

Erratum to "Theoretical Study of the Reaction of (2, 2)-Dichloro (Ethyl) Arylphosphine with Bis (2, 2)-Dichloro (Ethyl) Arylphosphine by Hydrophosphination Regioselective by the DFT Method" [Computational Chemistry 5 (2017) 113-128]

Kouadio Valery Bohoussou¹, Anoubilé Benié², Mamadou Guy-Richard Koné¹, Affi Baudelaire Kakou², Kafoumba Bamba¹, Nahossé Ziao¹

¹Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Universite Nangui Abrogoua, Abidjan, Republique de Cote-d'Ivoire

²Laboratoire de Chimie Bio-Organique et de Substances Naturelles (LCBOSN), UFR SFA, Universite Nangui Abrogoua, Abidjan, Republique de Cote-d'Ivoire

Email: kouadiobohoussou199@gmail.com

Received: April 10, 2017 **Accepted:** July 24, 2017 **Published:** July 27, 2017

Copyright © 2020 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

CC O Open Access

The original online version of this article (Kouadio Valery Bohoussou¹, Anoubilé Benié², Mamadou Guy-Richard Koné¹, Affi Baudelaire Kakou², Kafoumba Bamba¹, Nahossé Ziao¹) Theoretical Study of the Reaction of (2, 2)-Dichloro (Ethyl) Arylphosphine with Bis (2, 2)-Dichloro (Ethyl) Arylphosphine by Hydrophosphination Regio selective by the DFT Method. Computational Chemistry 5 (2017) 113-128. DOI: 10.4236/cc.2017.53010) unfortunately contains a mistake. The author wishes to correct the errors from **Table 3** to **Table 4**, on page 121 and the beginning of page 122.

On analysis of the values in **Table 3**, phosphines 1a and 1b have the highest values of the local nucleophilic indices N_k . Similarly, the carbon C_1 of the compound R_2 has the highest value of the local electrophilic index (ω_k). This shows that the most favored interaction takes place between the P_1 atom of the compound 1a and the C_1 atom of the compound R_2 for the first reaction, and between the P_9 and C_1 atoms for the second reaction. Therefore, the formation of experimentally observed P_1 - C_1 and P_2 - C_1 bonds are correctly predicted by the Domingo model with the Mulliken and NPA approaches.

Atomes		la P ₁	1b P ₂	R ₂	
				C ₁	C ₂
	f_k^+			0.352	-0.245
Mulliken	f_k^-	0.358	0.218		
Muniken	\mathcal{O}_k			0.4872	-0.339
	N_k	0.904	0.598		
	f_k^+			0.358	0
NPA	f_k^-	0.092	0.313		
NFA	\mathcal{O}_k			0.4880	0.208
	$N_{_k}$	0.252	0.858		

Table 3. Local reactivity descriptors on the P_1 , P_2 , C_1 and C_2 atoms of reactants 1a, 1b and R_2 using NPA and Mulliken population analyzes at B3LYP/6-311 + G (d, p).

3.3.2. Prediction Using the Gazquez-Mendez Model

The prediction according to the Gazquez-Mendez model presents values of the Fukui function (f_k^+ , f_k^-), local softness S_k^+ for reactants R2 and local softness S_k^- for reactants 1a or 1b. These values of the local descriptors on the atoms P₁, P₂, C₁ and C₂ of the reactants 1a, 1b and R2 were calculated according to the Gazquez-Mendez model with the NPA population analyzes and MK at the B3LYP 6-311+G level (d, p) are given in **Table 4**. f_k^+ , f_k^-), local softness k S+ for reactants R2 and local softness kS—for reactants 1a or 1b. These values of the local descriptors on the atoms P₁, P₂, C₁ and C₂ of the reactants R2 and local softness kS—for reactants 1a or 1b. These values of the local descriptors on the atoms P₁, P₂, C₁ and C₂ of the reactants 1a, 1b and R2 were calculated according to the Gazquez-Mendez model with the NPA population analyzes and MK at the B3LYP 6-311+G level (d, p) are given in **Table 4**. Examination of the values in **Table 4** indicates that the phosphines 1a, and dichloroethylene R2 have similar values of local softnesses (S_k^+ , S_k^-) by the approach of Mulliken. This observation shows that the most favored interaction takes place between the P₁ atom of the compound 1a and the C1 atom of the dichloroethylene.

Réactants		1a P ₁	1b P2	R ₂	
Atomes				C ₁	C ₂
Mulliken	f_k^+			0.352	-0.245
	f_k^-	0.358	0.218		
	S_k^+			0.052	-0.036
	S_k^-	0.060	0.040		
NPA	f_k^+			0.358	0
	f_k^-	0.092	0.121		
	S_k^+			0.053	0.000
	S_k^-	0.015	0.021		

Table 4. Values of Fukui Functions (f_k^+, f_k^-) , local softnesses, S_k^+ for reactants R2 and local softness, S_k^- for reactants 1a and 1b calculated by NPA, MK.

That the most favored interaction takes place between the P_1 atom of the compound 1a and the C_1 atom of the dichloroethylene for the first reaction and the P_2 atom of the compound 1b and the C_1 atom of the dichloroethylene for the second reaction.