

2019, Volume 6, e5973 ISSN Online: 2333-9721 ISSN Print: 2333-9705

Fixed Point Theorem for Meir-Keeler Type Function in b_2 -Metric Spaces

Zhuoyi Tian, Jinxing Cui, Linan Zhong*

Department of Mathematics, Yanbian University, Yanji, China Email: *zhonglinan2000@126.com

How to cite this paper: Tian, Z.Y., Cui, J.X. and Zhong, L.N. (2019) Fixed Point Theorem for Meir-Keeler Type Function in b_2 -Metric Spaces. *Open Access Library Journal*, **6**: e5973.

https://doi.org/10.4236/oalib.1105973

Received: December 3, 2019 Accepted: December 21, 2019 Published: December 24, 2019

Copyright © 2019 by author(s) and Open

Access Library Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, we prove fixed point theorems of a generalization which is related to the concept of Meir-Keeler function in a complete b_2 -metric space. And we know it extends and generalizes some known results in metric space to b_2 -metric space.

Subject Areas

Function Theory, Functional Analysis, Mathematical Analysis

Keywords

Fixed Point, b2-Metric Space, Meir-Keeler Function

1. Introduction

Many mathematicians have studied fixed point theory over the last several decades since Banach contraction principle [1] was introduced in 1992. The notion of Meir-Keeler function [2] was introduced in 1969. Then the concept of weaker Meir-Keeler function [3] was introduced by Chi-Ming Chen in 2012. And in this paper, we establish fixed point for Meir-Keeler function and weaker Meir-Keeler function in a complete new type of generalized matric space, which is called by b_2 -metric space, and this space was generalized from both 2-metric space [4] [5] [6] and b-metric space [7] [8].

2. Preliminaries

Throughout this paper N will denote the set of all positive integers and R will denote the set of all real numbers.

Before stating our main results, some necessary definitions might be introduced as follows.

 * Corresponding author.

Definition 2.1 [2] Let X be a nonempty subsets, $m \in N$ and $f: X \to X$ an operator. Then $X = \bigcap_{i=1}^m A_i$ is called a cyclic representation of X with respect to f if

- 1) A_i , $i = 1, 2, \dots, m$ are empty subsets of X,
- 2) $f(A_i) \subset A_1, f(A_2) \subset A_3, \dots, f(A_{m-1}) \subset A_m, f(A_m) \subset A_1$.

Definition 2.2 [2] A function $\phi:(0\to\infty]\to(0\to\infty]$ is said to be a Meir-Keeler function if for each $\eta>0$, there exists $\delta>0$ such that for each $t\in(0\to\infty]$ with $\eta\leq t\leq\eta+\delta$, we have $\phi(t)<\eta$.

Definition 2.3 [3] We call $\phi:(0\to\infty]\to(0\to\infty]$ a weak Meir-Keeler function if for each $\eta>0$ such that for each $t\in(0\to\infty]$ with $\eta\le t\le\eta+\delta$, there exists $n_0\in N$ such that $\phi^{n_0}(t)<\eta$.

Definition 2.4 [4] [5] [6] Let X be an nonempty set and let $d: X \times X \times X \to R$ be a map satisfying the following conditions:

- 1) For every pair of distinct points $x, y \in X$, there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
 - 2) If at least two of three points x, y, z are the same, then d(x, y, z) = 0,
 - 3) The symmetry:

$$d(x,y,z) = d(x,z,y) = d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,x,y)$$
for all $x,y,z \in X$.

4) The rectangle inequality:

$$d(x,y,z) \le d(x,y,a) + d(y,z,a) + d(z,x,a)$$
 for all $x,y,z,a \in X$.

Then d is called a 2 metric on X and (X,d) is called a 2 metric space.

Definition 2.5 [7] [8] Let X be a nonempty set and $s \ge 1$ be a given real number. A

function $d: X \times X \to R^+$ is a b metric on X if for all $x, y, z \in X$, the following conditions hold:

- 1) d(x, y) = 0 if and only if x = y.
- 2) d(x, y) = d(y, x).
- 3) $d(x,y) \le s \left[d(x,y) + d(y,z) \right]$.

In this case, the pair (X,d) is called a b metric space.

Definition 2.6 [9] Let X be a nonempty set, $s \ge 1$ be a real number and let $d: X \times X \times X \to R$ be a map satisfying the following conditions:

- 1) For every pair of distinct points $x, y \in X$, there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
 - 2) If at least two of three points x, y, z are the same, then d(x, y, z) = 0,
 - 3) The symmetry:

$$d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, x, y)$$
 for all $x, y, z \in X$.

