
Advances in Historical Studies, 2019, 8, 252-300 
https://www.scirp.org/journal/ahs 

ISSN Online: 2327-0446 
ISSN Print: 2327-0438 

 

DOI: 10.4236/ahs.2019.85018  Dec. 26, 2019 252 Advances in Historical Studies 
 

 
 
 

Annotated Translations of Three of the Euler’s 
Papers on Celestial Mechanics 

Sylvio R. Bistafa 

University of São Paulo, São Paulo, Brazil 

 
 
 

Abstract 
Annotated translations from Latin of three of the Euler’s papers on celestial 
mechanics are presented, which fall into the category of three-body problems. 
The first translation deals with an exact solution of three bodies that move 
around the common center of mass and always line up. This is considered the 
first work from which the three collinear Lagrange points could be obtained. 
The second translation deals with motions of Sun, Earth and Moon in syzygy 
and Moon libration as well, where, for the first time, Euler introduces an arc-
haic form of a Fourier sine series expansion to describe the Moon’s wagging 
motion. The last translation relates to a paper that was written with the goal 
of alleviating astronomical computations of the perturbed motion of the 
Moon around the Earth by the Sun, ending up with eight coupled differential 
equations for resolving the perturbed motion of this celestial body. Despite 
showing great analytical skills, Euler gave no indications on how this system 
of equations could be solved, which renders his efforts practically useless in 
the determination of the variations of the nodal line and inclination of the 
Moon’s orbit. 
 

Keywords 
Three-Body Problem, Motion of Celestial Bodies, Astronomical Perturbation, 
Lunar Motion 

 

1. Introduction 

As earlier as the 1730’s and until his death in 1783, Euler wrote more than 60 
papers on astronomy, including the motion of planets and comets, astronomical 
perturbation, eclipses, tides and geophysics. Since many of these works often 
involve rather lengthy and intricate astronomical computations which, nowa-
days, are, perhaps, of limited interest, we have chosen to translate works of long 
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lasting repercussion such as those related to theoretical and mathematical mod-
els to the motion of celestial bodies, and particularly to three-body problems in 
astronomy. Historically, the first specific three-body problem to receive ex-
tended study was the one involving the Moon, the Earth, and the Sun, for which 
Euler gave a significant contribution. 

Although some of Euler’s papers on the subject had been written in French, 
most of them are written in Latin, which may represent a barrier to the modern 
reader. With the goal of disseminating the works of Euler on the subject, we 
present here annotated translations from Latin of three of Euler’s papers related 
to three-body problems in astronomy. 

“On the rectilinear motion of three bodies mutually attracting each other”: in 
this publication, Euler considers three bodies lying on a straight line, which are 
attracted to each other by central forces inversely proportional to the square of 
their separation distance (inverse-square law). Although not explicitly men-
tioned by Euler, this is an exact solution of three bodies that move around the 
common center of mass and always line up. 

“Considerations on the motion of celestial bodies”: in this publication, Euler 
essentially focuses on the solution of two particular motions of a three-body 
problem consisting of Sun, Earth and Moon. The first motion, represents a hy-
pothetical situation of these three celestial bodies in perpetual alignment in sy-
zygy—the three-body problem on a straight line. The second motion considered 
by Euler was Moon libration, when these planets are aligned in regular syzygy. 

“An easy method for calculating the motion of celestial bodies perturbed in 
any manner avoiding astronomical computations”: as revealed by its title itself, 
the goal of this paper is to alleviate the astronomical computations in a typical 
celestial three-body problem represented by Sun, Earth and Moon. In this work, 
Euler’s approach consists of two parts: geometrical and mechanical. The geome-
trical part contains most of the analytical developments, in which Euler makes 
use of Cartesian and spherical trigonometry as well.  

2. On the Rectilinear Motion of Three Bodies Mutually  
Attracting Each Other (De Motu Rectilineo Trium  
Corporum se Mutuo Attrahentium, Euler, 1767)  

 
 

I) Let A, B, C be the masses of three bodies such that their distances to a fixed 
point O at a given instant of time t is given by 

OA x= , OB y=  and OC z=  

where, in fact, it is assumed that y x>  and z y> . Hence, the principles of 
motion give these three equations: 

I) 
( ) ( )2 2 2

dd
d

x B C
t y x z x

= +
− −

                       (1) 
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II) 
( ) ( )2 2 2

dd
d

y A C
t y x z y

−
= +

− −
                      (2) 

III) 
( ) ( )2 2 2

dd
d

z A B
t z x z y

−
= −

− −
                      (3) 

whence two integrable equations are easily derived: the first [integral] 

d d d dA x B y C z E t+ + =                        (4) 

which upon integration results in 

Ax By Cz Et F+ + = + ;1                       (5) 

and the second [integral] 
2 2 2

2

d d d 2 2 2
d

A x B y C z AB AC BCG
y x z x z yt

+ +
= + + +

− − −
.1            (6) 

whence, because we lack a third integral equation, very little is possible to con-
clude about the movement. 

2) Let us set x y p= −  and z y q= + , such that p and q are positive quanti-
ties; and the first integral [Equation (5)] gives: 

( )A B C y Ap Cq Et F+ + − + = +                     (7) 

and thus 

d d d; dAp Cq Et F A p C q E ty y
A B C A B C
− + + − +

= =
+ + + +

            (8a, b) 

( ) ( )d d d
; d

B C p Cq Et F B C p C q E t
x x

A B C A B C
− + − + + − + − +

= =
+ + + +

    (9a, b) 

( ) ( )d d d
; d

Ap A B q Et F A p A B q E t
z z

A B C A B C
+ + + + + + +

= =
+ + + +

     (10a, b) 

whence, the second integral [Equation (6)] assumes the following form: 

( ) ( )
( )

2 2 2

2

d d 2 d d d
d

2 2 2

A B C p C A B q AC p q EE t
A B C t

AB AC BCG
p p q q

+ + + + +

+ +

= + + +
+

         (11) 

whence, arises one integral equation2 

( ) ( )
( )

22 2

2

d d d d 2 2 2
d

B A p C q AC p q AB AC BCG
p p q qA B C t

+ + +
= + + +

++ +
,        (12) 

 

 

1From I. 
( ) ( )2 2

d d d
d

A x AB ACt t
t y x z x
= +

− −∫ ∫ , which upon multiplication by d
d
x
t

 gives  

( ) ( )

2

2 22

d d d
d

A x AB ACx x
t y x z x

= +
− −∫ ∫ , and then 

2

2

d
d

A x AB AC
t y x z x

= +
− −

. And similarly for II and III, 

yielding: 
2

2

d
d

B y AB BC
t y x z y

= +
− −

, and 
2

2

d
d

C z AC BC
t z x z y

= +
− −

. Taking the sum over the three equations 

and introducing the constant of integration G yields 
2 2 2

2

d d d 2 2 2
d

A x B y C z AB AC BCG
t y x z x z y

+ +
= + + +

− − −
.  

2In the original manuscript, these three last lines have been misplaced at the end of § 3. 
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and observing that the last term EE is included into G. 
3) Let us make the same proper substitutions into the first second order diffe-

rential [difference-of-differentials] equations [Equation (1) and Equation (3)], 
which now result in two [equations]: 

( )
( ) ( )2 2

dd dd
d

B C p C q B C
ppA B C t p q

− + −
= +

+ + +
                  (13) 

( )
( ) ( )2 2

dd dd
d

A p A B q A B
qqA B C t p q

+ + −
= −

+ + +
,                   (14) 

 which [by subtracting Equation (13) from Equation (12)] results in 

( )2 2

dd dd
d

p q A C B B
pp qqt p q

+ − −
= − −

+
.                   (15) 

And then, each element ddp  and ddq  can be expressed separately in the 
following way  

1) 
( )2 2

dd
d

p A B C C
pp qqt p q

− −
= − +

+
                   (16) 

2) 
( )2 2

dd
d

q A A B C
pp qqt p q

= − −
+

                     (17) 

4) Since the solution has been reduced to two differential equations involving 
p, q and t we should expect that significant advantage is to be obtained, if it were 
possible to reduce these equations to two others of first order only. This is a 
unique technique that I have discovered which can be applied in the following 
manner. I put q pu= , and the two differential equations [Equation (15) and 
Equation (16)] are represented as: 

( )2

d dd
d 1
p t C CA B
t pp uuu

    = − − − +     + 
                 (18) 

( )2

d d dd
d 1

u p p u t A B CA
t pp uuu

 +   = − −     + 

               (19) 

Now the trick consists of the following substitution d
d
p r
t p
=  and 

d d d
d d
q u p p u s
t t p

+
= = ; because it will expose that for these substitutions, the  

two variables p and t can be eliminated from the calculations, such that only 
these three [variables] r, s and u are to be determined by their first differentials. 
Then, in particular, the equation that the integral was found above [Equation 
(17)] assumes a finite form which reads 

( ) ( )2
2 22

1
B Arr Css AC r s AC BCGp AB

A B C u u
+ + +

= + + +
+ + +

,       (20) 

whose usefulness it will be possible to assess. 
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5) Since d
d
p r
t p
= , then 

d
d

p p
t

r
= , whence our second order differential 

[difference-of-differentials] equations [Equation (18) and Equation (19)] give 

( )2

d d d
2 1

r r p p C CA B
uup p p pr p u

 
 − = − − − +
 + 

            (21) 

( )2

d d d
2 1

s s p p A B CA
uup p p pr p u

 
 − = − −
 + 

              (22) 

or: 

( )2

d dd
2 1
r p p C Cr A B

p pr uuu

 
 = + − − − +
 + 

                (23) 

( )2

d dd
2 1
s p p A B Cs A

p pr uuu

 
 = + − −
 + 

                  (24) 

Moreover, in particular, it will be considered that 

d dd d s t s pu p p u
rp

+ = = ,                      (25) 

such that d dp r u
p s ru
=

−
 which when substituted [into Equation (23) and Equa-

tion (24)] gives 

( )
( )2

1d d d
2 1

C Cr s ru rr u u A B
uuu

 
 − = + − − − +
 + 

          (26) 

( )
( )2

1d d d
2 1

A B Cs s ru rs u u A
uuu

 
 − = + − −
 + 

             (27) 

which when combined give: 

( )
( ) ( )2 2

1 d d d d 0
2 1 1

C C A B Cr r s s r s A B r A
uu uuu u

   
   − + − − − + − − − =
   + +   

 (28) 

6) We see that we have two first-order differential equations [Equation (26) 
and Equation (27)] among three variables r, s and u, whence if it were possible to 
determine r and s in terms of u, and then one would have the complete solution 
of the problem. Thence, in fact, p would become known from the formula  
d dp r u
p s ru
=

−
, and hence furthermore q pu= . Thereafter, the particular time t 

would be given from the equation 
d dd

p p p ut
r s ru

= =
−

; and finally, for a given 

time t, the distances x, y, z would be obtained as given in § 2. 
7) Since the two differential equations [Equation (26) and Equation (27)] 

found are 
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( )
( )2

1d d d
2 1

C Cr s ru rr u u A B
uuu

 
 − = + − − − +
 + 

 

( )
( )2

1d d d
2 1

A B Cs s ru rs u u A
uuu

 − − = + − −
 + 

 

then, it is clear that both are satisfied by taking the quantity u as constant and 
0s ru− = , whence a particular solution is obtained. If u = ∝  and s r= ∝  

[then from Equation (28) we have that:] 

( )
( ) ( )2 21 1

C C A B CA B A∝
− + ∝ − + = − −

∝ ∝∝∝ + ∝ +

 ,          (29) 

or 

( ) ( )2 2

1 1 1 10 1
1 1

A B C
   ∝    = ∝ + − + ∝ − + − −    ∝∝ ∝ ∝∝ ∝ + ∝ +   

,   (30) 

or else 

( )
( )

( ) ( )
( )

3 333

2 2

1 1 11
0

1 1

CB
A
   ∝ + − ∝ − ∝ +∝ −   = + +

∝∝∝ + ∝∝ ∝ +
;         (31) 

hence, 

( ) ( ) ( ) ( )23 31 3 3 3 3 1 1C A B+ ∝ + ∝∝ = ∝ ∝∝ + ∝ + + ∝ + ∝ − .      (32) 

Thus, it is possible to determine the quantity ∝  from this equation of the 
fifth degree: 

( ) ( ) ( ) ( )
( )

5 4 3 23 2 3 3

2 3 0

A B A B A B B C

B C B C

+ ∝ + + ∝ + + ∝ − + ∝

− + ∝ − − =
3       (33) 

Thence, truly from the relation between r and p [Equation (21)] this equation is 
obtained 

( )2

d dd
2 1
r p p C Cr A B

p pr

 
 = + − − − +
 ∝∝∝ + 

               (34) 

or by putting 
( )2

1
21

C CA B D+ + − =
∝∝∝ +

, [then, from Equation (34) we have] 

d d 2 d2d orp D p r rr r
p r p rr D
 = − =  − 

,              (35a, b) 

which [upon integration of Equation (35b)] gives 

( )p rr Dβ= − ,                         (36) 

[where ζ  is a constant of integration], and then [since q pu p= = ∝ ] 

( )q rr Dβ= ∝ − ,                        (37) 

and [since] 
d

d
p p

t
r

=  or ( )d 2 dt r rr Dβ β= − , hence 
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( )
( )

2 drt r rr D D
rr D

β β β
β

= − −
−

∫ .             (38) 

8) This particular case, in which the solution succeeds, deserves to be unfolded 
carefully. Firstly, I observe that the value of ∝ , since it is obtained from an eq-
uation of the fifth degree, is unique and always a positive real quantity, because 
there is only one sign variation3, and then, of course, there is no reason for any 
ambiguity; however, the value of this ∝  can be seen to depend on the masses 
of the three bodies A, B, C. Once the number ∝  having been found, we get the  

quantity ( ) ( )
( )2

2 2 1
2

1

C
D A B

∝ +
= + −

∝∝ ∝ +
, where it should be observed that the 

quantity D can never vanish. In fact, if 0D = , then 
( )
( )2

2 1

1

C
B A

∝ +
= −
∝∝ ∝ +

, 

which, when substituted [into Equation (32)] would give: 

( )

( )
( )( )

( ) ( )
3

23 3

1 3 3

2 1 1
  3 3 1 1

C

C
A A

+ ∝ + ∝∝

∝ + ∝ −
= ∝ ∝∝ + ∝ + + − ∝ + ∝ −

∝∝

    (39) 

( ) ( )4 3 4 32 2 1 2 2 1C A∝ + ∝ + ∝∝ + ∝ + = ∝ + ∝ + ∝∝ + ∝ +
∝∝

     (40) 

and, therefore, C A= ∝∝  and 
( )
( ) ( )2 2

2 1

1 1

A AB A
∝ + − ∝∝

= − =
∝ + ∝ +

, and then, B 

would be a negative mass, which is absurd. Even less possible is that the quantity 

D could be negative. In fact, assuming [that 
2
D
= −∆ , where ∆  is a positive 

quantity]: 

( )
( )2

2 1

1

C
B A

∝ +
= − − ∆
∝∝ ∝ +

,                      (41) 

it would then give [when substituted into Equation (32)]: 

( ) ( )2 3

4 3

1 1

2 2 1
C A

∆ ∝ + ∝ −
= −

∝∝ ∝ + ∝ + ∝∝ + ∝ +
,                 (42) 

hence [by isolating A in the first term of Equation (42), and substituting the re-
sulting expression into Equation (41)] 

( )
( )

( )5 4 3

2 4 3

3 32 1
2 2 11

C CB
∆ ∝ + ∝ + ∝∝ +

= − −
∝∝ ∝ + ∝ + ∝∝ + ∝ +∝∝ ∝ +

,         (43) 

and then, B would be a much more negative quantity, since it is necessary that 
the value of ∝  itself be positive. 

