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Abstract 
The Laplace Decomposition Method [1] [2] [3] is applied to a system of non-
linear partial differential equations to demonstrate potential applicability to 
such systems. 
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1. Introduction 

Differential equations theory is an important Mathematical branch which is used 
to describe practical problems in physics, chemistry, and biology and so on [4]. 
It is well known that many phenomena in scientific fields such as reaction- 
diffusion process, population growth, solid physics, fluid dynamics, Mathemati-
cal biology and chemical kinetics, can be modelled by systems of linear or non-
linear PDEs. In order to understand and analyze these phenomena well, it needs 
to know solution of systems of these linear or nonlinear PDEs. So, it is a crucial 
work to obtain solutions of systems of linear or nonlinear PDEs in the science. 
With this idea; scientists and mathematicians have developed and searched some 
methods such as Hirota bilinear method [5], Exp-function method [6], tanh 
method [7] [8], sine-cosine method [9], Galerkin method [10] and Differential 
transform method (DTM) [11]. It is more difficult to obtain solutions of nonli-
near PDEs than those of linear differential equations. Therefore, it may not al-
ways be possible to obtain analytical solutions of these equations [12] [13]. In 
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this case, it is used analytical methods giving series solutions. In these kinds of 
methods, the solutions are sought in the form of series [1] [2] [3] [14]. Analytical 
methods are based on finding the other terms of the series from given initial 
conditions for the problem being considered. At this point, it is encountered the 
concept of convergence of the series. So, it is necessary to perform convergence 
analysis of these methods. As this convergence analysis can be carried out theo-
retically, one can gain information about the convergence of the series solution 
by looking at the absolute error between the numerical solution and the analyti-
cal solution. In some Analytic methods, a very good convergence can be 
achieved with only a few terms of the series, but more terms can be needed in 
some problems. That is, if the terms of the series increase, this provides better 
convergence to the analytical solution. 

In this study, I have used LDM to solve a system of nonlinear partial differen-
tial equations for two different initial conditions. Later, we compared the ob-
tained results with exact solutions and solution obtained by Method of Differen-
tial Quadrature [15]. In this paper, we are not going to explain the LDM. For 
that, I have referred papers [1] [2] [3] to illustrate this method for a nonlinear 
system of PDE’s.  

2. Application 

Consider a system of nonlinear partial differential equations on our interest of 
region given by:  

t x yu uu vu= +                           (1) 

t x yv uv vv= +                           (2) 

with initial condition  

( ) ( ), ,0 ,u x y f x y=                        (3) 

( ) ( ), ,0 ,v x y g x y=                        (4) 

here, we have consider the general form of boundary conditions. Taking Laplace 
transform of Equations (2.1) and (2.2) with respect to t, we get  

[ ]t t t x yL u L uu vu = +   

[ ]t t t x yL v L uv vv = +   

( ) ( ), , , ,0 t x ysu x y s u x y L uu vu − = +   

( ) ( ), , , ,0 t x ysv x y s v x y L uv vv − = +   

( ) ( )1 1, , , t x ysu x y s f x y L uu vu
s s

 = + +   

( ) ( )1 1, , , t x ysv x y s g x y L uv vv
s s

 = + +   

Taking inverse Laplace transform of above system with respect to “t”, we get 

( ) ( ) 1 1, , , t t x yu x y t f x y L L uu vu
s

−   = + +   
               (5) 
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( ) ( ) 1 1, , , t t x yv x y t g x y L L uv vv
s

−   = + +   
               (6) 

Let us suppose that,  

( ) ( ) ( ) ( )
0 0

, , , , , , , , ,n n
n n

u x y t u x y t v x y t v x y t
∞ ∞

= =

= =∑ ∑            (7) 

be the solution of given system of Equations (2.1), (2.2) in series form. Also we 
can decompose the nonlinear terms appeared in given system by using adomian 
polynomials, namely 

0 0 0 0
, , ,x n y n x n y n

n n n n
uu A vu B uv C vv D

∞ ∞ ∞ ∞

= = = =

= = = =∑ ∑ ∑ ∑           (8) 

where nA , nB , nC  and nD  are adomian polynomials [16]. From the Equa-
tions (2.5), (2.6), (2.7) and (2.8), we get 

( ) ( ) 1

0 0 0

1, , ,n t t n n
n n n

u x y t f x y L L A B
s

∞ ∞ ∞
−

= = =

  = + +    
∑ ∑ ∑  

( ) ( ) 1

0 0 0

1, , ,n t t n n
n n n

v x y t g x y L L C D
s

∞ ∞ ∞
−

= = =

  = + +    
∑ ∑ ∑  

Comparing the both sides of above system of equations, we get the following 
recursive relations 