4) The rectangle inequality:

$$d(x,y,z) \le s[d(x,y,a)+d(y,z,a)+d(z,x,a)], \text{ for all } x,y,z,a \in X.$$

Then d is called a b_2 metric on X and (X,d) is called a b_2 metric space with parameter s. Obviously, for s=1, b_2 metric reduces to 2-metric.

Definition 2.7 [9] Let $\{x_n\}$ be a sequence in a b_2 metric space (X,d).

- 1) A sequence $\{x_n\}$ is said to be b_2 -convergent to $x \in X$, written as $\lim_{n\to\infty} x_n = x$, if all $a \in X$ $\lim_{n\to\infty} d(x_n, x, a) = 0$.
- 2) $\{x_n\}$ is Cauchy sequence if and only if $d(x_n, x_m, a) \to 0$, when $n, m \to \infty$ for all $a \in X$.
- 3) (X,d) is said to be complete if every b_2 -Cauchy sequence is a b_2 -convergent sequence.

Definition 2.8 [9] Let (X,d) and (X',d') be two b_2 -metric spaces and let $f: X \to X'$ be a mapping. Then f is said to be b_2 -continuous, at a point $z \in X$ if for a given $\varepsilon > 0$, there exists $\delta > 0$ such that $x \in X$ and $d(z,x,a) < \delta$ for all $a \in X$ imply that $d'(fz, fx, a) < \varepsilon$. The mapping f is b_2 -continuous on X if it is b_2 -continuous at all $z \in X$.

Definition 2.9 [9] Let (X,d) and (X',d') be two b_2 -metric spaces. Then a mapping $f: X \to X'$ is b_2 -continuous at a point $x \in X'$ if and only if it is b_2 -sequentially continuous at x; that is, whenever $\{x_n\}$ is b_2 -convergent to x, $\{fx_n\}$ is b_2 -convergent to f(x).

3. Main Results

In this section, we give and prove a generalization of the Meir-Keeler fixed point theorem [2].

Theorem 3.1. Let (X,d) be a complete b_2 -metric space and let f be a mapping on X, for each $\varepsilon > 0$, there exists $\delta \in (s\varepsilon, (2s-1)\varepsilon)$ such that

(a)
$$\frac{1}{2s}d(x,fx,a) < d(x,y,a)$$
 and $d(x,y,a) < \varepsilon + \delta$ imply $d(fx,fy,a) \le \varepsilon$

(b)
$$\frac{1}{2s}d(x,fx,a) < d(x,y,a)$$
 implies $d(fx,fy,a) < d(x,y,a)$ for all

 $x,y\in X$. Then there exists a unique fixed point z of f. Moreover $\lim_{n\to\infty}f^nx=z$ for all $x\in X$.

Proof If $fx \neq x$, then we can easily get that d(x, fx, a) < 2sd(x, fx, a). So, by hypothesis, $d(fx, f^2x, a) < d(x, fx, a)$ holds for all $x \in X$ with $fx \neq x$. We also get

$$d(fx, f^2x, a) \le d(x, fx, a)$$
 for all $x \in X$ (3.1)

Fix point x_0 in X and define a sequence $\{x_n\}$ in X by $x_{n+1} = fx_n = f^n x_0$ for $n \in N$. From the above (3.1) we get $d(x_n, x_{n+1}, a) \leq d(x_{n-1}, x_n, a)$, so we know that $\{d(x_n, x_{n+1}, a)\}$ is a decreasing sequence, and the sequence $\{d(x_n, x_{n+1}, a)\}$ converges to some $\beta \geq 0$. We assume that $\beta > 0$, then we know that $d(x_n, x_{n+1}, a) > \beta$ for every $n \in N$, then there exists δ such that (a) is true with $\varepsilon = \beta$, for the definition of β , there exists $i \in N$ such that $d(x_i, x_{i+1}, a) < \beta + \delta$, so we have $d(x_{i+1}, x_{i+2}, a) \leq \beta$, which is a contraction. Therefore $\beta = 0$, and that is:

$$\lim_{n\to\infty}d\left(x_n,x_{n+1},a\right)=0.$$

Now we show that $d(x_i, x_j, x_k) = 0$.

From part 2 of Definition 2.6, the equation $d(x_m, x_m, x_{m-1}) = 0$ is obtained.