 

 

3Descartes’ Rule of Signs states that if the terms of a single-variable polynomial with real coefficients 
are ordered by descending variable exponent, then the number of positive roots of the polynomial is 
either equal to the number of sign differences between consecutive nonzero coefficients, or is less 
than it by an even number. 
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9) Then, since it is necessary that the quantity D be positive, it can be assumed 
that D aa= , and if also the number ∝  is considered as given, therefore the  

masses of the three bodies will be obtained as [from Equation (43), with 
2

aa
∆ = ]:  

( )
( ) ( )

5 4 3

24 3

3 3

2 2 2 1 1

aa CB
∝ + ∝ + ∝

= −
∝ + ∝ + ∝∝ + ∝ + ∝ +

;           (44) 

and [from Equation (42), with 
2

aa
∆ = − ]: 

( ) ( )
( )

2 3

4 3

1 1

2 2 2 1

aaCA
∝ + ∝ −

= −
∝∝ ∝ + ∝ + ∝∝ + ∝ +

,               (45) 

from which it is necessary that the quantity 
( )

( )

4 3

2

2 2 2 1

1

C

aa

∝ + ∝ + ∝∝ + ∝ +

∝∝ ∝ +
 be  

bound between the limits ( )31 1∝ + −  and 3 1∝ − . Then, once the quantity aa 
with the number ∝  are introduced into the calculations, two cases should be 
examined, according to the sign of the quantity β  (positive or negative), which 
we shall examine separately. 

Case I. 
10) Be first nnβ = , and then ( )p nn rr aa= −  [from Equation (36)] and 

( )q nn rr aa= ∝ −  [from Equation (37)], and by putting the constants E and F 
equal to zero, the locations of the three bodies A, B, C, which center of gravity is 
now located at O, are defined by r such that: 

( ) ( )
nn rr aa

x OA B C C
A B C

− −
= = + + ∝

+ +
,                (46) 

( ) ( )
nn rr aa

y OB A C
A B C

−
= = − ∝

+ +
,                  (47) 

( ) ( )( )nn rr aa
z OC A A B

A B C
−

= = + + ∝
+ +

.               (48) 

Yet, the relation between r and the time t is [Equation (38)] 

3 3 drt n r rr aa n aa
rr aa

= − −
−∫ ,                 (49) 

or 

3 3 ln r rr aat n r rr aa n aa + −
= − −

∆
.              (50) 

Assuming that the constant a∆ = , then, for the time 0t = , r a= , meaning 
that all bodies are concentrated in the center of gravity [O], whence they will be 
driven out with an almost infinite velocities, and then, these [distances] are sim-
ilar to each other as the quantities of: B C C− − − ∝ , A C− ∝ , ( )A A B+ + ∝ ; 
also, with the passage of time t the quantity r increases even more; however, for any 
other time, the velocity of each of the bodies becomes known from the formula  

https://doi.org/10.4236/ahs.2019.85018


S. R. Bistafa 
 

 

DOI: 10.4236/ahs.2019.85018 260 Advances in Historical Studies 
 

3d 2
d

t n rr aa
r
= − . However, noting that the inter body distances preserve the 

same proportion. 
Case II. 
11) Be now nnβ = − , and then ( )p nn aa rr= −  [from Equation (36)] and 

( )q nn aa rr= ∝ −  [from Equation (37)], and the locations of the bodies are de-
fined by r from: 

( ) ( )( )1
nn aa rr

x OA B C
A B C

− −
= = + + ∝

+ +
,               (51) 

( ) ( )
nn aa rr

y OB A C
A B C

−
= = − ∝

+ +
,                  (52) 

( ) ( )( )1
nn aa rr

z OC A B
A B C

−
= = ∝ + + ∝

+ +
.              (53) 

On the other hand, for the time t to be obtained, ( )32 dt n r aa rr= − , or 

( )
3 3 drt n r aa rr n aa

aa rr
= − +

−
∫                  (54) 

hence, 

3 3 1sin rt n r aa rr n aa
a

−  = − +  
 

.                 (55) 

But, by putting 1sin r
a

φ−   = 
 

, such that sinr a φ= , then  

( )3 sin cost n aa φ φ φ= + , and at any time, the inter distances are proportional to 
2cos φ .4 Whence, if at the beginning when 0t = , also 0φ = , thus 0r = , and 

3d 2
d

t n a
r
= , then the distances will be: 

( )( )1nnaax OA B C
A B C
−

= = + + ∝
+ +

,               (56) 

( )nnaay OB A C
A B C

= = − ∝
+ +

,                 (57) 

( )( )1nnaaz OC A B
A B C

= = ∝ + + ∝
+ +

,              (58) 

and in that place the bodies are at rest. On the other hand, once it has been as-
sumed that 90φ =  , or after the time 3 90t n aa= ⋅   has elapsed, the bodies ap-
proach the center of gravity with infinity velocity.5 

_______________________ 

 

 

4According to Equations (51)-(53), the distances are proportional to  

( ) ( )
2

2 2 2 2 2 2 2 2
2  1 sin cosra r a a a a

a
φ φ − = − = − = 

 
. 

5Since ( )d 2 dt nn r nn aa rr= − − , or 
( )3

d 1
d 2
r
t n aa rr
= −

−
, which for ( )90 r aφ = =  gives 

d
d
r
t
= −∞ . 
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Applications by the Translator 

For 1A B C= = =  unit, the fifth order polynomial [Equation (33)] reduces 
to  

5 4 3 22 5 4 4 5 2 0,∝ + ∝ + ∝ − ∝ − ∝ − =  

which, by inspection, gives 1∝ =  as the single positive root. 
For Case I, and from Equations (46)-(48), the positions of these masses are 

given by ( )x nn rr aa= − − , 0y = , and ( )z nn rr aa= − , which show that one 
of the masses occupies the center of gravity, whereas the two other masses oc-
cupy symmetrical positions in relation to the center of gravity, and that these 
positions depend on ( )rr aa− .  

For Case II, and when 0t = , the motion begins in a symmetrical configura-
tion of the masses in relation to the center of gravity, however, according to Eq-
uations (56)-(58), the positions of these masses are now given by x nnaa= − , 

0y = , and z nnaa= . For any other instant of time, the positions of the masses 
will be given by ( )x nn aa rr= − − , 0y = , and ( )z nn aa rr= − , which show 
that the symmetrical configuration is preserved, however, the positions of the 
masses now depend on ( )aa rr−  instead.  

The conclusion is that for these particular cases, the configuration of the 
masses during the motion is such that one of the masses occupies the center of 
gravity, with the two other masses remaining on the same straight line, and 
moving symmetrically around the center of gravity of the system. This is consi-
dered the first work from which the three collinear Lagrange points could be 
obtained, where the parameter that controls the distances among the bodies was 
found to be given by a quintic function. 

A practical application of these results is to find, for instance, the Earth-Moon 
three collinear Lagrange points for satellite location. The figure below provides a 
graphical interpretation of the Lagrange points, for the application of the quintic 
equation [Equation (33)]. Considering that the Earth-Moon distance 

Earth-Moon 384400 kmd = , and that the mass of the Earth equals 5.98 × 1024 kg, the 
mass of the Moon equals 7.34 × 1022 kg, and the mass of the satellite equals zero, 
approximately, then the solution of the quintic equation gives: 1 0.17737∝ = , 

2 0.167417∝ = , 3 1.00711∝ = , for the Lagrange points 1 2 3, ,L L L , respectively. 
These values gives the following distances from the Earth as: 1 326490 kmL = , 

2 448755 kmL = , 3 381686 kmL = . These values can also be obtained by the 
following approximate expressions that have been used: 

Earth-Moon Moon31 1 1
1 Earth

, with 0.159617 331488 km
1 3

d m
L r L

r m
= ≈ = ⇒ =

+
 

( ) Moon32 Earth-Moon 2 2 2
Earth

1 , with 0.159617 445757 km
3
m

L d r r L
m

= + ≈ = ⇒ =  

Earth-Moon Moon
3 3 3

3 Earth

5
, with 1 1.005083 382456 km

12
d m

L r L
r m

= ≈ + = ⇒ =  
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Graphical interpretation of the Lagrange points, for the application of the 
quintic equation (Adapted from: Problem Set 1 Solution, Satellite Engineering, 
David W. Miller and John E. Keesee. Available at  
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-851-satellite-engin
eering-fall-2003/assignments/ps1_nn_solution.pdf, Accessed on Aug. 30, 2019) 

3. Considerations on the Motion of Celestial Bodies  
(Considerationes de Motu Corporum Coelestium, Euler,  
1766)  

I) Although there is no doubt that the laws of motion of celestial bodies ob-
served by Kepler and confirmed by Newton have brought very great gains to [the 
discipline of] Astronomy, nevertheless it is certain that no body in the heavens is 
met with that in its own motion follows these laws perfectly, since, instead, in all 
[of the motions of these bodies] deviations from these laws, that are by no means 
slight, are detected. Of course, it is true that the cause of all heavenly motions re-
sides in the mutual attraction of these bodies, by which each and every [body] is 
attracted toward each of the others singly by forces consisting of a ratio com-
posed directly by the un-squared [amount] of the masses [of the bodies], and 
inversely by the squared [amounts] of the distances. However, it is always con-
venient to consider that one force stands out among the remaining, and thus, the 
motion would approximately follows Kepler’s rules; and then the relatively very 
small effect arising from the others can be determined by methods of approxi-
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mation. Without this simplification, we would be at the utmost ignorance about 
the celestial motion, since to date no method has been discovered by the applica-
tion of which the motion, of three or more bodies mutually attracting each other, 
might require to be ascribed; unless, perchance, one force surpasses the others. 

2) Yet indeed this case—in which [case] alone Geometers do not squander 
their work at all points in vain—cannot be taken as conclusive since the method 
of approximation itself, which Geometers are accustomed to use, is bound up 
with a great many difficulties besides, and an unlimited multitude of small per-
turbations is neglected, by which [fact] it becomes so that this approximation by 
itself [only] minimally carries through the business [of determining the motions], 
but on the contrary, for it to be completed, still more supports are desired. 
Wherefore, although from this Theory the motion of the Moon is determined 
accurately enough, that [fact of sufficient accuracy] ought to be ascribed more to 
special circumstances that obtain for the Moon than to any perfection to which 
[perfection] a general Theory would be required to measure up. For if the Moon 
were two or three times as far from the Earth, or if its orbit were more eccentric, 
then all the labors endured to this point would be lacking in all fruit [because 
they would be inapplicable], and by the way, not even its motion could be re-
called to any fixed rule. 

3) Therefore, much has stood before the Theory of Astronomy to be consi-
dered, for instance, if under the fictitious hypothesis that in case the Moon were 
much away from the earth, it would be certainly an excess to think that its mo-
tion could be evaluated with the maximum aid of this science. If, for instance, 
the Moon would have been a hundred times more distant from the earth, there is 
no doubt that the laws of motion of the main planet would no longer be followed 
as if it were a satellite of the earth, as one would expect. But if, on the other hand, 
the distance were ten times greater, its motion could then be compared, so that 
no doubt would remain, even with primary or secondary planets being added. 
To such an extent that it certainly would disagree from all the motions observed 
in the sky, such that it can hardly give an idea even on how the average motion 
can be resolved. Perhaps, innumerable observations could reveal a certain law, 
from which, in a subsequent application, it can somehow give a clear prediction; 
however, by no means so evident, to such an extent that the Theory that should 
explain this type of motion may not be adapted. The very wise creator is seen to 
have being mindful of our weakness, because none of the bodies placed in the 
sky are such that their motion could be described neither by the law of the main 
planets nor of the satellites.  

4) This sort of research, which is seen not to surpass the strength of the hu-
man mind, is certainly not suited to be undertaken hastily, but on the contrary, 
it will require that our efforts be undertaken step by step. Then, the general 
problem of three bodies mutually attracted to each other will be conveniently re-
stricted to the case where one of the masses almost vanishes in front of the two 
remaining, where it is agreed that certainly it will be convenient that the two 
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larger bodies are set in motion according to Kepler’s laws, and that every per-
turbation on the third [body] is disconsidered, and in case its position and mo-
tion will be compared since the beginning, such that if it is attracted to both 
larger [bodies] with almost equal force, we shall have in this manner a case, 
whose investigation demands a distinctly new approach. A great deal is lacking 
to venture an approach towards this problem before fatiguing in vain to unfold it, 
as I am forced to admit; however, in fact, this is a complete singular case as I 
have already observed, and with a remarkable simplification, in which the mo-
tion of the Moon would appear constantly connected or in opposition to the Sun, 
which is the case to be considered, with great utility in this very difficult matter 
should not be abandoned, and by no means to be seen with indifference. 

