
for a single image [21]. The month of March was selected as growth of rainfed 
crops would reach its peak during this month [12] [14]. 

3.5. Evaluation of Results 

The derived remote sensing indices were assessed in terms of correlation with 
soil moisture stress for the different soil layers and for the root zone. A correla-
tion matrix was used to analyze the extent of interdependence between different 
drought indices. In addition, other statistical parameters of minimum, maxi-
mum, mean, standard deviation, Root Mean Square Error (RMSE) were also de-
rived and summarized for the derived indices (Table 4). The data of vegetation 
indices was also plotted for the sampling sites during the growing season using  
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Table 3. Classification of drought severity for the different vegetation and soil moisture 
indices. 

Class 
Indicator and range 

MPDI PDI PVI K 

No Drought 0 - 0.3 0 - 0.3 >18 - 

Mild - - 15 - 18 0.2 - 0.4 

Moderate 0.3 - 0.5 0.3 - 0.5 12 - 15 0.4 - 0.6 

Severe 0.5 - 0.8 0.5 - 0.8 9 - 12 0.6 - 0.8 

Extreme 0.8 - 1.0 0.8 - 1.0 <9 0.8 - 1.0 

 
Table 4. A statistical summary of the vegetation indices and K in the sampling sites. 

Index Minimum Maximum Mean Standard deviation RMSE 

PVI 0.1 21.8 4.9 0.042 0.017 

NDVI 0.044 0.853 0.216 0.160 0.035 

MPDI 0.05 0.54 0.30 0.104 0.064 

PDI 0.13 0.52 0.31 0.087 0.055 

K 0.058 0.948 0.440 0.205 0.133 

 
the red and NIR reflectance data. This was carried out to assess the different in-
dices in terms of their ability to detect vegetation conditions inside the sampled 
sites and their locations in the spectral space in relation to soil line during wet 
and dry periods [8]. Also, the plot would reflect the levels of soil moisture during 
the growing season. 

The map of drought was assessed in terms of its correlation with maps of re-
mote sensing indices and rainfall. This was carried out using the exploratory re-
gression analysis within the GIS environment. The exploratory regression eva-
luates all possible combinations of the input candidate explanatory variables, 
looking for Ordinary Least Squares (OLS) models that best explain the depen-
dent variable. The exploratory or independent variables included the NDVI, 
PVI, PDI, MPDI, rainfall and K for different soil depths, while the dependent 
variable included the map of drought. The results from OLS and exploratory re-
gression also included the assessment of model significance (using Joint F and 
Wald Statistics), redundancy of variables (indicated by variance inflation factor, 
VIF), and the normality of the model residuals for each variable using Jar-
que-Bera (JB) statistics, which indicates normal distribution of variable when JB 
is zero [22] [23]. 

4. Results and Discussions 
4.1. Assessment of Vegetation and Drought Indices in the Sampled 

Sites 

Results showed variation in the level of vegetation cover in the study area, where 
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the reflectance of the vegetation was orthogonal to the soil line and the value of 
reflectance for the sites with vegetation was more than 27% in the NIR band and 
less than 10% in the red band (Figure 4). Among the sampled locations, site 8 
had the full vegetation cover, while variations in the level of vegetation and the 
value of vegetation indices were observed. Generally, the sites showed variations 
in vegetation cover and the values of vegetation soil moisture stress throughout 
the growing season (Table 5). 

The maximum values of PVI were observed in the MSI image of the 12th of 
March with higher values for sites of 1, 6, 8 and 10 than other sites (Figure 4). 
Similarly, the maximum values of NDVI were observed during the same period. 
Both of PVI and NDVI agreed with the field observations and measurements 
collected for Plant Height (PH) inside the sampling sites (see Table 5). As such, 
significant correlations (p < 0.05) between plant height and PVI and NDVI were 
observed in the sites cultivated with barley, where the coefficient of determina-
tion (R2) was 0.51 for PH-PVI and 0.85 for PH-NDVI relationships. 

The relatively low value of R2 for the case of PVI was attributed to its high 
sensitivity to the soil brightness [24]. Data from both OLI and MSI detected the 
variations in soil moisture for bare soils throughout the growing season (Figure 
4). This was reflected on the spectral space of the red-NIR that showed high ref-
lectance for dry soils than wet soils due to absorbance of electromagnetic radia-
tion in the red and NIR wavelength. Among the examined indices, PDI was able 
to detect these variations during the growing season especially when soil was 
bare. 