Since $\{d(x_n,x_{n+1},a)\}$ is decreasing, if $d(x_{n-1},x_n,a)=0$, then $d(x_n,x_{n+1},a)=0$, then it is easy to get

$$d(x_n, x_{n+1}, x_m) = 0$$
, for all $n+1 \ge m$. (3.2)

For $0 \le n+1 < m$, we get $m-1 \ge n+1$ and that is $m-2 \ge n$, from (3.2)

$$d(x_{m-1}, x_m, x_{n+1}) = d(x_{m-1}, x_m, x_n) = 0, (3.3)$$

From (3.2) and triangular inequality,

$$d(x_{n}, x_{n+1}, x_{m})$$

$$\leq sd(x_{n}, x_{n+1}, x_{m-1}) + sd(x_{n+1}, x_{m}, x_{m-1}) + d(x_{m}, x_{n}, x_{m-1})$$

$$= sd(x_{n}, x_{n+1}, x_{m-1}).$$

And since $d(x_n, x_{n+1}, x_{n+1}) = 0$, and from the inequality above,

$$d(x_{n+1}, x_n, x_m) \le s^{m-n-1} d(x_{n+1}, x_{n+1}, x_n) = 0$$
, for all $0 \le n+1 \le m$. (3.4)

Now for all $i, j, k \in \mathbb{N}$, the condition of j > i is considered here, from the above equation

$$d(x_{i-1}, x_i, x_i) = d(x_k, x_{i-1}, x_i) = 0$$
(3.5)

From (3.5) and triangular inequality, therefore

$$d(x_{i}, x_{k}, x_{j}) \leq s \left[d(x_{i}, x_{j}, x_{j-1}) + d(x_{j}, x_{k-1}, x_{k}) + d(x_{i}, x_{j-1}, x_{k}) \right]$$

$$\leq \cdots$$

$$\leq s^{j-1} d(x_{i}, x_{k}, x_{i})$$

$$= 0$$

In conclusion, the result below is true

$$d(x_j, x_k, x_i) = 0 \text{ , for all } i, j, k \in N.$$
(3.6)

Now we fix $\varepsilon > \frac{\delta}{2s-1}$, then there exists δ such that (a) is true. Let $N_1 \in N$ such that

$$d(x_n, x_{n+1}, a) < \frac{\delta - (s-1)\varepsilon}{s}$$
, for all $n \in \mathbb{N}$ with $n \ge N_1$. (3.7)

Now we will show that

$$d(x_{k}, x_{k+m}, a) < \varepsilon + \delta \quad \text{for} \quad m \in N$$
 (3.8)

By induction, when m = 1, it is true for (3.8). We assume that (3.8) holds for some $m \in N$.

In one case $d(x_k, x_{k+m}, a) \le \varepsilon$, we have

$$d(x_{k}, x_{k+m+1}, a) \le s \left[d(x_{k}, x_{k+m}, a) + d(x_{k+m}, x_{k+m+1}, a) + d(x_{k}, x_{k+m+1}, x_{k+m})\right]$$

From (3.6) and (3.7) we have

$$d(x_{k}, x_{k+m+1}, a) \leq s \left[d(x_{k}, x_{k+m}, a) + d(x_{k+m}, x_{k+m+1}, a) \right]$$

$$\leq s\varepsilon + s \frac{\delta - (s-1)\varepsilon}{s}$$

$$\leq \varepsilon + \delta$$
(3.9)

In other case, where $\varepsilon < d(x_k, x_{k+m}, a) < \varepsilon + \delta$, since

$$d\left(x_{k}, x_{k+1}, a\right) < \frac{\delta - \left(s - 1\right)\varepsilon}{s} < \varepsilon < d\left(x_{k}, x_{k+m}, a\right) < 2sd\left(x_{k}, x_{k+m}, a\right)$$

We get $d(x_{k+1}, x_{k+m+1}, a) \le \varepsilon$ and then we have

$$d(x_k, x_{k+m+1}, a) \le s \lceil d(x_k, x_{k+m}, a) + d(x_{k+m}, x_{k+m+1}, a) \rceil \le \varepsilon + \delta$$
 (3.10)

So for (3.9) and (3.10), (3.8) is true for every $m \in N$. Therefore we have

 $\lim_{n \to \infty} \sup d(x_n, x_m, a) = 0$, for all n < m. This shows that $\{x_n\}$ is a Cauchy sequence.

Since X is complete, there exists a point $z \in X$ such that sequence $\{x_n\}$ converges to it. From the following two respectively cases, we will show that this point is a fixed point for f.

Case one: There exists $u \in N$ such that $x_u = x_{u+1}$.