5) Hence, the motion of the Sun and the Moon seen from Earth is assumed to 
take place in the ecliptic plane6, with the earth resting in T, and after a certain 
time has elapsed, I place the Sun in S, the Moon in L, and after laying a fixed 
straight line TA, directed to the First Star of Aries7, I ascribe the following angles: 
ATS θ= , ATL φ= , and STL φ θ η= − = , and the distances TS u= , TL v=  

and 2 cosLS uu uv vv zη= − + = . Be further the mean longitude of the Sun8 = 
ζ, and its mean distance from the Earth = a, and from these we have for the mo-
tion of the Sun in its canonical form9: 

2 3

2 2 2

2d d dd dd d  0 and 0
d d

u u u u a
u

θ θ θ
ζ ζ
+ −

= + = , 

and for the motion of the moon10:  

3 3

2 2 3

2d d dd 1 sin 0
d

v v a u
u z

φ φ η
ζ

 +
− − = 

 
, and 

2 2 3 3 3 3

2 2 3 2 3

dd d 1 cos 0
d

v v n c a v a u
v z u z

φ η
ζ

 −
+ + + − = 

 
 

where c is the mean distance which the Moon is solicited by the force of the 
Earth, and for the mean motion of revolution, there is a :1n  relation between 
the mean motion of the Moon and the mean motion of the Sun. Besides, re-
garding the differentials of the second degree, it should be noticed that the ele-
ment dζ  is assumed to be constant. 

 

 

6The ecliptic plane contains most of the objects which are orbiting the sun, and is tilted with respect 
to the Earth’s spin axis at 23.5˚. 
7The First Star of Aries (or First Point of Aries), also known as the Cusp of Aries, is the location of 
the vernal equinox. 
8The Sun’s ecliptical longitude is defined as the angle subtended at the earth between the vernal 
equinox and the Sun. The mean longitude is the ecliptical longitude that the planet would have if 
the orbit were a perfect circle. 
9The development of these equations can be found in E112—Recherches sur le mouvement des 
corps célestes en general. 
10The development of these equations can be found in L. Euler, Considerationes de theoria motus 
lunae perficienda et imprimis de eius variatione, Novi Commentarii Academie Scientiarum Impe-
rialis Petropolitanae, Tom. XIII, pro Anno 1768. 
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11 
 

6) All the difficulties in the resolution of both equations, consist on finding at 
any instant of time, the mean longitude of the Sun ζ , as well as the distance v, 
and the angle φ . Since so far, in general, the Geometers cannot proceed in their 
work, unless in case in which the distance v is much smaller than u and the 
number n is rather big, suitable approximations have been found, yet much is 
still justly needed in this matter. However this pair of equations in a general as-
pect, without any consideration to the Moon dwelling, which certainly has to be 
explained, can solve the problem completely. Such motion can take place in the 
sky, and it is in our ability to know it completely, even if its reasoning does not 
agree at all with the regular motion. 

7) First of all, I should observe that these two equations admit a closed form 
solution for the case in which 0η = , or φ θ= , when the Moon is seen to be in 
continuous communication with the Sun. Since sin 0η = , and cos 1η = , then 
z u v= − , and our equations will assume the following forms: 

2

2d d dd 0
d

v vθ θ
ζ
+

= , and 

( ) ( )

2 2 3 3 3 2 2 3

2 2 3 2 3

dd d 3 3 0
d

v v n c a v a u v uv v
v uu v u v

θ
ζ
− − + −

+ + + ⋅ =
− −

 

or 
( )

( )

3 2 22 2 3

2 2 32

2 3dd d 0
d

a v u uv vv v n c
v u u v

θ
ζ

− +−
+ + =

−
, 

which can be immediately compared with the given formulas for the motion of 
the Sun considering that v uα= , which it is certainly satisfied by the prior es-
tablished equations. Hence the other equation for the Moon will be transformed 
into 

( ) ( )
( )

2 3 22 3

2 2 2 3 2

dd d 2 3
0

d 1

u u an c
u u

α θ α α α

ζ α α

− − +
+ + =

−
. 

And since the other equation for the Sun is 
2 3

2 2

dd d 0
d

u u a
u

θ
ζ
−

+ = , 

it is necessary that 

( )
( )

3 22 3
3

2 3

2 3

1

an ca
α α α

α
α α

− +
= −

−
 

 

 

11Angles were added to this figure by the Translator to facilitate the comprehension. 
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or 

( )

2 3 2 3

2 3 2

3 3
1

n c
a

α α α
α α

− +
−

−
, 

where, since 
2 3

3

n c
a

 is a constant quantity, let us put for conciseness 
2 3

3

n c m
a

= , 

and then 

( ) ( )2 2 2 31 3 3m α α α α α− = − +  

or 

( ) ( )2 32 21 1m α α α α− = − − . 

Once putted 2 x− ∝ = , then ( )( )22 31 1mx x x= − − , or 
2 2 3 4 51 2 2 0x x mx x x x− + − − + − = .12 

8) Then, it will be necessary the determination of the number α  or x from 
an equation of the fifth degree, which for its resolution, it is necessary to first 
observe that m should be a rather small fraction, and then 

( )2 3 4 51 3 3m α α α α− = − + , 

likewise, it is evident that α  will also have a small value, which can be ap-

proximated by 
2

33
3 3
m c n

a
∝ = = , or more precisely  

2
33 3

1 1 1
3 3 9 27 81 3
m m mm m∝ = − − + . However, a first approximation gives  

2
3

3
cu nv
a

= , whence, since u a= , and 2 175n = ,13 gives, 4v c= , approximately;  

or if the Moon were four times more distant from us, a motion of this kind 
would have been possible to exist, such that it [the Moon] would appear always 
connected to the Sun. It would then be possible to regard a Satellite of the Earth 
as if it were the Moon, and its motion would be most regular, however, deviating 
from the rules of Kepler the more close to the Sun than to the Earth, though it 
may revolved with the same time, because the force of the Earth in relation to 
the force of the Sun is reduced in the same proportion, although it may linger 
with a longer periodic time. Because the distance to the earth would be almost 
four times greater than the distance that Moon actually stands apart, as much as 
a limit would permit, so that bodies far more removed from the principal planets, 
in fact closer to the satellites of the Earth should permit. Similar limits in relation 
to other planets will be possible to be established. 

 

 

12A fifth degree polynomial was also obtained by Euler in E327—De motu rectilineo trium 
corporum se mutuo attrahentium (see Section 2). In this publication, Euler considers three bodies 
lying on a straight line, which are attracted to each other by central forces inversely proportional to 
the square of their separation distance (inverse-square law). 
13The Moon completes an orbit around the Earth once every 27.32 days. The Earth takes a year (365 
days) to revolve around the Sun. Therefore, in a year period, the Moon completes  

365 27.32 13.36n = =  revolutions around the Earth, and then 2 178.5n = . 
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9) As the evolved case of a permanent continuous communication with the 
Sun, indeed in continuous opposition, gives a similar case. In this case, let us put 

180η =  , and then sin 0η = , cos 1η = − , and 180φ θ= + , and then d dφ θ= , 
and also z u v= + . Thus, the equations for the motion of the Moon will assume 
the following forms: 

2

2d d dd 0
d

v vθ θ
ζ
+

= , and 

( ) ( )

2 2 3 3 3 3

2 2 3 2 3

dd d 1 0
d

v v n c a v a u
v uu v u v

θ
ζ

 −  + + − − =
 + + 

, 

and the latter one reducing to the following: 

( )

2 2 3 3 3

2 2 2 2

dd d 0
d

v v n c a a
v u u v

θ
ζ
−

+ − − =
+

. 

First, considering also the motion of the Sun, gives at once v uα= , which 
transform this equation into 

( )
( )

2 2 3 3 3

2 2 2 2 2 2

dd d
0

d 1

u u n c a a
u u u

θ

ζ

∝ −
+ − − =
∝ + ∝

. 

Yet, for the motion 
2 3

2 2

dd d
d

u u a
u

θ
ζ
−

= − , which transforms the equation into 

( )

2 3 3
3 3

2 2 0
1

n c aa a− ∝ + − + =
∝ + ∝

, or 

( )
( )

2 3 2
2

3 21 0
1

n c
a

∝
− ∝ + ∝ + =

+ ∝
 

and once put, for conciseness, 
2 3

3

n c m
a

= , gives 

( ) ( )2 32 21 1m α α α α+ = − − , 

which is obtained from the equation of the same form above by taking m and 
α  negative. 

Henceforth 

2
33 3

1 1 1 ,
3 3 9 27 81 3
m m mm m∝ = + − −  

however, as a first approximation 3
3
m

∝ =  and 
2

3

3
cu nv
a

=  as before. 

10) These cases are most worthy to be commented, since they could be 
worked out absolutely without any approximation, even if both forces of the Sun 
and of the Earth concur in producing motion, since there is no other case which 
this can happen. However, the body would, in fact, move with such a simple mo-
tion, provided it would be at the assigned distance, and while it would appear 
from the Earth in conjunction or in opposition with the Sun, a motion of this 
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type would be impressed, when it had began to advance in the same pace with 
the Earth in the ecliptic plane. However, on the other hand, if the impressed mo-
tion differs from this law, it would not, in fact, remain in continuous conjunc-
tion or in opposition with the Sun, but it would perform tiny excursions and, 
because of this, as almost oscillating. In the case where the motion had minimal-
ly differed from the formulation that was found, in the usual way, also by ap-
proximation, it will be possible to define such motion; in this case with the thre-
shold of irregular motions, which still cannot be approached by any calculation, 
certainly it is seen with no lack of usefulness, if I will seek more carefully the na-
ture of such motion. 

11) However, although this investigation is by no means involved by trivial 
difficulties, however, our equations can be made conveniently easier to handle, 
when the distance v is much smaller than u, when it is possible to produce a 
convenient approximation. Of course, because 2 cosz uu uv vvη= − + , we have  

approximately 
2 2 2

3 3 4 5 5

1 1 3 cos 3 15 cos
2 2

v v v
z u u u u

η η
= + − + , and thus  

( )
3 2

2
3 2

3 31 cos 1 5cos
2

u v v
uz u

η η− = − − − , from which our equations that were 

found for the motion of the Moon will transform into the following forms: 

I) ( )
3 3 2

2
2 3 4

2d d dd 3 3sin cos sin 1 5cos 0
d 2

v v a v a v
u u

φ φ η η η η
ζ
+

− − − =  

II) ( )
2 2 3 3 3 2

2 3
2 2 3 4

dd d 31 3cos 3cos 5cos 0
d 2

v v n c a v a v
v z u

φ η η η
ζ

 −
+ + − + − = 

 
 

Then, also, the calculation can be made easier, if we consider the mean motion 
of the Sun, then u a= , and θ ζ= , and thus η φ ζ= − , or φ η ζ= + , whence 
arising the following equations 

I) ( )
2

2
2

2d d dd 2d 33 sin cos sin 1 5cos 0
d 2d

v v v vv
a

η η η η η η
ζζ

+
+ + − − =  

II) ( ) ( )
2 2 3 2

2 2
2 2

dd d 3  1 1 3cos cos 3 5cos 0
d 2d

v n c vv v
av

η η η η
ζζ

 
− + + − + + − = 

 
 

where the last terms in these expressions can be omitted, since the fraction v
a

 

is very small, even establishing that the distance of the Moon is four times larger. 
12) Now, be reminded the case where the Moon will be seen hesitating in 

almost oscillating motion around the Sun, and let us assume that the angle η  is  

as small as possible, such that sinη η= , and 21cos 1
2

η η= − , and then we have: 

I) 2

2d d dd 2d 3 0
dd

v v v vη η η
ζζ

+
+ + =  

II) 
2 2 3

2
2 2

dd d  1 2 3 0
dd

v n cv v v
v

η η
ζζ

 
− + + − + = 

 
 

Then, because the distance v is little changed, let us put ( )1v b x= + , such 

that x is a small quantity, and further, be for brevity 
2 3

3

n c m
b

= , and hence 
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I) 2 2

2d d dd dd 2d 3 3 0
dd d

x x x xη η η η η
ζζ ζ

+
+ + + + =  

II) 

2 2
2 2

2 2 2

2

dd 2d 2 d d d3 3 3 3
d dd d d

2 3 0

x x xx x m

mx mx

η η η η η η
ζ ζζ ζ ζ

− − − − − − + + +

− + =

 

whence, it is necessary to define the values of the quantities x and η  for every 
angle ζ . 

13) Since the angle η  is minimum, and which alternates between negative 
and positive values, as the Moon is seen passing to and fro the Sun: it is easily 
allowed to conceive the existence of a relation between a certain angle ω  and 
ζ , and thus to define the following 

sin sin 2 sin 3A B Cη ω ω ω= + +  etc.14 

and also d dω α ζ= . Then, 

d cos 2 cos 2 3 cos3
d

A B Cη α ω α ω α ω
ζ
= + + , and 

2 2 2
2

dd sin 4 sin 2 9 sin 3
d

A B Cη α ω α ω α ω
ζ

= − − − . 

On account that the first equation can be transformed into 
22d dd 3 d 0

1 d d
x
x

η η ζ
η ζ
+

+ =
+ +

 

which, upon integration gives 

( ) d d2ln 1 ln 1 3 .
dd 1
d

x Constη η ζ
ηζ
ζ

 
+ + + + = 

  +
∫  

or, because x and d
d
η
ζ

 are small quantities, then: 

2 3
2 3 2

2 3

2 3

2

2 d d d 32 3 d
3 d 22d 3d

d d3 3 .
d d

x x x

Const

η η η η ζ η
ζ ζ ζ

η η η η
ζ ζ

− + + − + + −

+ − =

∫

∫ ∫

15 

Now, since dd ωζ
α

= , then 

d cos cos 2 cos3
2 3

A B Cη ζ ω ω ω
α α α

= − − −∫  

 

 

14This appears to be an archaic form of a Fourier sine series expansion. 

15These integrals are the result of a series expansion of 
2 3

2 3

1 d d d1d d d d1
d

η η η
η ζ ζ ζ
ζ

= − + −
+

, and then, 

2 3

2

d d d3 3 d 3 d 3 3d d d1
d

η ζ η η η ηη ζ η ηη ζ ζ
ζ

= − + −
+

∫ ∫ ∫ ∫ ∫ . 