Plotting the data of PDI for dry and wet periods for both bare and vegetated 
soils, respectively, showed that PDI was parallel to the soil line and responded to 
soil moisture levels during the season (Figure 5). The line L, which dissected the 
coordinate origin and is vertical to the soil line, delineated in Figure 5 and for-
mulated from the soil line expression [7] would form the basis for the PDI con-
cept. 

 

 
Figure 4. Spectral space of red-NIR bands during the growing season 
and PVI for sampled sites during March. 
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Figure 5. Spectral space of red-NIR bands and PDI during the growing 
season, PVI during March and PDI for the wet and the dry periods. 

 
Table 5. Mean values of measured plant height (cm) and drought indices for the sam-
pling sites. 

Site 
 Date (DD-MM) 

22-Dec. 04-Jan. 07-Feb. 22-Feb. 09-Mar. 25-Mar. 10-Apr. 26-Apr. 12-May 28-May 

1 0 9 16.5 18 26.5 50.1 67.5 70.2 57.5 H 

2 0 0 6 9 0 8 0 0 0 0 

3 0 7 9 14 19.1 31.5 35 40.1 37.5 G 

4 0 6 7.5 11.5 13 26.5 30 35.1 G G 

5 0 0 7.5 7 10.1 13.9 30 37 37.5 G 

6 0 6.8 9.8 24 25.1 50.1 62.5 69.1 70 H 

7 0 4.5 8 13 22.1 24.9 G G G G 

8 0 8.5 21 24 47.5 89.8 120 130 120 H 

9 0 4.5 8.5 10 20 29.1 37.5 49.6 50.1 H 

10 0 7 11 16 24.9 50 57.5 59.5 60.2 H 

CR (mm) 140 174 246 275 291 298 298 301 301 301 

Index           

NDVI 0.08 0.20 0.22 0.28 0.38 0.55 0.20 0.18 0.20 0.22 

PVI 0.92 4.91 5.01 5.82 7.12 12.1 4.24 6.62 6.83 4.94 

PDI 0.20 0.22 0.18 0.23 0.26 0.31 0.29 0.23 0.37 0.35 

MPDI 0.20 0.18 0.23 0.25 0.32 0.28 0.16 0.36 0.31 0.34 

K 0.48 0.15 0.27 0.20 0.34 0.65 0.61 0.15 0.27 0.20 

Depth GG: Grazing; H: Harvest; CR: Cumulative Rainfall (mm). 

 
For bare soil, the distance from any points in the NIR–Red spectral space to 

the line L represents the drought severity of the non-vegetated surface. The val-
ues of PDI when soil was dry (October) were located far away from this line, 
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while PDI values when soil was wet (March) were closer to this line. The dis-
tance from PVI line to the line (L) was nearly the same for all sampling loca-
tions, indicating the low sensitivity of this index to soil moisture, although soil 
moisture levels were different among these sites. 

Results showed significant correlations among some indices and no correla-
tions among others (Table 6). The correlation coefficient reflected the nature of 
the remotely sensed indices which could be grouped into two groups that in-
cluded PVI and NDVI in one group and PDI and MPDI in another group. The 
PVI and NDVI indices were mainly reflecting seasonal vegetation condition and 
showed higher correlations with the seasonal soil moisture stress. Previous work 
in Jordan [6] showed that NDVI was highly correlated cumulative rainfall rather 
than monthly or single rainfall event. The PDI and MPDI, on the other hand, 
were highly correlated and showed positive correlation with soil moisture. Both 
indices were low in January and February, indicating drought during this period 
when most rainfall occurred. This trend was not detected by PVI which indi-
cated severe drought conditions during January and February and in other pe-
riods, except in March. 

In general, PDI and MPDI reflected the conditions of drought in the study 
area with better response to rainfall than PVI. The values of NDVI, on the other 
hand, that maximum vegetation growth occurred during March and early April 
(at most), as indicated by the NDVI profile plotted for the sampled site (Figure 
6). Since most of rainfall occurred during December-March, then this period 
could be considered as the critical period for monitoring drought in this Medi-
terranean environment. These results were also reported by previous research in 
Jordan [12] [13] [14] [25] which indicated that peak vegetation growth is 
reached by the end of March. 