Case two: $x_n \neq x_{n+1}$, for all $n \in N$.

In the first case, we know that $x_n = x_u$ for $n \ge u, u \in N$. Since $\{x_n\} \to z$ as $n \to \infty$, then we get $x_n = z$ for $n \ge u, n \in N$. This prove that fz = z.

In the second case, we know that $x_n \neq x_{n+1} = fx_n$, for all $n \in N$, so we get sequence $\{d(x_n, x_{n+1}, a)\}$ is strictly decreasing. If we assume that

$$d(x_n, x_{n+1}, a) \ge 2sd(x_n, z, a)$$
 and $d(x_{n+1}, x_{n+2}, a) \ge 2sd(x_{n+1}, z, a)$

for some $n \in N$. For the first inequality of the above assumption, we choose $a = x_{n+1}$, then we have

$$d(x_n, x_{n+1}, z) = 0 (3.11)$$

Then we have

$$d(x_{n}, x_{n+1}, a) \leq s \Big[d(x_{n}, z, a) + d(x_{n+1}, z, a) + d(x_{n}, x_{n+1}, a) \Big]$$

$$\leq s \Big[d(x_{n}, z, a) + d(x_{n+1}, z, a) \Big]$$

$$\leq \frac{d(x_{n}, x_{n+1}, a) + d(x_{n+1}, x_{n+2}, a)}{2}$$

$$< d(x_{n}, x_{n+1}, a).$$

This is a contraction. So we get either

 $d(x_n, x_{n+1}, a) < 2sd(x_n, z, a)$ or $d(x_{n+1}, x_{n+2}, a) < 2sd(x_{n+1}, z, a)$ for all $n \in N$. Since $x_n \to z$ as $n \to \infty$, the above inequality prove that there exists a sub sequence of sequence $\{x_n\}$, which converges to fz. This shows that z is a fixed point of f. Next we prove that z is the unique fixed point of f. Suppose that z and y are two different fixed point of f, from the assumption of this theorem, we get

$$d(z, fz, a) = 0 < 2d(y, z, a)$$
 from the above inequality we have

$$d(z, y, a) = d(fx, fy, a) < d(y, z, a)$$

This is a contraction. Hence *z* is a unique fixed point of *f*.

In this section, we prove a fixed point theory for the cyclic weaker Meir-Keeler function in b_2 -metric space. Now we give some comments as follows:

 $\Omega = \omega : (0 \to \infty] \to (0 \to \infty]$ is a set, where ω is a weaker Meir-Keeler func-

tion and satisfying the following conditions:

- (ω_1) $\omega(t) > 0$ for t > 0, and $\omega(0) = 0$;
- (ω_2) For all $t \in (0 \to \infty]$, $\{\omega^n(t)\}_{n \in \mathbb{N}}$ is decreasing;
- (ω_3) For $t_n \in (0 \to \infty]$, if $\lim_{n \to \infty} t_n = \gamma$, then $\lim_{n \to \infty} \omega(t_n) < \gamma$.

 $\Theta = \theta : [0 \to \infty) \to [0 \to \infty)$, where θ is a non-increasing and continuous function with $\theta(t) > 0$ for all t > 0 and $\theta(0) = 0$.

We now introduce the following definition of cyclic weaker (ω, θ) -contraction mapping in b_2 -metric space:

Definition 3.2 Let (X,d) be a b_2 -metric space, A_1,A_2,\cdots,A_m are all non-empty subsets of $X=\bigcup_{i=1}^m A_i$. A mapping $f:X\to X$ is said to be cyclic weaker (ω,θ) -contraction in b_2 -metric space if satisfying the following condition:

- 1) $X = \bigcup_{i=1}^{m} A_i$ with respect of f_i it is a cyclic representation of X.
- 2) $i = 1, 2, \dots, m$, for any $x \in A_i, y \in A_{i+1}$, such that

 $d(fx, fy, a) \le \omega(d(x, y, a)) - \theta(d(x, y, a))$, where $A_{m+1} = A_1$, $\omega \in \Omega$ and $\theta \in \Theta$.

Theorem 3.3 Let (X,d) be a b_2 -metric space, A_1,A_2,\cdots,A_m are all non-empty subsets of $X=\bigcup_{i=1}^m A_i$. Let $f:X\to X$ be cyclic weaker (ω,θ) -contraction in b_2 -metric space, then f has a unique fixed point in $\bigcap_{i=1}^M A_i$.