 

https://doi.org/10.4236/ahs.2019.85018


S. R. Bistafa 
 

 

DOI: 10.4236/ahs.2019.85018 270 Advances in Historical Studies 
 

2 2 21 1cos cos 2 cos3
2 2

A AB A ABη ω ω ω= + − −  

21
2

B AC+ +  

2
2 2 2 2 2 2

2

d 1 12 cos cos 2 2 cos3
2 2d

A AB A ABη α α ω α ω α ω
ζ

= + + +  

2 2 22 3B ACα α+ +  
3

3 2 3 3 3 2
3

d 3 cos cos 2
4d

A B A A Bη α α ω α ω
ζ

= + +  

3 24 ABα+       

where we justly disregarded higher powers of the letters A, B, C. 
14) Since 

2
2 3 2 2 2 3

2

d 1 3 1sin sin 2 sin 3
4 2 4d

A A B Aη η α ω α ω α ω
ζ

= + +  

2 2 2 3 2 23 3 2
2

AB B A Cα α α+ + +  

2 2 2 23
2

A C ABα α− +  

and because dd ωζ
α

= , then 

2
3 2 3d 1 3 1cos cos 2 cos3

d 4 4 12
A A B Aη η α ω α ω α ω

ζ
= − − −∫  

2 3 213
2

AB B A Cα α α− − −  

2 23 1
2 2

A C ABα α+ −  

where, since the series A, B, C had already decreased very much, further terms 
can be omitted. Then, since 

3
3 3 3 4 3 3

3

d 7 3 7sin sin 2 sin 3
8 8 8d

A B A A Bη η α ω α ω α ω
ζ

= + +  

which upon integration gives 
3

3 3 3 4 3 3
2

d 7 3 7cos cos 2 cos3
8 16 24d

A B A A Bη η α ω α ω α ω
ζ

= − − −∫ , 

and finally, from the expressions above, and omitting the terms that are con-
stants, the following equation is obtained 

2 322 cos 2 cos 2 3 cos3 0
3

x x x A B Cα ω α ω α ω− + + + + = 16 

2 2 2 21
4

AB A ABα α α− − −  

 

 

16The expanded forms of the integrals 
2 3

2

d d3 3
d d

η η η η
ζ ζ

−∫ ∫  were not included in this equation. 
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3 3 21 3
4 2

CA ACα α
α

+ − −  

3 23 1 3
3 2

A A B ABα
α

− + +  

33 3 1
2 2 4

BAB Aα
α

− − −  

3 2 3 33 3 1
4 4 4

A A Aα α− + +  

3
2

AC−  

29
4

A Bα−  

15) To find the value of x, let us put for conciseness 

( )2 2 33 3 1 3
2 4

A AB Aα α α α
α

   − − + + − =   
   

A  

( )22
2

34 3
2 4

B A
αα

α

−−
− =B  

( ) ( )
22

2 3
2 33 1 1 1

2 4
C AB A

αα α α
α

−−
− + − = C  

such that 
( )2ln 1 cos cos 2 cos3 0x ω ω ω+ + + + =A B C  

1 1 1cos cos 2 cos3
2 2 21 ex

ω ω ω− − −
+ =

A B C

, 

whence, we conclude that 
1 1 1cos cos 2 cos3
2 2 2

x ω ω ω= − − −A B C  

21 1 1
8 16 8

+ + +AB A AB  

3 31 1
64 192

+ −A A  

But for us not to be involved in excessively tedious calculations, we shall pro-
cure a less accurate expression, by neglecting the triple angle, such that 

sin sin 2A Bη ω ω= + , and then we have 

( ) ( )2 23 4 3
cos cos 2

2 4
x A B

α α
ω ω

α α

− −
= − −  

( )( )2 2
2

2

3 1 3

16
A

α α

α

− −
+  

where, for conciseness, we put 
cos cos 2x E Fω ω= +  

such that 
23

2
E Aα

α
−

=  and 
( )( )2 22

2
2

3 1 33 4
4 16

F B A
α αα

α α

− −−
= + .  
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16) When these values are substituted in the second equation, we will find out 
that17: 

2 2
2

dd cos 4 cos 2
d

3 3 3 3 3
2d 2 4
d

2
2 d  
d

x E F

x E F

AE A B

BE AE
x AF

α ω α ω
ζ

η α α α
ζ

α α
η α
ζ

= − −

− − = − − −

− = − − −

− −

− = −

 

2
2 2 2 2 2

2

2 2 2

2 2 2

d 1 12
2 2d
3 3 3 3 cos cos 2
2 2

2 2 2
3 33 3
2 2

A AB A

A AB A

m m
mx mE mF

mx mE mEF mE

η α α α
ζ

η ω ω

− = − + −

+ = + + −

+ = +
+ = − −

+ = + + +

 

whence, we first conclude that18: 

2 2 2 23 1 31 3 3
2 2 2

m E AE A Aα α + = + + − = 
 

 

thence 

293
2

m E= −  

for the determination of the number m and then the distance b. 

It is clear that 3m = , approximately, and thus 
2

3

3
nb c= . We have further 

that19 

( )2 29 2 2 2 3 9 0E E A BE AF AB EFα α α α α− − − − − + + =  

which, by neglecting terms which cannot be simply reduced to 
23

2
E
A

α
α
−

= , 

gives 

( )( )2 2 29 3 4 0α α α+ − + = , or 

4 22 27 0α α+ − = , and then, 2 28 1α = − . 

Finally, the third equation gives20 

( )2 2 2 2 2 23 1 3 94 9 4 0
2 2 2 2

F B A AE A A Eα α α− + − − − − + = , 

 

 

17The reduced form of 
2

2

d
d
x η
ζ

−  from the second equation was not included in the calculations. 

18The following expression is the result of equating the constant terms to zero. 
19The following expression is the result of equating the coefficients of cosω  to zero. 
20The following expression is the result of equating the coefficients of cos 2ω  to zero. 
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therefore: 

( )( ) ( )( )( )

( )

( )

2 2 2 2 2
2

2

2
2

2
2

22
2

2

4 3 4 9 3 1 3 4 9

4 16
34

2
0

3
 

2

9 3
 

8

B A

B A

A

A

α α α α α

α α
αα

α

α

α

− + − − +
−

− − +

=+ − 


−
+


 

which, after rearrangement gives: 

( )
2

4 2 2 23 316 8 27 13 7
2 2

AB Aα α α α
α

 
+ − = − + 

 
, 

or since 4 227 2α α= + , then 

( ) ( )
2

2 2 433 5 2 13 7 2
2
AB α α α
α

+ = − + , 

and, therefore, 

( ) ( )
2 4 2

2 2
2 2

13 7 2 67 11
2 5 2 2 5 2

B A Aα α α
α α α α
− + −

= =
+ +

 

( ) ( )
2 4 2

2 2
2 2 2 2

291 94 23 165 24
8 5 2 4 5 2

F A Aα α α
α α α α
− − −

= = −
+ +

 

Then, accordingly, the value of A is at our discretion, which depends on the 
digressions from the syzygy line21, which it is proper to assume as being a very 
small fraction, such that the quadratic terms can be considered of second order, 
being sufficient only the first terms. Then, for the distance ( )1v b x= + , we have  

that 
2

3

3
nb c= , and the angle ω  is defined such that ω αζ β= + , and since 

2 28 1α = − , then, 2 4.291502α =  and 2.071594α = . Thereupon, putting 

sinAη ω=  and 
( )2 3

1 cos
2

v b A
α

ω
α

 −
 = −
 
 

 or ( )1 0.311717 cosv b A ω= − . 

The excursions are maximum for angles ω  equal to 90˚, 270˚, etc., therefore, 
between one maximum digression to the next we have 180αζ =   and 

86 53.5 'ζ =  : with the greatest of these digressions given by v b= . But in case 
this kind of libration22 happens to be greater, its determination involves consi-

 

 

21A kind of unity, namely an alignment of three celestial bodies (for example, the Sun, Earth, and 
Moon) such that one body is directly between the other two, such as occurs at an eclipse (from the 
Wikipedia). 
22Is the wagging of the Moon perceived by Earth-bound observers caused by changes in their pers-
pective. It permits an observer to see slightly different halves of the surface at different times. It is 
similar in both cause and effect to the changes in the Moon's apparent size due to changes in 
distance (from the Wikipedia). 
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derable difficulties, because, as more accurately we wish to define all the varia-
tions, less certain we would be about the remaining that we have overlooked. 

4. An Easy Method for Calculating the Motion of Celestial  
Bodies Perturbed in Any Manner Avoiding Astronomical  
Computations (Methodus Facilis Motus Corporum  
Coelestium Utcunque Perturbatos Ad Rationem Calculi  
Astronomici Revocandi, Euler, 1768) 

I) Although I have often attacked the investigation on how the motions of ce-
lestial bodies are perturbed due to their mutual action, most of the time, I have 
incurred in rather lengthy and laborious calculations, which, however, after 
many digressions, could be reduced to simpler formulas. However, the cause of 
this prolixity is due to a multiplicity of elements, which are necessary to intro-
duce into the calculation, that is: not only for all the determinations, which are 
related to the motion of the perturbing bodies, should be examined, but also the 
perturbation of its own motion, in so far as if it is not in the same plane, it de-
mands various elements, to which is a custom among Astronomers to consider 
variations originated in the nodal line23 and inclination of the orbit. But in case 
all these considerations are simultaneously included into the calculation, it is re-
ally not worthwhile, because they will give rise to much trouble and confusion, 
to which no other remedy is seen to exist, unless all the elements are carefully 
distinguished, and all the operations are established so that no more elements 
are admitted into them, than those that are necessary to consider. 

II) The principal part of this research is related to mechanics, when the per-
turbation of the motion by the forces of the disturbing body should be defined; 
thus mechanical principles are provided, and from them the location of the body, 
whose motion is seeked, can be conveniently determined at any time by three 
mutually orthogonal coordinates; truly the other part scarcely requires a swifter 
development, with which the location is firstly determined, and should be re-
duced to the acceptable practice in Astronomy, in which it is common to natu-
rally express the different locations in the sky by longitude and latitude. And also 
in this second part, in which will be allowed to recall the geometry, being correct 
to distinguish a priori, that all mechanics is due to it, and I should observe that 
these two parts can furthermore not only be conveniently separated, but also to 
be able to deal with both matters in a much easier way than if we wished to deal 
jointly with both of them. However, it is seen that the geometrical mechanical 
investigation should precede, nonetheless it is possible to begin with the geome-
trical part in a neat way, with none impediment, from the location of the body, 
which motion we seek to obtain, as it were known, and that we identify by three 
coordinates. This inversion of the methodology is thus seen to follow, so that the 
development of the geometrical part gives much important support, with which 
the work in the calculation of the mechanical part that follows next will be con-

 

 

23The nodal line is a line that joins the ascending node and the descending node of an orbit. It 
marks the intersection of the orbital plane and some reference plane, usually the ecliptic. 
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siderably alleviated. We follow this method certainly with great advantage, pro-
vided that we handle the geometrical part without introducing into the calcula-
tion quantities related to the disturbing forces.  

GEOMETRICAL PART 
III) Therefore, I assume that the motion of the body Z is to be determined and 

that, as usual, readily defined by mechanical principles. Certainly, firstly the mo-
tion in relation to certain point A, which is considered fixed, even if it happened 
that the said point is used as reference to the circular motion, then, next, a cer-
tain plane is considered traversing through this point and equally fixed, which is 
represented by the plane of the figure itself, in which it is drawn a fixed line AB, 
and at any time, the location of the body Z is thus defined by the three mutually 
orthogonal coordinates AX, XY and YZ, so that first, from the Z location, the 
perpendicular ZY to that plane is drawn, further on, truly from Y, the normal 
YX is guided in the direction of the line AB. Then, let us call the following three 
coordinates: 

AX X= , XY Y=  and YZ Z=  
 

 
 
which values at any elapsed time = t are considered to be known. Then, conse-
quently, the distance of the body Z to the fixed point A is immediately obtained, 
which, for brevity, it is indicated by AZ v= , and then, 2 2 2 2v X Y Z= + + .  

Then, we conceive that during the time dt the body advances from Z to z, such 
that dAz v v= + , and the elementary angle dZAz = ∅ , which, in the mean time, 
the body Z is seen to complete in its orbit around A, resulting in 

2 2 2d dZz v v= + ∅ , whereas, according to the coordinate elements we have that 
2 2 2d d dZz X Y Z= + + , whence 

2 2 2 2 2 2d d d d dv v X Y Z+ ∅ = + +  

in this way, this exposes how the elementary angle d∅  can be conveniently 
expressed by the coordinates, which will be soon succinctly shown. 
IV) A certain plane is defined by the segment Zz and point A, in which the body 
Z is, in fact, considered to move: this plane will cut somewhere the fixed plane of 
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the figure; then this intersection is constructed along the line AN, which is called 
the nodal line in Astronomy, and which variation, due to the motion perturba-
tion of the body Z, should be investigated above all: next, it is also convenient to 
note, that the angle which the plane NAZ is inclined towards the fixed plane, 
which in Astronomy is simply called inclination, and because of the perturbation 
of the motion, can undergo remarkable alterations. Then, next, let us consider 
these new elements: 

Longitude of the nodal line or angle BAN ψ=  

Inclination of the orbit to the fixed plane = ω 

and argument of latitude or angle NAZ σ=  

which we rename according to the coordinates, so from Y, as well as from Z, let 
us draw the normals YO and ZO to the nodal line AN, such that the angle YOZ 
will have the same inclination of ω . 
 

24 
 

Then, considering that the angle NAZ σ= , and that the distance AZ v= , 
we will have that: 

cosAO v σ=  and sinZO v σ=  

and further 
sin sinZY v σ ω=  and sin cosOY v σ ω=  

and since the angle BAN XYOψ= = , we conclude that: 
cos cos sin cos sinAX v vσ ψ σ ω ψ= −  

and cos sin sin cos cosAY v vσ ψ σ ω ψ= + . 

Therefore, our three coordinates are thus defined: 

( )cos cos sin cos sinX v σ ψ σ ω ψ= −  

( )cos sin sin cos cosY v σ ψ σ ω ψ= +  

 

 

24This figure was added by the Translator. 
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and sin sinZ v σ ω= , 

where it should be noted that the tangent of the angle tan cosNAY σ ω= , which 
is an angle called the longitude of the point Z to the node. 