4.2. Correlation among Indices and Soil Moisture 

Results showed variations in the degree of correlation between remotely sensed 
drought indices and soil moisture stress (K) during the growing season and for 
short-term drought conditions (Table 7). For the period January-April, the rela-
tionship between remote sensing indices and K was insignificant for NDVI, 
while low values of R2 were observed for the relationships between other indices 
 
Table 6. Correlation coefficient (r) among indices for the 2016/2017 season. 

Index PVI NDVI MPDI PDI K 

PVI 1.00 0.75 ns* ns −0.44 

NDVI 0.75 1.00 ns 0.24 −0.50 

MPDI ns ns 1.00 0.95 0.32 

PDI ns 0.24 0.95 1.00 0.30 

K −0.44 −0.50 0.32 0.30 1.00 

*: No significant correlations at p < 0.05. 
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Table 7. Coefficient of determination (R2) for relationships between K and drought in-
dices during January April (J-A) and March-April (M-A). 

Index NDVI PVI MPDI PDI 

Kdepth (cm) J-A M-A J-A M-A J-A M-A J-A M-A 

K0-10 ns 0.40 ns 0.27 ns 0.45 ns 0.34 

K10-30 ns 0.70 0.18 0.61 ns 0.72 0.22 0.61 

K30-50 ns 0.78 0.24 0.78 0.30 0.82 0.38 0.57 

K0-50 ns 0.68 0.19 0.56 0.16 0.72 0.26 0.55 

 

 
Figure 6. Spatiotemporal pattern of NDVI values and cumulative rainfall for each site 
during the season of 2016/2017. 
 
and K. For the period March-April, significant relationships were observed 
among drought indices and K for the different soil depths. The maximum corre-
lations occurred between MPDI and K for soil depths between 10 and 50 cm. 
Generally, MPDI showed better correlations with soil moisture stress when 
compared with PDI. High correlations between MPDI and subsurface soil 
moisture was also indicated by Ghulam et al. [8] who proposed MPDI for real 
time drought monitoring. 

The significant correlations with relatively high R2 between NDVI, PVI and K 
could be explained by the fact that vegetation growth reached its peak during 
March and early April when soil moisture was depleted by plants. In this partic-
ular period, strong correlations were observed for subsurface soil moisture and 
remote sensing indices. The strong correlation between NDVI and soil moisture 
during March-April would also indicate the response of NDVI to cumulative 
rainfall during the season, as confirmed by previous research [6]. The relation-
ships between drought indices and K were linear with PDI and MPDI being 
proportionally correlated with K, and NDVI and PVI being inversely correlated 
with K. An example on these relationships is shown in Figure 7 for MPDI and 
NDVI during March-April. 

The inverse relationships between NDVI and K might be confusing when 
used for drought monitoring as it would reflect the condition of plant reached at  
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Figure 7. Relationships between K for the 0 - 50 cm soil depth and 
MDPI (top) and NDVI (bottom) during March-April. 

 
this stage without reflecting drought severity. Also, the NDVI is well known for 
its sensitivity to soil background, soil wetness and saturation in its values for 
areas with dense vegetation [6] [26]. Therefore, MPDI would be recommended 
for drought monitoring during the periods of soil moisture stress in March and 
April as its values would reflect the severity of drought in relation to plant con-
ditions. In terms of R2, results were close to the values obtained by a previous 
study that correlated MPDI and PDI with soil moisture [14]. 

The results and relationships obtained from this study, however, would be 
more advantageous when compared with correlations made directly with soil 
moisture as the level of moisture stress would differ among the different soil 
types at the same soil moisture levels. Although both of PDI and MPDI would 
show similar spatial patterns (Figure 8), however, MPDI may perform better at 
stages of dense vegetation cover [27], like site 10 which had denser cover than 
other rainfed sites. In general, MPDI would reflect drought severity in relation to 
soil moisture stress regardless of soil type. Since the values of R2 were slightly 
higher for K-MPDI relationship than for K-PDI relationship, the use of MPDI to 
monitor drought would be recommended. 

4.3. Drought Severity Mapping 

Maps of drought severity based on PDI, MPDI, PVI and K for March (see Fig-
ure 9) showed variations in spatial patterns of drought among the indices. Both  
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Figure 8. Relationships between the MDPI (top) and NDVI 
(bottom) and K for the 10 - 30 cm soil depth during March-April. 

 
of MPDI and PDI had similar spatial pattern of drought in the western parts of 
the study area, while PDI showed larger areas in the middle and eastern parts af-
fected by drought when compared with MPDI. 