Proof Let x_0 be an arbitrary point in X and we define a sequence $\{x_n\}$ by $x_{n+1} = fx_n = f^{n+1}x_0$, for all $n \in N$, if there exists some $n_0 \in N$ such that $fx_{n_0-1} = fx_{n_0}$ then $fx_{n_0} = fx_{n_0}$. Thus x_{n_0} is a fixed point of f. Suppose that $fx_{n-1} \neq fx_n$ for all $n \in N$, we know that there exists $i_n \in 1, 2, \cdots, m$ such that $x_{n-1} \in A_{i_n}$ and $x_n \in A_{i_{n+1}}$ for any n > 0. Since $f: X \to X$ be cyclic weaker (ω, θ) -contraction, we get

$$d(x_{n}, x_{n+1}, a) = d(fx_{n-1}, fx_{n}, a) \le \omega(d(x_{n-1}, x_{n}, a)) - \theta(d(x_{n-1}, x_{n}, a))$$

$$\le \omega(d(x_{n-1}, x_{n}, a))$$

$$\le \omega(\omega(d(x_{n-1}, x_{n-2}, a))) = \omega^{2}(d(x_{n-1}, x_{n-2}, a))$$

$$\le \cdots$$

$$\le \omega^{n}(d(x_{n}, x_{n}, a)).$$

Since sequence $\{\omega^n \left(d\left(x_0,x_1,a\right)\right)\}$ is decreasing for all $n\in N$, and this sequence must converge to some $\rho\geq 0$. We get $\rho=0$ by the following assumption.

First we assume that $\rho > 0$, since ω is defined as a weaker Meir-Keeler function, there exists δ such that $\rho \le d(x_0, x_1, a) < \delta + \rho$ for $x_0, x_1 \in X$, there exists $n_0 \in N$ such that $\omega^n \left(d(x_0, x_1, a)\right) < \rho$, from

 $\lim_{n\to\infty}\omega^nd\left(x_0,x_1,a\right)=\rho\quad\text{, we know that there exists}\quad p_0\in N\quad\text{such that}\\ \rho<\omega^p\left(d\left(x_0,x_1,a\right)\right)<\rho+\delta\quad\text{, for all}\quad p\geq p_0\quad\text{. Thus we get a conclusion}\\ \omega^{p_0+n_0}\left(d\left(x_0,x_1,a\right)\right)<\rho\quad\text{, which is a contraction. Thus }\lim_{n\to\infty}\omega^nd\left(x_0,x_1,a\right)=0\,\text{,}\\ \text{and that is, }\lim d\left(x_n,x_{n+1},a\right)=0\,\text{.}$

Now we prove that $\{x_n\}$ is a Cauchy sequence.

Suppose to the contrary, that is, $\{x_n\}$ is not a Cauchy sequence. Then there exists $\varepsilon > 0$ for which we can find two sub sequences $\{n_i\}$ and $\{m_i\}$ such that $i < m_i < n_i$ and

$$d(x_{m_i}, x_{n_i}, a) \ge \varepsilon$$
 and $d(x_{m_i}, x_{n_{i-1}}, a) < \frac{\varepsilon}{s} < \varepsilon$ (3.12)

From the part 4 of Definition 3.6 and (3.6), we get

$$d(x_{m_{i}}, x_{n_{i}}, a) \leq s \left[d(x_{m_{i}}, x_{m_{i}+1}, a) + d(x_{m_{i}+1}, x_{n_{i}}, a) + d(x_{m_{i}}, x_{n_{i}}, x_{m_{i}+1})\right]$$

$$\leq s \left[d(x_{m_{i}}, x_{m_{i}+1}, a) + d(x_{m_{i}+1}, x_{n_{i}}, a)\right]$$

Taking $i \to \infty$, from (3.6) and (3.12) we have

$$\frac{\mathcal{E}}{s} \le \lim_{n \to \infty} d\left(x_{m_i+1}, x_{n_i}, a\right) \tag{3.13}$$

Now by using the condition that f is a cyclic weaker (ω, θ) -contraction, we get

$$\begin{split} d\left(x_{m_{i}+1}, x_{n_{i}}, a\right) &= d\left(x_{m_{i}}, x_{n_{i}-1}, a\right) \\ &\leq \omega \Big(d\left(x_{m_{i}}, x_{n_{i}-1}, a\right)\Big) - \theta \Big(d\left(x_{m_{i}}, x_{n_{i}-1}, a\right)\Big) \\ &\leq \omega \Big(d\left(x_{m_{i}}, x_{n_{i}-1}, a\right)\Big) \end{split}$$

Letting $i \to \infty$ and using the condition of ω , we get

$$\lim_{n \to \infty} d\left(x_{m_i+1}, x_{n_i}, a\right) < \frac{\varepsilon}{s} \tag{3.14}$$

From (3.13) and (3.14) $\frac{\mathcal{E}}{s} \leq \lim_{n \to \infty} d\left(x_{m_i+1}, x_{n_i}, a\right) < \frac{\mathcal{E}}{s}$, which is a contraction. Therefore $\{x_n\}$ is a Cauchy sequence in X.