V) Since in Astronomy the angle BAY reveals the longitude, truly the angle 
ZAY is the latitude of point Z, which relates to the plane of the ecliptic, and the 
line AB extended to the First Star of Aries; each one of these denominations can 
be used in a wider sense: we then have 

longitude of the point Z or angle  BAY NAYψ= +  

considering that the tangent of the angle tan cosNAY σ ω=  

for the latitude or truly for the angle ZAY we will have 

sin sin sinZYZAY
AZ

σ ω= =  

where the same formulas are usually obtained from the spherical trigonometry. 
Certainly, in the spherical surface with center in A, the maximum circle BNY 
represents a fixed plane, and the point B at infinite, and from which the longi-
tude is calculated. Furthermore, be N the node and NZ the orbit to which now 
the motion of the body Z is referred to, then, from Z, in the direction of the cir-
cle BNY, the normal arch ZY is drawn; once this is done, the arch BNY shows 
the longitude, and truly, the arch ZY the latitude of the point Z, and in relation 
to these we have that: 

arch BN, or angle of the node = ψ 

angle ZNY or inclination = ω 

and arch NZ or argument of the latitude = σ 

from these, the solution of the right spherical triangle NYZ gives 

sin sin sinZY σ ω=  and tan tan cosNY σ ω= , 

exactly as before. 
 

 
 

VI) However, for the nodal line and the inclination be both variables; since 
both the point Z and z belong to the same plane NAZ, then by differentiation, 
the point Z should come to z, and because the angle BAN ψ=  and the inclination 
ω  are considered constants, of course as long as the angle NAZ σ= , the elemen-
tary angle dZAz = ∅  is assumed to increase, such that d dσ = ∅ . However, to 
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came to the same point z in another way, it is necessary that the nodal line and 
the inclination be both considered variables, since the point z should also have a 
tendency to a diversified orbit, and then, the differential dσ  should not be 
considered to be equal to d∅  itself, but it should attain its proper value, which 
at the same time depends on the variation of the orbit. Therefore, since this 
double differentiation should lead to the same equations that we will obtain next, 
for which certain relations between the variations originated in the orbit will be 
defined, which will provide a maximum usage in a subsequent calculation. In 
fact, it possesses not only the differentiations of the local coordinates themselves, 
but also of the quantities thence derived, such as: 

cos cos cos sin
sin sin sin

X
Z

σ ψ ω ψ
σ ω ω

= −  and cos sin cos cos
sin sin sin

Y
Z

σ ψ ω ψ
σ ω ω

= +  

which ought, therefore, to provide the same results obtained in both ways for the 
double differentials. 

VII) Therefore, firstly assuming that the angles ψ  and ω  are constants 
and that d dσ = ∅ , the differentials are:  

2

 d cosd
sin sin

X
Z

ψ
σ ω

− ∅  = 
 

 and 2

 d sind
sin sin

Y
Z

ψ
σ ω

− ∅  = 
 

. 

For the other differentiation [considering that ψ  and ω  are also variables], 
it should be firstly noted that: 

coscos sin
sin sin

X Y
Z Z

σψ ψ
σ ω

+ =  and coscos sin
sin

Y X
Z Z

ωψ ψ
ω

− =  

which, in the usual way of differentiating gives: 

2 2

cos d sin d d cos sin

 d d cos cos
sin sin sin sin

X Y Y X
Z Z Z Z

ψ ψ ψ ψ ψ

σ ω σ ω
σ ω σ ω

     + + −     
     

−
= −

 

2

 dcos d sin d d cos sin
sin

Y X X Y
Z Z Z Z

ωψ ψ ψ ψ ψ
ω

−     − − + =     
     

 

whence, when the former values are substituted results in25: 
2 2

2 2 2 2

d cos d sin d cos d d cos cos
 sinsin sin sin sin sin sin sin sin

ψ ψ ψ ω σ ω σ ω
ωσ ω σ ω σ ω σ ω

− ∅ ∅ −
− + = −  

2 2 2

 d sin cos d sin cos d cos d
sin sinsin sin sin sin sin

ψ ψ ψ ψ ψ σ ω
σ ωσ ω σ ω ω

∅ ∅ −
− + − =  

which are reduced into these: 

2 2 2

d d cos d d cos cos
sinsin sin sin sin sin sin
ψ ω σ ω σ ω

ωσ ω σ ω σ ω
∅ −

− + = −  

2

d cos d
sin sin sin
ψ σ ω
σ ω ω

−
− =  or  d d

sin tan
ω ψ
ω σ
=  

which when substituted into the previous expression gives 

 

 

25No justification is given by Euler for this equality. 
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2

2 2 2

d d d cos d cos cos d cos
sinsin sin sin sin sin sin

σ ψ ω ψ σ ω ψ ω
ωσ ω σ ω σ ω

− ∅ − −
= − =  

or d cos d dψ ω σ= ∅− . 
VIII) Whence, therefore, we first learned that the variation in the inclination 

of the orbit giving rise to dω  is such that it always depends on the variation of  

the nodal line dψ  that is, d sind
tan
ψ ωω

σ
= ; or the increment in the inclination  

will be due to the promotion of the nodal line, as the sine of the inclination to 
the tangent of the argument of the latitude; whence the following consequences 
can be drawn from it: 

1) If the argument of the latitude σ  is zero or 6s where the latitude is zero, 
in the mean time the nodal line will tend to remain at rest the more the inclina-
tion is varied26. 

2) If the argument of the latitude σ  is 3s or 9s where the latitude is zero, or
tanσ = ∞  where the latitude is maximum, then the inclination will not vary; 
regardless if in the mean time the nodal line progresses or regresses.  

3) If the argument of the latitude σ  is contained between the limits 0s and 
3s or between 6s and 9s, that is, while the latitude increases, then the inclination 
ω  increases, if indeed the nodal line advances, but if it retreats, the inclination 
diminishes.  

4) If the argument of the latitude σ  is contained between the limits 3s and 
6s or between 9s and 12s, that is, while the latitude decreases, then the advance-
ment of the nodal line inclination lessens, and in reality it ceases to be increased. 

IX) Next, it should be observed that the increase of the argument of the lati-
tude σ  promoted in its own orbit is not equal to the element d∅ , unless the 
nodal line stays immovable; since we found that d d d cosσ ψ ω= ∅− , with the 
exception in the case when the inclination ω  were a right angle. These phe-
nomena will be expressed more clearly by using the spherical trigonometry. If in 
fact, as before, the circle BNY represents a fixed plane, which the motion of the 
point Z is referred to, so that its present motion takes place according to the cir-
cle NZ, such that BN ψ= , YNZ ω=  and the arch NZ σ= , whereas after the 
point Z has progressed through the element dZz = ∅ , and with its motion tak-
ing place according to the circle 𝑛𝑛𝑛𝑛, the promotion of the nodal line will be giv-
en by dNn ψ= , the inclination is transformed into dYnz ω ω= + , and the ar-
gument of the latitude into dnz σ σ= + . Accordingly, the elemental arch nv is 
drawn normal to NZ, and then we will have that d cosNv ψ ω=  and 

d sinnv ψ ω= ; thence it is deduced that d cosZn σ ψ ω= − , and on this account 
d cos d dnz σ ψ ω σ σ= − + ∅ = +  and consequently, d d d cosσ ψ ω= ∅− , as 

before; however, at the same time we see that because  
d cos d d Nvψ ω ψ= ∅− = , the expression d dψ∅−  exhibits the promotion of 
the nodal line in the orbit itself, because since the node was in the point N of the 
orbit NZ; it has now been transferred to the point n or to v. In addition, from the 
spherical triangle NnZ, we have that: 

 

 

26The ecliptic was sometimes divided into 12 signs, each subdivided into 30 degrees. 
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( ) ( )sin : sin d sin d cos : sinω ω ω σ ψ ω σ+ = − 27 

or  
sin : sin d cos sin d cos cos : sinω ω ω ω σ ψ σ ω σ+ = −  

and dividing by  
sin : d cos sin d cos cos : d cos cosω ω ω σ ψ σ ω ψ σ ω= − 28 

gives 

d sin d sin cosω σ ψ ω σ= 29 or d d
sin tan
ω ψ
ω σ
=  

exactly as before30. 
 

31 

 
X) Moreover, if the differential formulas found in § 7. are unfolded they give 

2 2

d d d cos
sin sin

X Z Z X
Z

ψ
σ ω

− ∅
=  and 2 2

d d d sin
sin sin

Y Z Z Y
Z

ψ
σ ω

− ∅
=  

and since sin sinZ v σ ω= , we find these very fitting formulas: 
2d d d sin cosX Z Z X v ω ψ− = ∅  and 

2d d d sin sinY Z Z Y v ω ψ− = ∅ . 

Next, we eliminate dZ , firstly multiplying by Y, and then by X, and once the 
product is taken, it will give 

( ) ( )2d d d sin cos sinZ X Y Y X v Y Xω ψ ψ− = ∅ − . 

However, as we saw in § 7, coscos sin
sin

ZY X ωψ ψ
ω

− = , this formula is re-

duced to a much simple expression 
2d d d cosX Y Y X v ω− = ∅ . 

 

 

27The application of the Law of Sines to the spherical triangle NnZ does not give this expression. 
28It is not known where this expression comes from. 
29The claimed division does not lead to this expression. 
30From the above observations, it appears that this result was forced by Euler. Nonetheless, this has 
no further consequences, since the same expression was obtained before by another method in § 7. 
31This figure was incremented with more elements by the Translator. 
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These formulas when combined with those then found at the beginning, namely 
2 2 2 2X Y Z v+ + =  and 2 2 2 2 2 2d d d d dX Y Z v v+ + = + ∅  

will be used with maximum advantage in the mechanical part, to the coordinates 
derived from the calculations, such that it provides to the next quantities of this 
sort, which use are retaken in Astronomy.  

XI) However, those reductions of the Geometry clearly show that it makes no 
difference to which point A and fixed plane BAY we wish to refer the motion of 
the point Z. In fact, if we envisage an astronomical use, it is of most interest, not 
only in which way the point A, as the center of motion is taken into account, but 
also that plane, to which the motion of the point Z is referred to by longitude 
and latitude, because from this will depend the chief simplicity of the determina-
tion. To this end, it is necessary to consider how that choice should be made, to-
gether with the artifices, which so far have been devised, and only then, it can be 
used with some success, since the motion of the body, which is sought, should 
not disagree very much from the laws of Kepler, on account that the perturba-
tions hand been very small. Moreover, when the motion is thus compared, such 
that the areas described around any point are nearly proportional to time, then 
this point is most suitable to be considered as that fixed point A. When that 
happens, if among the forces driving the body, one far exceeds the remaining, to 
that point this force should be directed to, then point A will be suited to be ac-
cepted: therefore, if the question would be related to perturbations of a certain 
chief planet or of a comet, then point A will be most suitable taken in the center 
of the Sun: if however, the perturbations in the motion of the Moon, or those 
made in another secondary planet should be defined; then it is proper be consi-
dered point A in the center of the Earth or [in the center] of the primary planet, 
such that the force of the body declared in Z impelling it to A, much exceeds the 
remaining forces to which this body is simultaneously driven.  

XII) So, If the body Z has been solicited by just one principal force, the body 
will be revolved regularly around point A in a conical section, perpetually in the 
same plane, such that no matter in what way the fixed plane BAY is chosen, nei-
ther on how the nodal line nor the inclination and any mutation has been ever 
originated; however, meanwhile, the calculation, without doubt, has turned out 
very simple, if the fixed plane is chosen in the same plane of the motion. Truly, if 
the motion is disturbed by another celestial body, which motion is indeed also 
necessary to be assumed known in this investigation, the fixed plane can most 
conveniently be assumed as being congruent with the orbit of that disturbing 
body. Thus, if the perturbations of the Moon originated by the Sun are sought, 
the ecliptic plane, in which the Sun is seen to move from the Earth, as it [the 
Earth] were the center of the motion A, will render the fixed plane BAY, and no 
matter how the perturbation from another body is brought about, this plane, in 
which this body is seen to move from the center of motion A, should be selected. 
Yet, if this body itself is not moved in the same plane, then some medium plane 
can be most conveniently adopted; but the effort to adapt the calculation to this 

https://doi.org/10.4236/ahs.2019.85018


S. R. Bistafa 
 

 

DOI: 10.4236/ahs.2019.85018 282 Advances in Historical Studies 
 

case is hardly considered, but, if its employment will become indeed necessary, it 
can be easily provided.  

MECHANICAL PART 
XIII) For the handling of the mechanical part, three bodies should be consi-

dered. The first, is the one which is putted in the center of the motion A, which 
exerts the main force in the body Z, which motion we investigate, such as it ap-
pears to an observer located in the very point A, let us then call the mass of the 
body positioned in this point = A.  

The other body, by which action the motion of the body Z is perturbed, that 
we assume is moving in any manner in the fixed plane BAY itself, such that its 
location can be assigned at any time. Be the mass of this body = B, and that now, 
in fact, it dwells in S, such that its distance to the central body AS u= , and the 
longitude or angle BAS θ= , whence, from S, the perpendicular SP is drawn to 
the fixed line AB, and be cosAP u θ=  and sinPS u θ= . 

The third body is the one in Z itself, which motion we are looking for, be its 
mass = C, and as before, we put its distance to the center of motion AZ v= , 
and calling the three orthogonal coordinates AX X= , XY Y=  and YZ Z= , 
which we obtain from the calculation by introducing the following elements: 

1) longitude of the nodal line or angle BAN ψ=  
2) Inclination of the orbit to the fixed plane = ω 
3) argument of latitude or angle NAZ σ= . 
Finally, we consider that during the infinitesimal time dt, the elementary angle 

dZAz = ∅  is completed by the body Z. On the other hand, the relationships of 
these elements will be taken from the geometrical part.  