The map of PVI, on the other hand, reflected the variations in vegetation cov-
er from the high rainfall zone in the west to the low rainfall zone in the east. The 
soil moisture stress showed different patterns than other indices particularly in 
the eastern parts of the study area and indicated mild to moderate moisture 
stress in March. The map of drought severity in March, combined the factors of 
vegetation and soil moisture across the study area (Figure 10). The map showed 
that half of the study area was exposed to moderate and severe drought while the 
eastern parts were suffering from extreme drought. 

The map agreed with field observations collected during the growing season 
(Table 5), which showed that rainfed field crops in sites 1, 6, 9 and 10 had 
reached the ripening stage, while the crops in sites 3, 4, 5 and 7 reached harvest 
stage or were opened for grazing in early April. The areas with extreme drought 
in the east reflected the end of barley season in early April in these parts of the 
study area. Analysis of the factors that could explain the map of drought severity 
is shown in Table 8. The negative and positive signs in this table show the type 
of relationship between the independent variable and the drought severity map.  
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(a)                                                          (b) 

 
(c)                                                          (d) 

Figure 9. Maps of drought indices during March-2017. 
 

 
Figure 10. Drought severity map of the study area during March-2017. 

 
Results of exploratory regression and OLS showed that no single factor could 
significantly explain all variations in spatial patterns of the drought severity map. 

The use of two factors was better in explaining this map as PDI combined 
with K explained 59% of the map spatial pattern. The combination of remote  
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Table 8. Summary of exploratory regression analysis and OLS for the map of drought se-
verity in March. 

Model  
simplicity 

Adj. R2 JB VIF Variable and model significance 

1 0.23 0.79 1 (−) K0-10,* 

2 

0.59 0.75 1.15 (+) PDI, (−) K** 

0.51 0.84 1.05 (−) K, (−) Rainfall ** 

0.39 0.81 1.03 (−) PVI, (−) Rainfall * 

3 

0.58 0.69 1.99 (−) NDVI, (+) PDI, (−) K** 

0.57 0.68 2.02 (+) PDI, (−) PVI, (−) K** 

0.56 0.73 5.11 (−) MPDI, (−) NDVI, (+) PDI** 

4 0.61 0.68 6.29 (−) MPDI, (−) NDVI, (+) PDI, (−) K* 

5 0.51 0.67 6.9 (−) MPDI, (−) NDVI, (+) PDI, (+) PVI, (−) K* 

*p = 0.10 (not significant), **p = 0.05, ***p = 0.01. Where, Model fit. (Adj. R2); Normality of Residuals (JB); 
Collinearity (VIF). 

 
sensing drought indices of NDVI, PDI and MPDI could explain drought 56% (R2 
= 0.56) of variations in drought spatial pattern. 

Adding K to these indices would increase the model redundancy as shown by 
the VIF values that increased when the four variables were used to explain the 
variations in drought severity map, as the VIF value reached 6.9 which became 
close to 7.5; the level at which model redundancy would start [23]. These results 
could indicate that K or remote sensing indices highly correlated K should form 
the basis for monitoring drought and mapping its severity. 

5. Conclusion 

Results showed that remote sensing indices showed different responses to soil 
moisture stress (K) with similarities in trends of correlations, which were posi-
tive for MPDI and PDI and negative for NDVI and PVI. The correlations were 
significant with relatively high values of R2 for the MPDI, NDVI, PVI and K 
during March-April when the vegetation cover of barley reached its maximum, 
indicating the possibility of using remote sensing indices for drought monitoring 
during this period. The correlations with remote sensing indices and K were also 
variable among the indices and for the different soil depths for which K was de-
rived. This indicated the nature of each index and its response to either vegeta-
tion conditions or soil moisture conditions or both. Therefore, the combination 
of remote sensing in mapping drought severity would produce a map that could 
reflect soil moisture and vegetation. Results from the spatial statistics analysis for 
the drought severity map of March showed that the combination of PDI and K 
explained 59% of the variations in the spatial pattern of this map. The combina-
tion of remote sensing indices of PDI, MPDI and NDVI significantly explained 
56% in the variations in the spatial pattern of this map. Therefore, the study re-
commends the use of these indices, particularly MPDI and PDI, to map and 
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monitor drought at the scale of OLI and MSI data. 

Data Availability 

Some or all data, models, or code generated or used during the study are pro-
prietary or confidential in nature and may only be provided with restrictions 
(e.g. maps and climatic data). 
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