Since X is a complete set, there exists a point $z \in \bigcup_{i=1}^m A_i$ such that $n \to \infty$, $\{x_n\} \to z$. For $X = \bigcup_{i=1}^m A_i$ is a cyclic representation of X respect to f, thus in each A_i for $i \in \{1, 2, \cdots, m\}$, the sequence $\{x_n\}$ has infinite term. A subsequence $\{x_{n_k}\}$ of $\{x_n\}$, we take this subsequence and it also all converge to z, for all $i = 1, 2, \cdots, m$. Since

$$d(x_{n_{k}+1}, fz, a) = d(fx_{n_{k}}, fz, a)$$

$$\leq \omega(d(x_{n_{k}}, z, a)) - \theta(d(x_{n_{k}}, z, a))$$

$$\leq \omega(d(x_{n_{k}}, z, a)),$$

From the above inequality, letting $k\to\infty$, we get d(z,fz,a)=0, so z=fz. Now we prove the fixed point is unique for f. Suppose there exists another fixed point y, since f gets the cyclic character, we have $z,y\in\bigcup_{i=1}^m A_i$. Since f is a cyclic weaker (ω,θ) -contraction, we get

$$d(z, y, a) = d(z, fy, a)$$

$$= \lim_{n \to \infty} d(x_{n_k+1}, fy, a) = \lim_{n \to \infty} d(fx_{n_k}, fy, a)$$

$$\leq \lim_{n \to \infty} \left[\omega(d(x_{n_k}, y, a)) - \theta(d(x_{n_k}, y, a)) \right]$$

$$\leq d(z, a, y) - \theta(d(y, z, a)),$$

then we get

 $\theta(d(y,z,a)) = 0$, that is y = z, we get the result of the uniqueness of point z.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- [1] Banach, S. (1992) Sur les opérations dans les ensembles abtraits et leur applications aux équations intégrales. *Fundamenta Mathematicae*, **3**, 133-181. https://doi.org/10.4064/fm-3-1-133-181
- [2] Meri, A. and Keeler, E. (1969) A Theorem on Contraction Mappings. *Journal of Mathematical Analysis and Applications*, 28, 326-329. https://doi.org/10.1016/0022-247X(69)90031-6
- [3] Chistyakov, W. (2010) Modular Metric Space, I: Basic Concepts. *Nonlinear Analysis*, **72**, 1-14. https://doi.org/10.1016/j.na.2009.04.057
- [4] Piao, Y.J. (2008) Unique Common Fixed Point for a Family of Self-Maps with Same Type Contractive Condition in 2-Metric Spaces. *Analysis in Theory and Applications*, **24**, 316-320. https://doi.org/10.1007/s10496-008-0316-9
- [5] Piao, Y.J. (2012) Unique Common Fixed Point Fir a Family of Mappings with ϕ -Contractive Type in 2-Metric Spaces. *Applied Mathematics*, **3**, 73-77. https://doi.org/10.4236/am.2012.31012
- [6] Piao, Y.J. and Jin, Y.F. (2012) New Unique Common Fixed Results for Four Mappings with φ-Contractive Type in 2-Metric Spaces. *Applied Mathematics*, 3, 734-737. https://doi.org/10.4236/am.2012.37108
- [7] Czerwik, S. (1993) Contraction Mappings in *b*-Metric Spaces. *Acta Mathematica et Informatica Universitatis Ostraviensis*, **1**, 5-11.
- [8] Czerwik, S. (1998) Nonlinear Set-Valued Contraction Mappings in *b*-Metric Spaces. *Atti del Seminario Matematico e Fisico dell' Universita di Modena*, **46**, 263-276.
- [9] Mustafa, Z., Parvaech, V., Roshan, J.R. and Kadelburg, A. (2014) b_2 -Metric Spaces and Some Fixed Point Theorems. *Fixed Point Theory and Applications*, 144. https://doi.org/10.1186/1687-1812-2014-144