XIV) Since the body Z is driven to A by a force 2

A
v

= , certainly, A is attracted 

to Z by a force 2

C
v

= , so that for the point A could be considered at rest, the 

body Z should be declared to be attracted to A by a force 2

A C
v
+

= ,32 which once 

 

 

32  In a system of two bodies, the attraction force 12F  of the second body 

acts on the first body of mass 1m . Similarly, the attraction force 21F  of the first body acts on the 

second body of mass 2m . Both forces 12F  and 21F  are equal and directed along r, where 

2 1r r r= − . From Newton’s second law, we can write the following differential equations describing 

the motion of each body: 2

2

1 2
2 2 3

d
d

r m mm G r
t r
= −  or 1

2

2
2 3

d
d

r mG r
t r
= , 2

2

1
2 3

d
d

r mG r
t r
= − , where G is the 

gravitational constant. It follows from the last two equations that 1 2

2 2

2 1
2 2 3 3

d d
d d

r r m mG r G r
t t r r
− = + , and 

then, 
2

1 2
2 3

d
d

r m mG r
t r

+
= − . For 1m A= , 2m C= , r v= , and when the two bodies are collinear 

with O, results in 
2

2 2

d
d

r A CG
t v

+
= − , where the minus sign means that these forces tend to shorten 

the distance between the two bodies. 
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resolved according to the directions of the three coordinates give the following 

forces: according to 3: A CXA X
v
+

= ⋅ ; according to 3: A CYX Y
v
+

= ⋅ ; according 

to 3: A CZY Z
v
+

= ⋅ . Thereafter, for the force with which the body Z is attracted 

towards S, we have: firstly, let us call, for simplicity, the distance SZ w= , such 

that the force ZS is 2  
B

w
= , which can be readily decomposed into the forces: 

according to 3:
 

BZY Z
w

= , and according to 3:
 

BYS YS
w

= , and from this, since 

cosXP u Xθ= −  and sinPS XY u Yθ− = − , we have the forces: according to 

( )3: cos
 

BXP u X
w

θ= −  and according to ( )3: sin
 

BXY u Y
w

θ= − .33 

Finally, because body A is driven to S by a force 2  
B

u
= , the following compo-

nents will be contrarily translated to Z: according to 2: cos
 

BXA
u

θ= , and ac-

cording to 2: sin
 

BYX
u

θ= , which once collected with the other forces acting on 

the body Z give: 

1) Force according to ( )3 3 2: cos cos
   

A C B BXA X X u
v w u

θ θ+
= + − +  

2) Force according to ( )3 3 2: sin sin
   

A C B BXY Y Y u
v w u

θ θ+
= + − +  

3) Force according to 3 3:
 

A C BZY Z Z
v w
+

= + , 

which should be proportional to the acceleration of the body Z in the same di-
rections, and considering a constant element of time we have: 

2
3 3 3 3

1 1dd d cos
 

A C BX t X X Bu
v w w u

θ +  = − ∝ + − −    
 

2
3 3 3 3

1 1dd d sin
 

A C BY t Y Y Bu
v w w u

θ +  = − ∝ + − −    
 

2
3 3dd d

 
A C BZ t Z Z

v w
+ = − ∝ +  

, 

where the constant ∝  depends on each particular type of motion, and can be 
defined from the apparent motion of the Sun.  

XV) However, before we consider these formulas further, we should precisely 
define the distance SZ w= , to introduce it afresh into the calculation. Since we 
have that: 

( )22 2 2SZ ZY XP PS XY= + + − 34 

then, 

 

 

33These are the components of the force according to YS, projected in the directions AX and XY. 
34The first term in the second hand-side of this expression was incorrectly written as XZ2 in the 
original manuscript. 
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2 2 2 2 2 2 cos 2 sinw Z X Y u uX uYθ θ= + + + − − , 

which because 2 2 2 2X Y Z v+ + = , can be reduced to: 

( )2 2 2 2 cos sinw v u u X Yθ θ= + − + . 

Moreover, introducing the expressions for X an Y found in §4. above: 

( ) ( )cos sin cos cos sin cos sinX Y vθ θ σ θ ψ σ ω θ ψ+ = − + −   , 

where the angle θ ψ−  expresses the distance of the disturbing body S to the 
nodal line or angle NAS θ ψ= − , so that 

( ) ( )2 2 2 2 cos cos sin cos sinw v u vu σ θ ψ σ ω θ ψ= + − − + −   . 

In fact, if now for brevity we call the angle SAZ µ= , which denotes the dis-
tance of the body Z to the disturbing body S as seen from A, because AZ v=  
and AS u= , it is also true that 

2 2 2 2 cosw v u vu µ= + − , 

whence, it will be concluded that: 

( ) ( )cos cos sin cos sin cosσ θ ψ σ ω θ ψ µ− + − =  

which can be easily proved by spherical trigonometry35. As seen in figure, since 
because BN ψ= , NZ σ= , and the angle YNZ ω= , if BS θ= , then 
NS θ ψ= − , and in the spherical triangle the side SZ µ=  is determined in this 
very way from the sides NZ σ= , NS θ ψ= −  with the intercepted angle 
ZNS ω= . 
 

36 

 
XVI) Although the three equations deducted from the principles of mechanics 

are enough for all determinations, because all the craft in them is certain, just as 
it enable us to derive them in a very suitable manner. Nonetheless, it is first re-
quired to offer at once the calculation of the multiplications: the first [equation] 
by 2dX , the second [equation] by 2dY  and the third [equation] by 2dZ , and 
in only one [equation] they ought be gathered; since as we saw above 

2 2 2 2 2 2d d d d dX Y Z v v+ + = + ∅  

and 2 2 2 2X Y Z v+ + =  

 

 

35This result comes from the application of the law of cosines to the spherical triangle of the figure. 
36This figure was added by the Translator. 
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then 

( )2 2 22d dd 2d dd 2d dd d d dX X Y Y Z Z v v+ + = + ∅  and d d d dX X Y Y Z Z v v+ + = . 

Hence, with the reminded calculation, the following equation will be obtained: 

( )

( )

2 2 2

2
2 3 3 3

d d d

1 12 d d d d cos d sin
 

v v

A C Bt v v v Bu X Y
v w w u

θ θ

+ ∅

 +  = − ∝ + − + −    

 

where the formula d cos d sinX Yθ θ+  can be conveniently expanded. Truly, 
considering the formulas in § 10.a above, we have that 

d d cosd
sin

X Z vX
Z

ψ
σ

∅
= −  and d d sind

sin
Y Z vY

Z
ψ

σ
∅

= −  

because sin sinZ v σ ω= , whence 

( ) ( )d cosdd cos d sin cos sin
sin

vZX Y X Y
Z

θ ψ
θ θ θ θ

σ
∅ −

+ = + − , 

however, we recently saw that 

( ) ( )cos sin cos cos sin cos sin cosX Y v vθ θ σ θ ψ σ ω θ ψ µ+ = − + − =   , 

and since, in fact, 

d d d cos d cos
sin sin

Z v
Z v

σ σ ω ω
σ ω

= + + , or 

d d d cos d cos
sin tan

Z v
Z v

σ σ ψ ω
σ σ

= + +  because d sind
tan
ψ ωω

σ
= .  

Since d d d cosσ ψ ω∅ = + , then we get 

d d d
tan

Z v
Z v σ

∅
= + , 

therefore 

( )

( ) ( ) ( )2

d cosd cosd cos d sin d cos
tan sin

dd cos sin cos cos sin cos cos cos
sin

vvX Y v

vv

θ ψµθ θ µ
σ σ

µ σ σ ω θ ψ σ θ ψ θ ψ
σ

∅ −∅
+ = + −

∅  = + − + − − − 

 

and thus, 

( ) ( )d cos d sin d cos d sin cos cos cos sinX Y v vθ θ µ σ θ ψ σ ω θ ψ+ = − ∅ − − −   . 

Therefore, the equation that we found transforms into: 

( )

( ) ( )

2 2 2

2
2 3 3 3

2
3 3

d d d

1 12 d d cos
 

1 12 d d sin cos cos cos sin

v v

A C Bvt v Bu
v w w u

t uv
w u

µ

σ θ ψ σ ω θ ψ

+ ∅

 +  = − ∝ + − −    
 − ∝ ∅⋅ − − − −      

 

XVII) It is possible to deduce a more concise form for the expansion of the 
too complicated formula d cos d sinX Yθ θ+  from the proper values found for 
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X and Y. In fact these differentials are duly produced in case where the angles 
ψ  and ω  are handled as constants and dσ  is brought to d∅ , then this dif-
ferential give:  

( ) ( )d d cos cos sin cos sin d sin cos cos cos sinX v vσ ψ σ ω ψ σ ψ σ ω ψ= − − ∅ +  

( ) ( )d d cos sin sin cos cos d sin sin cos cos cosY v vσ ψ σ ω ψ σ ψ σ ω ψ= + − ∅ −  

whence, it follows that 

( ) ( )
( ) ( )

d cos d sin d cos cos sin cos sin

d sin cos cos cos sin

X Y v

v

θ θ σ θ ψ σ ω θ ψ

σ θ ψ σ ω θ ψ

+ = − + −  
− ∅ − − −  

 

to which I observe a more contracted form in figure where NS θ ψ= − ; 
NZ σ= , SNZ ω=  and SZ µ= , we will have, in the first place, as before: 

( ) ( )cos cos sin cos sin cosσ θ ψ σ ω θ ψ µ− + − = , then, in fact, if the angle 
NZS ξ=  it is found that 

( ) ( )
( )

sin cos cos cos sin
cot

sin sin
σ θ ψ σ ω θ ψ

ξ
ω θ ψ

− − −
=

−
37 

whence it is concluded that 

( ) ( )
( )

sin cos cos cos sin

sin sin cos
sin cos

sin

σ θ ψ σ ω θ ψ

ω θ ψ ξ
µ ξ

ξ

− − −

−
= =

 

because: ( )sin : sin sin : sinξ θ ψ ω µ− = .38  
 

39 

 
From these results we obtain 

d cos d sin d cos d sin cosX Y v vθ θ µ µ ξ+ = − ∅ . 

Or if in Z we draw in the direction of the arch NZ another normal arch, and on 
it, and from S, we draw the perpendicular to the spherical surface, which we call 
= ν, then sin sin cosν µ ξ= ,40 or  

( ) ( )sin cos cos cos sin sinσ θ ψ σ ω θ ψ ν− − − =  

and therefore, the equation containing the first determination will assume the 

 

 

37This result comes from the application of the law of the tangent to the spherical triangle of the 
figure. 
38This result comes from the application of the law of sines to the spherical triangle of the figure. 
39This figure was added by the Translator. 
40This geometrical construction is not clear. 
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following form 

( )

( )

2 2 2

2
2 3 3 3

d d d

d 1 12 d d d cos d sin
 

v v

A C Bv vt v Bu v v
v w w u

µ ν

+ ∅

 +  = − ∝ + − − ∅ −    

 

XVIII) The two remaining determinations from the differential equations de-
ducted from the principles of motion will be conveniently obtained by the fol-
lowing procedures: firstly, from the equations obtained in § 14, the subtraction 
of the first equation multiplied by Y from the second equation multiplied by X 
gives: 

( )2
3 3

1 1dd dd d cos sinX Y Y X t Bu Y X
w u

θ θ  − = − ∝ − − 
 

 

or, when the values for X and Y are substituted into this expression results in 

( ) ( )2
3 3

dd dd
1 1d cos sin sin cos cos

X Y Y X

Bvu t
w u

σ θ ψ σ ω θ ψ

−

 = ∝ − − − −      

 

Thus, since dd ddX Y Y X−  is the differential of d dX Y Y X− , then we have 
this equation 

( )
( ) ( )

2

2
3 3

d d cos

1 1d cos sin sin cos cos

v

Bvu t
w u

ω

σ θ ψ σ ω θ ψ

∅

 = ∝ − − − −      

 

In a similar way, from the first and third [equations of § 14] we deduce 

2
3 3

1 1dd dd d cosX Z Z X BuZ t
w u

θ  − = − ∝ − 
 

 

or 

2
3 3

1 1dd dd d cos sin sinX Z Z X Bvu t
w u

θ σ ω  − = − ∝ − 
 

 

then giving 

( )2 2
3 3

1 1d d sin cos d cos sin sinv Bvu t
w u

ω ψ θ σ ω  ∅ = − ∝ − 
 

. 

Equally, from the second equation combined with the third equation results in 

2
3 3

1 1dd dd d sin sin sinY Z Z Y Bvu t
w u

θ σ ω  − = − ∝ − 
 

 

or 

( )2 2
3 3

1 1d d sin sin d sin sin sinv Bvu t
w u

ω ψ θ σ ω  ∅ = − ∝ − 
 

 

where it should be noted that only two determinations are contained in these 
three equations, and the third [equation] can be freely included with the two 
other [equations]. 
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XIX) So, let us examine the two last [equations], and since their first members 
ought to be differentiated, and observing that the quantity 2d sinv ω∅  is a 
unique quantity to both, then  

( )2 2

2
3 3

cos d d sin d sin d sin

1 1d cos sin sin

v v

Bvu t
w u

ψ ω ψ ψ ω

θ σ ω

∅ − ∅

 = − ∝ − 
 

 

( )2 2

2
3 3

sin d d sin d cos d sin

1 1d sin sin sin

v v

Bvu t
w u

ψ ω ψ ψ ω

θ σ ω

∅ + ∅

 = − ∝ − 
 

 

whence, eliminating ( )2d d sinv ω∅  results in 

( )2 2
3 3

1 1d d sin d sin sin sinv Bvu t
w u

ψ ω σ ω θ ψ  ∅ = − ∝ − − 
 

 

and thus the variation of the nodal line is defined such that 

( )2

3 3

d sin sin 1 1d
d

Bu t
v w u
σ θ ψ

ψ
− ∝ −  = − ∅  

 

from which, at the same time, the variation of the inclination is obtained from 
d d

sin tan
ω ψ
ω σ
= , and, on the other hand, once the member 2d sinv ω∅  is elimi-

nated from both original equations, the following equation is obtained 

( ) ( )2 2
3 3

1 1d d sin d sin sin cosv Bvu t
w u

ω σ ω θ ψ  ∅ = − ∝ − − 
 

. 