( ) ( ) ( ) 1
0 1

0 0

1, , , , , , , 0.n t t n n
n n

u x y t f x y u x y t L L A B n
s

∞ ∞
−

+
= =

  = = + ≥    
∑ ∑   (9) 

( ) ( ) ( ) 1
0 1

0 0

1, , , , , , , 0.n t t n n
n n

v x y t g x y v x y t L L C D n
s

∞ ∞
−

+
= =

  = = + ≥    
∑ ∑  (10) 

Note that the solution of (2.1), (2.2) can exhibit a shock phenomenon for fi-
nite t; we select f(x, y) and g(x, y) such that the shock occurs for a value of t far 
from our region of interest. Let  

( ) ( ), ,f x y g x y x y= = +                     (11) 

Therefore from the recursive relation (2.9) and (2.10), we get  

( ) ( )0 0, , , ,u x y t v x y t x y= = +  

then ( )1 , ,u x y t , ( )1 , ,v x y t  can be calculate as  

( ) [ ]

( ) ( )

( )

1
1 0 0

1
0 0 0 0

1

1, ,

1

1

2

t t

t t x y

t t

u x y t L L A B
s

L L u u v u
s

L L x y x y
s

t x y

−

−

−

 = +  
  = +   
 = + + +    

= +

 

Similarly,  

( ) [ ] ( )1 1
1 0 0 0 0 0 0

1 1, , 2t t t t x yv x y t L L C D L L u v v v x y t
s s

− −    = + = + = +       
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Also, ( )2 , ,u x y t  and ( )2 , ,v x y t  are calculated as  

( ) [ ]

( ) ( )

( ) ( )( ) ( ) ( )( )

( )

( )

1
2 1 1

1
0 1 1 0 0 1 1 0

1

1

2

1, ,

1

1 2 2 2 2

1 8

2

t t

t t x x y y

t t

t t

u x y t L L A B
s

L L u u u u v u v u
s

L L t x y t x y t x y t x y
s

L L t x y
s

t x y

−

−

−

−

 = +  
  = + + +   
  = + + + + + + +   
 = +    

= +

 

Similarly,  

( ) ( )2
2 , , 4v x y t t x y= +  

Substitute all the values of 0 1 2, , ,u u u   and 0 1 2, , ,v v v   in the Equation 
(2.7), we get  

( ) ( ) ( ) ( )2, , 2 4u x y t x y t x y t x y= + + + + + +  

( ) ( ) ( ) ( )2, , 2 4v x y t x y t x y t x y= + + + + + +  

This implies, 

( ) ( ) 2, , 1 2 4u x y t x y t t = + + + +   

( ) ( ) 2, , 1 2 4v x y t x y t t = + + + +   

( ), ,
1 2
x yu x y t

t
+

=
−

 

( ), ,
1 2
x yv x y t

t
+

=
−

 

This is an exact solution of the given system of nonlinear partial differential 
Equations (2.1) and (2.2). We have verified this through the substitution, which 
is identical to the solution obtained by R. E. Bellman using the method of diffe-
rential quadrature [15]. Let we change the initial conditions to 

( ) ( )2, , ,f x y x g x y y= =                    (12) 

From the recursive relation (2.9), (2.10) and above initial conditions, we get  

( ) ( )2
0 0, , , , ,u x y t x v x y t y= =  

( ) [ ]1 3
1 0 0

1, , 2t tu x y t L L A B x t
s

−  = + =  
 

Similarly,  

( ) [ ]1
1 0 0

1, , t tv x y t L L C D yt
s

−  = + =  
 

Also, ( )2 , ,u x y t  and ( )2 , ,v x y t  are calculated as  

( ) [ ]1 4
2 1 1

1, , 5t tu x y t L L A B x t
s

−  = + =  
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Similarly,  

( ) ( )2 5 3
2 3, , , , , 14v x y t yt u x y t x t= =  

and so on. Substitute all the values of 0 1 2, , ,u u u   and 0 1 2, , ,v v v   in Equation 
(2.7), we get  

( ) ( )2 2 2 2 2, , 1 2 5 14u x y t x tx t x x t= + + + +  

( ) ( )2, , 1
1

yv x y t y t t
t

= + + + =
−

  

(The shock occurs at 1
4

t
x

= ). This is an approximate solution of given sys-

tem of equations. 

3. Conclusion 

From the examples above, we can clearly say that we can calculate ( ), ,u x y t  
and ( ), ,v x y t  when explicitly solutions exist for given initial functions. More 
importantly, the methodology [1] [2] [3] does have potential application to the 
system of nonlinear partial differential equations and clearly in the case of sto-
chastic parameters as well. The given system of equation has a unique solution 
for the given boundary conditions. 
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