Writing the first equation in the following form:  

( )
( ) ( )

2 2

2
3 3

cos d d d sin d

1 1  d cos sin sin cos cos

v v

Bvu t
w u

ω ω ω

σ θ ψ σ ω θ ψ

∅ − ∅

 =∝ − − − −      

 

and expanding the first member of the last equation, gives 

( )
( )

2 2

2
3 3

sin d d d cos d

1 1d sin sin cos

v v

Bvu t
w u

ω ω ω

σ ω θ ψ

∅ + ∅

 = − ∝ − −      

 

Eliminating dω  between the last two equations, gives 

( ) ( ) ( )2 2 2
3 3

1 1d d d d sin cos cos cos sinv Bvu t t
w u

σ θ ψ σ ω θ ψ  ∅ = − ∝ − − − −      
 

or 

( )2 2
3 3

1 1d d d sinv Bvu t
w u

ν  ∅ = − ∝ − 
 

 

which is the other determination required to be sought. 
XX) Let us multiply this last equation by 22 dv ∅ , and leaving one integral 

just indicated, we will have the following expression  
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4 2 2 3
3 3

1 1d d d sinv B t v u u
w u

ν  ∅ = − ∝ ∅ − 
 ∫2 41 

this equation contains the relation between the elementary angle d∅  and the 
infinitesimal time dt , where, in fact, it is clear that if the mass of de disturbing 
body B would fade away, then 2dv ∅  would be proportional to the time dt , or 
the areas described around A are proportional to time. If to this equation, it is 
first added the one found in § 17, and equally integrated to the extent possible, 
then 

( )

( )

2 2 2 2 2
3

2
3 3

1 1 dd d 2 d 2 d
 

1 12 d d cos d sin

v vv v t A C B t
v f w

B t u v v
w u

µ ν

 
+ ∅ = ∝ + − − ∝ 

 
 + ∝ − ∅ − 
 

∫

∫
 

the above equation compares the variation of the distance v with the element 
d∅  or with the infinitesimal time dt , which are two particular characteristics 
to look for the motion of the body Z in its own orbit. Besides, we have, in fact, 
for the variation of orbit itself the following: 

( )2

3 3

d sin sin 1 1d
d

Bu t
v w u
σ θ ψ

ψ
− ∝ −  = − ∅  

 

( )2

3 3

d cos sind 1 1 d  
sin d tan

Bu t
v w u

σ θ ψω ψ
ω σ

− ∝ −  = − = ∅  
 

And finally, it can be recalled the relation between the argument of the latitude 
σ  to these same elements, given by d d d cosσ ψ ω= ∅− . 

XXI) The element of time dt  with the constant ∝  will be taken away from 
the calculation in a most convenient way, if a certain motion that is regular and 
known is introduced, like the mean motion of the Sun, or of another body, 
which is revolved around the center of the forces in a uniform circle. Then, let us 
put around the body located in A, which mass is = A , the other body, which 
mass = C , at a distance = a, in a circle, so that it circulates in a time t an angle 
τ  proportional to it, and our equations can be adapted to this case, once these 
are established: A = A , C = C  and 0B = , and then v a=  and d dτ∅ = . 
Then, the motion that we assume to be known, is controlled by these two equa-
tions  

4 2 2d 2 dv D t∅ = ∝  and ( )2 2 2 2 1 1d d 2 dv v t
v f

 
+ ∅ = ∝ + − 

 
A C  

where the first constants D and f can be conveniently defined for this case. To 

this end, from the first 
4 2

2 d2 d vt
D
∅

∝ =  which, when substituted into the 

second, gives 
( ) 4 2

2 2 2 d 1 1d d
v

v v
D v f

+ ∅  
+ ∅ = − 

 

A C
 or  

( ) ( )2 2 2 3 2d d dDf v Dfv v f v+ ∅ = + ∅ −A C , from which  

 

 

41The number two in bold should not be there. 
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( ) ( )
d

d
v Df

v v f v Df
∅ =

+ − −A C
, 

a certain constant value of v itself should be satisfactorily attributed to this diffe-
rential equation, for which the denominator fades away, however, as I have ex-
posed in another place, this approach is not possible to be admitted to the 
integral, unless the factor of denomination42 fades away to be of a minimum di-
mension of one, whence it is necessary that under the radical sign the same fac-
tor appears in a pair or squared, such that it reduces to the same value, so that 
the differential of the quantity placed after the sign reproduces the same factor.  

Therefore, let us place that differential = 0, and 1
2

v f= , which under the hypo-

thesis that v a= , then 2f a= , and in this case the denominator itself is then 

equal to ( ) 2 2a Da+ −A C , which, when equated to zero, gives ( )1
2

D a= +A C . 

Now, in the other equation be considered that v a=  and d dτ∅ = , then 

( )4 2 2d da a tτ = ∝ +A C  or 
3 2

2 dd at τ
∝ =

+A C
.    

XXII) Then, since the knowledge of the motion at any given time t allows the 
determination of the mean motion τ , here the time variable in our calculation  

will be redefined, by writing in the place of 2dt∝  the value just found of 
3 2da τ
+A C

. 

Next, to render our formulas simpler, let us put A C m+
=

+A C
 and ( )B n A C= + ,  

and then ( )2 3 2d dt A C ma τ∝ + =  and 2 3 2d dB t mna τ∝ =  where it should be 
noted that the perturbations will be minimum if the terms affected by the num-
ber n are minimum. Then our equations will assume the following forms: 

1) 4 2 3 2 3
3 3

1 1d 2 d d sinv mna v u
w u

τ ν  ∅ = − ∅ − 
 ∫    

2) 

( )

2 2 2 3 2 3 2
3

3 2
3 3

1 1 dd d 2 d 2 d
 

1 12 d d cos d sin

v vv v ma mna
v f w

mna u v v
w u

τ τ

τ µ ν

 
+ ∅ = − − 

 
 + − ∅ − 
 

∫

∫
 

3) 
( )3 2

3 3

sin sin 1 1d d
d

u
mna

v w u
σ θ ψ

ψ τ
−  = − − ∅  

 

4) 
( )3 2

3 3

cos sind 1 1 dd
sin d tan

u
mna

v w u
σ θ ψω ψτ

ω σ
−  = − − = ∅  

 

5) 
( )3 2

3 3

sin sin 1 1d d d cos d d cos
d

u
mna

v w u
σ θ ψ

σ τ ω ψ ω
−  = ∅ + − = ∅− ∅  

 

with these equations, the whole motion of the body Z with all the perturbations 
originated by the action of the body S can be determined: where, especially re-
garded to the integral formulas, which in the first two equations are affected only 
by the perturbations, being sufficient that these values are selected as close to the 
real ones, from which the task of approximations to these integrals can hardly be 

 

 

42It is simply the result of the division of the ratio. 
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considered an impediment. Nonetheless, I will expose soon the method to such 
an extent as to liberate the calculation of these integrals.  

XXIII) Meanwhile, for the sake of brevity, let us consider that:  

3
3 3

1 1d sinv u u P
w u

ν  ∅ − = 
 ∫  

3

d
 

v v Q
w

=∫  

( ) 3 3

1 1  d cos d sinu v v R
w u

µ ν  − ∅ − = 
 ∫  

then, the first two previous equations are contracted to these forms: 
1) ( )4 2 3 2d 2 dv ma D nPτ∅ = −  

2) ( )2 2 2 3 2 1 1d d 2 dv v ma n Q R
v f

τ
 

+ ∅ = − − − 
 

 

which alone accomplishes all the task, if the body Z is moved in the same plane, 
in which we assume that the disturbing body S is circulating, the remaining equ-
ations for the motion, that is declared to pertain to the latitude, the solution of 
these suffers much less difficulties, since all the efforts should be consumed in 
the two previous [equations]. Thenceforth, once the element dτ  has been 
eliminated, arises this equation 

( )( ) ( )2 2 2 4 2 1 1d d dD nP v v v n Q R
v f

  
− + ∅ = ∅ − − −  

  
 

whence the following equation is obtained 

( )

( )
2

2

d
d

v D nP

vv v nv Q R D nP
f

−
∅ =

 
− − − − + 

 

 

and furthermore 

( )

2 2
3 2

2
2

d2 d v vma
vv nv Q R D nP
f

τ =
− − − − +

 

or 

2

dd 2
1

v va ma

D nP v v nQ nR
f

τ =
 

− + + − + − 
 

 

the integration of these formulas would be available in case the fraction n or the 
perturbations disappeared. 

XXIV) We can represent that equation in this form: 

( ) ( )2 2

d 1 1dv D nPD nP n Q R
f vv v

 −
− = ∅ − − − + − 

 
 

and since we know that AZ v= , then, it would become maximum or minimum 
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when the quantity under the radical sign vanishes. However, not only in As-
tronomy that these places are of primary importance, wherever the body Z is 
said to move along a segment of an arch, but even so, the choice of this impor-
tant fact is at our disposal, with which the disturbed motion could be very neatly 
compared with the regular motion, and thus be capable to assign the aberrations 
from it. However, in a convenient way, this will be provided by introducing into 
the calculation a new angle Υ, which in astronomy is called the true anomaly43, 
and it is chosen in such way that either by reducing or increasing the [angular] 
distance between two lines according to the maximum or minimum value of v. 
Therefore, with the purpose of approximating the real motion to a regular motion  

made along an ellipse, we now define 
1 cos

pv
q

=
+ ϒ

, so that now the motion con-

forms to the regular motion along such an ellipse, in which the semi-latus rec-

tum is = p, the eccentricity = q, and thus the semi-major axis 21
p
q

=
−

, and the  

true anomaly arising from the [major] axis = Υ. Then, it can be easily perceived 
that because of the perturbations, the aspect of this ellipse changes continuously, 
whence not only the anomaly Υ but also the letters p and q are expected to vary, 
and these variations are now investigated. 

XXV) For that investigation to be rendered easier, let us introduce, for the 
sake of brevity, the following: 

( )1 n Q R M
f
− − =  and D nP N− =  

such that we have this evolved form 

( )2 2

d 1dv ND nP M
vv v

 − = ∅ − + − 
 

. 

Now that we have 
1 cos

pv
q

=
+ ϒ

 or 1 1 cosq
v p

+ ϒ
= , by hypothesis, not only 

for the case where 0ϒ = , which gives 1 1 q
v p

+
= , as well as for the case where 

180ϒ =  , which gives 1 1 q
v p

−
= , the quantity 2

1 NM
v v

− + −  should go off to 

zero44, and then, from these two situations arise the equations: 

( )2

2

11 0
N qqM

p p
++

− + − =  

and 

 

 

43The true anomaly (Υ) represents the real geometric angle in the plane of the elliptic, between 
periapsis (closest approach to the central body) and the position of the orbiting object at any given 
time. Argument of periapsis (β) defines the orientation of an elliptical orbit in the orbital plane, as 
an angle measured from the ascending node to the periapsis (the closest point the celestial body [e.g 
Moon] comes to the central body [e.g Earth] around which it orbits). 
44By equating this quantity to zero, Euler is somehow searching for the maximum and minimum 
values of v, which translates into finding the major and minor axes of the ellipse. 
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( )2

2

11 0
N qqM

p p
−−

− + − =  

and by subtraction they give 2

2 4 0q Nq
p p
− = , such that 2p N= , or 1

2
N p= , 

whence 
( )2 211 1

2 2
qq qM

p p p
++ −

= − = . 

But if we put the semi-major axis of our ellipse = r such that 21
pr
q

=
−

, then 

1
2

M
r

= , and thus 

( )1 1
2

n Q R
f r
− − =  and 1

2
D nP p− = . 

XXVI) When these values are substituted in our equation results in: 
2

2 2

d 1 1 1  d
2 2 2

v q pp
p vv v

 − +
= ∅ + − 

 
 

and when we write for 1
v

 in the right-hand side of this equation, the value 

1 cosq
p

+ ϒ , then we have that: 

2 2 2

2

d 1 1 1 cos 1 2 cos cos  d
2 2 2

v q q q qp
p p pv

 − + + ϒ + ϒ + ϒ
= ∅ + − 

 
45 

and thus, 
2 2 2

2

d 1 cos d sin  d
2 2 2

v q q qp
pv p

− ϒ ∅ ϒ
= ∅ =  

So, we have that 2

d d sinv q
pv
∅

= ϒ ; whence, surely, as we have anticipated, we  

certainly recognize that as the anomaly fades away with the sine of ϒ , at the 
same time, the differential of v goes off to zero, and, therefore, it passes over a 
maximum or a minimum value. Hence, indeed, the increment of the distance v, 
in general, is reduced to the element d∅ , which itself can now be compared  

with the known element dτ , and because 1
2

D nP p− = , we have that 

4 2 3 2d dv ma p τ∅ =  or 2d dv a mapτ∅ =  

And since 1 1 cosq
v p

+ ϒ
= , then  

( )
2 2

d 1 cosd d cos d sinp qv q q
pv p

+ ϒ ϒ + ϒ ϒ
= −  

which turned out equal to the expression d sinq
p
∅

ϒ , resulting in 

 

 

45There are errors in the signs of the last term under the radical which were corrected. 
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( ) ( )d dd d sin 1 cos d cos d cosp pq q q q
p v

∅− ϒ ϒ = + ϒ − ϒ = − ϒ , 

which involves new relations among differentials. 
XXVII) The remaining determinations must be sought from the formulas 

found above: 

2 2p D nP= −  and ( )
21 1 2 2q n R Q

r p f
−

= = − − , 

which once differentiated, and substituting the restituted values shown above for 
P, Q, R, give  

3
3 3

1 1d 2 d 2 d sinp n P nv u
w u

ν  = − = − ∅ − 
 

 

( )

2

3 3 3

1 1d d 2 d 2 d

2 d 1 12 d cos d sin
 

q n Q n R
r p

nv v nu v v
w w u

µ ν

 −  = = −  
   

 = − − ∅ − 
 

 

However, since 
2d sin d sind

1 cos
qv qvv

p q
∅ ϒ ∅ ϒ

= =
+ ϒ

, then, the last differential re-

duced to the element d∅  transforms into 
2

3

3 3 3

1 1d d

2 d sin cos sin 1 12 d sin
1 cos 

q
r p

nqv qnvu
qpw w u
µ ν

 −  =   
   

 ∅ ϒ ϒ  = − ∅ − −  + ϒ   

 

It is true that ( )
2

2
2

1 d 2 dd 1q p q qq
p pp

 − −
= − − 

 
, and then 

( )
2

2d 1d 1 d
2 2

p p qq q q
p p

 −
= − − −  

 
, 

from which it is conclude that 

( )2 3
3

3 3 3

3 3

1 1 1 d sind d sin
 

cos sin 1 1d sin
1 cos

n q nqvq q v u
p w u w

qnpvu
q w u

ν

µ ν

− ∅ ϒ = + ∅ − − 
 

 ϒ  + ∅ − −  + ϒ   

 

which, since 
1 cos

pv
q

=
+ ϒ

, it is contracted into the following form 

( )2
2

3 3

3

3

sin 2cos cos1 1d d cos sin
1 cos

d sin
 

q q q
q q nv u q

qw u

nqv
w

ν
µ

 + ϒ + ϒ   = ∅ − ϒ −  + ϒ    
∅ ϒ

−

 

which, once divided by q, gives 

https://doi.org/10.4236/ahs.2019.85018


S. R. Bistafa 
 

 

DOI: 10.4236/ahs.2019.85018 295 Advances in Historical Studies 
 

( )2
2

3 3

3

3

 sin 2cos cos1 1d d cos sin
1 cos

d sin  
 

q q
q nv u

qw u

nv
w

ν
µ

 + ϒ + ϒ   = ∅ − ϒ −  + ϒ    
∅ ϒ

−

 

Finally, when this expression is substituted into the formula  

( ) dd d sin d cospq q
v

∅− ϒ ϒ = − ϒ , the resulting expression, once divided by sin ϒ , 

is 

( )

( )

3
2

3 3 3

d cos 1 1d d d
 

 sin sin 2 cos
cos cos

1 cos

nvq nv u
w w u

q
q

ν
µ

∅ ϒ  ∅ − ϒ = − ∅ − 
 
ϒ + ϒ 

× ϒ + + ϒ 

 

XXVII) Therefore, now we have all the quantities that enter into our calcula-
tion, and we have revealed the sudden increment in the element d∅ , which in 
the same infinitesimal time dt  is completed by the here introduced angle dτ  
according to the mean motion, whence, we can easily assign that increment for 
any minimum time. Hence, firstly, the relation between the elementary angle 
d∅  and dτ  is expressed by the following formula: 

2d dv a mapτ∅ =  whence, we have that 3 2 4 21d dma v
p

τ = ∅  

next, if we consider that 
1 cos

pv
q

=
+ ϒ

, and that 21
pr
q

=
−

, then we will have 

that: 

1) 3
3 3

1 1d 2 d sinp nv u
w u

ν  = − ∅ − 
 

 

2) 
( )

3 2

3

3 3

1 2 d sin 2 dd
 

1 1cos sin 1 cos sin

nqv nv u
r ppw

q q
w u

µ ν

∅ ϒ ∅  = − 
 

 × ϒ − + ϒ −      

 

3) 

( )2
2

3 3

3

3

  2cos cos sin1 1d d cos sin
1 cos

d sin
 

q q
q nv u

qw u

nv
w

ν
µ

 + ϒ + ϒ   = ∅ − ϒ −  + ϒ    
∅ ϒ

−

 

4) 
( )

3 2

3 3 3

d cos d 1 1d d
 

  2 cos sin sin
cos cos

1 cos

nv nv u
qqw w u

q
q

ν
µ

∅ ϒ ∅  ϒ = ∅− − − 
 

+ ϒ ϒ 
× ϒ + + ϒ 

 

knowing that 

( ) ( )cos cos cos sin cos sinµ σ θ ψ σ ω θ ψ= − + −  

and that 
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( ) ( )sin sin cos cos cos sinν σ θ ψ σ ω θ ψ= − − −  

where it should be noted that d d∅− ϒ  designates the increment of the arc de-
scribed by the celestial body along the orbit itself. 

Third, for the motion in the latitude we have these formulas:  

1) 
( )3

3 3

d sin sin 1 1d
nv u

p w u
σ θ ψ

ψ
∅ −  = − − 

 
 

2) 
( )3

3 3

d cos sind 1 1 d
sin tan

nv u
p w u
σ θ ψω ψ

ω σ
∅ −  = − − = 

 
 

3) 
( )3

3 3

d cos sin sin 1 1d d
nv u

p w u
ω σ θ ψ

σ
∅ −  = ∅ + − 

 
 

or d d d cosσ ψ ω= ∅− . 
XXIX) Nothing more would be desired, if I could perform the integration of 

these equations, since then, any kind of perturbation could be defined, no matter 
great it would have been. But, since the forces of the Analysis have not yet in-
creased to such an extent, it is fit to appeal to approximations, from which, 
hopefully, we could expect some success, in case the perturbations would be 
considered as being small: because then, the values of the quantities p and q 
would be changed by small amounts, having been affected by the letter n in the 
integration of the formulas, such that, without error, can be considered just as 
constants, since, indeed, later on, the necessary corrections, obtained by the 
usual methods, can be applied without difficulties. However, in case we consider 
that the eccentricity is rather big, we will have difficulties, which, however, in 
order to be overcome, it will be possible to apply certain artifices, in which, in-
deed, the best way to succeed, is to consider that the eccentricity q, varies little 
from unity, such as in an almost parabolic orbit as those of the comets. None-
theless, greater difficulties appear, when the eccentricity is rather small, espe-
cially when the variations of the anomaly ϒ  grow, however if the need should 
arise, this cure could be expected. These operations are chiefly hindered by the  

quantity 3

1
w

, unless it is possible to conveniently convert it into a series sufficiently  

convergent, whose whole integration would be despairing, and another option is 
not seen to be left over, unless from the single variations of these differential 
formulas versus very small intervals of time are defined, the task for the integra-
tion of these summations is compensated, and on another occasion I showed 
more details. 

APPLICATION OF THIS THEORY TO THE MOTION OF THE MOON 
XXX) Let us consider that the center of the Earth is in A, which mass is = A, 

and considering the plane of the ecliptic in the figure, now, indeed, we have the 
Sun in S, which mass is = B, and for which, I place the line AB directed to a fixed 
point in the sky such as to the First Star of Aries, being defined the following  

longitude of the Sun or angle BAN θ=  

and distance of the Sun to the Earth or AS u= . 
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These elements are defined for the Sun’s motion: semi-major axis of the Sun’s 
orbit = a, semi-latus rectum of the Sun’s orbit = b, eccentricity of its orbit = e,  

and true anomaly = v; then 
1 cos

bu
e v

=
−

.46 Then, in fact, considering the mean  

motion47, if during an infinitesimal time the Sun traverses an angle dτ , then 
2d du a abθ τ= ,48 where d dvθ = , and we wish to observe the motion only 

during the Sun’s apogee. It is true that ( )21b a e= − ; then we have that 

( )21

1 cos

a e
u

e v

−
=

−
, and 

( )
( )

3
2 2

2

d 1
d

1 cos

e

e v

θ
τ

−
=

−
 and also, d dv θ= , approximately, 

where it should be noted that once the eccentricity of the Sun’s orbit is neglected, 
then u a=  and d dθ τ= . 

XXXI) Be further the Moon in Z, which mass = C, and be defined B n
A C

=
+

, 

knowing that A C m
A B
+

=
+

, and since the elementary angle dτ  is chosen from 

the mean motion of the Sun, such that A=A  and B=C ; whence giving 
B mn

A B
=

+
 or 1m

n
= , since the mass of the Sun can be considered infinitely  

larger than the mass of the Earth. Now for the location of the Moon it is estab-
lished that  

longitude of the ascending node or angle BAN ψ=  

inclination of the orbit of the Moon in relation to the ecliptic or angle YOZ ω=  

and argument of latitude or angle NAZ σ=  

then, we have that: 

( )
this?is?the angle 

arctan tan clongitude of the Moon os
NAY

ψ σ ω= +


 

and 

( )
this is the angle 

arcsin sinorthern latitude n sin
ZAY

σ ω=


. 

Then, if the distance of the Moon to the Earth AZ v=  and the distance of 
the Moon to the Sun SZ w= , and having been already defined the two angles 
µ  and ν , such that  

( ) ( )cos cos cos sin cos sinµ σ θ ψ σ ω θ ψ= − + −  

( ) ( )sin sin cos cos cos sinν σ θ ψ σ ω θ ψ= − − −  

then, 2 2 2 2 cosw v u vu µ= + −  or 2 2 2 cosw v u vu µ= + − . 

 

 

46The negative sign in the denominator indicates that the reference direction 0θ = , points towards 
the center of the ellipse, and positive if that direction points away from the center. 
47In orbital mechanics, mean motion is the angular speed required for a body to complete one orbit, 
assuming constant speed in a circular orbit which completes in the same time as the variable speed, 
elliptical orbit of the actual body. 
48This result comes from Kepler’s 2nd law. 
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XXXII) From these considerations, if we consider that currently 
1 cos

pv
q

=
− ϒ

  

denotes half the parameter of the lunar orbit, q is its eccentricity, and the angle 
ϒ  is its true anomaly; such that now q should be considered negative; then, in 
fact, being d∅  the angle described by the Moon around the Earth in the same 
time, during which the Sun traverses the angle dτ  in its mean motion. Hence, 
for defining the motion of the Moon, the following equations should be consi-
dered: 

1) 2d d d apv a map a
n

τ τ∅ = =  

2) 3
3 3

1 1d 2 d sinp nv u
w u

ν  = − ∅ − 
 

 

3) 

( )2
2

3 3

3

3

  2cos cos sin 1 1d d cos sin
1 cos

d sin
 

q q
q nv u

q w u

nv
w

ν
µ

 − ϒ + ϒ   = − ∅ ϒ + − − ϒ    
∅ ϒ

+

 

4) 2

d d sinv q
pv

∅ ϒ
= −  or 1 d sind q

v p
∅ ϒ  = + 

 
 

5) 
( )

3

3

2

3 3

d cosd d
 

  2 cos sin sind 1 1cos cos
1 cos

nv
qw

qnv u
q q w u

ν
µ

∅ ϒ
ϒ = ∅+

− ϒ ϒ ∅  − ϒ + −   − ϒ   

 

denoting d d∅− ϒ  the instantaneous promotion of the line of apsides49 or the 
[promotion] of the Moon’s apogee in its orbit: 

6) 
( )3

3 3

d sin sin 1 1d
nv u

p w u
σ θ ψ

ψ
− ∅ −  = − 

 
 

7) 
( )3

3 3

d cos sind d 1 1
sin tan

nv u
p w u
σ θ ψω ψ

ω σ
− ∅ −  = = − 

 
 

8) 
( )3

3 3

d sin cos sin 1 1d d d cos d
nv u

p w u
σ ω θ ψ

σ ψ ω
∅ −  = ∅ − = ∅+ − 

 
 

XXXIII) Let us begin with the development of the expression 3 3

1 1
w u

− : since  

it is obvious to be established that the distance u is always much longer than the 
distance ν; then we have that 

( ) ( )2 2
1 22 2

3 3 4 5

3 5cos 11 1 3 cos2 cos
2

vvu vu v
w u u u

µµµ
− −

= − + = + + . 

 

 

49 The apsides refer to the farthest (1) and nearest (2) points reached by 

an orbiting planetary body (1 and 2) with respect to a primary, or host, body (3). The line of apsides 
is the line connecting positions 1 and 2. In the case of Moon and Earth, point 1, the farthest, is 
called apogee; and point 2, the nearest, is called perigee. 
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And, therefore, 

( )2 2

3 3 4 5

3 5cos 11 1 3 cos
2

vv
w u u u

µµ −
− = + . 

Then, the formulas n) 3 and n) 5 will transform into these expressions: 

3) 

( )

( ) ( )

3
2 2

3

2 22
2

3 4

d sin 3 cosd 1 3cos 3 5cos
2 

3 5cos 1d sin 3 cos2cos cos
1 cos 2

nv vq
uu

vnv vq q
q u u

µµ µ

µν µ

∅ ϒ  = − + −  
 −∅  − − ϒ + ϒ +
 − ϒ  

 

5) 

( )

( )
( )

( )

3
2 2

3

2 22

3 4

d cos 3 cosd d 1 3cos 3 5cos
2 

3 5cos 1sin sin 3 cos 2 cos
1 cos 2

nv v
uqu

vnv ud v q
q q u u

µµ µ

µν µ

∅ ϒ  ϒ = ∅+ − + −  

 −∅ ϒ  − + − ϒ
 − ϒ
 

 

Then, we have that: 

( )
( )2 2

2
3 4

3 5cos 13 cosd cos d d sin 2 d sin
2

vvq q nv n
u u

µµν
 −
 ϒ + ∅− ϒ ϒ = ∅ +
 
 

 

which is a quite simple expression that will be possible to use next.  
XXXIV) Then, it should be noted furthermore that when the inclination ω  

is quite small, such that 21cos 1
2

ω ω= − , then, approximately, have that: 

( ) ( )21cos cos sin sin
2

µ σ θ ψ ω σ θ ψ= − + − −  

( ) ( )21sin sin cos cos sin
2

ν σ θ ψ ω σ ω θ ψ= − + + −  

5. Conclusion 

“On the rectilinear motion of three bodies mutually attracting each other”: this is 
considered the first work from which the three collinear Lagrange points could 
be obtained, where the parameter that controls the distances among the bodies 
was found to be given by a quintic function.  

“Considerations on the motion of celestial bodies”: one of the conclusions of 
this paper is that if the Moon were four times more distant from the Earth (ei-
ther in conjunction or in opposition), a motion of this kind would have been 
possible to exist, such that the Moon would appear always connected to the Sun. 
In this paper, perhaps for the first time, Euler introduces an archaic form of a 
Fourier sine series expansion to describe the Moon’s wagging motion. However, 
as Euler himself recognizes, the calculations turned out very tedious and led him 
to greatly simplify his model in order to obtain some numerical values for the 
phenomenon. 

“An easy method for calculating the motion of celestial bodies perturbed in 
any manner avoiding astronomical computations”: with few sketches to show 
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the geometrical constructions envisaged by Euler—represented by several geo-
metrical variables—it is hard to follow publication. The Translator, on trying to 
clear the way to the non-specialized reader, used the best of his abilities to add 
his own figures to the translation. In the latter part of the work, Euler particula-
rizes his developments to the Moon, ending up with eight coupled differential 
equations for resolving the perturbed motion of this celestial body, which makes 
his claim of an “easy method” as being rather fallacious. Despite showing great 
analytical skills, Euler did not give indications on how this system of equations 
could be solved, which renders his efforts practically useless in the determination 
of the variations of the nodal line and inclination of the Moon’s orbit.  
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