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Abstract 
The current study was performed to evaluate the beneficial effect in the power 
output of microbial fuel cells (MFCs) through supplementation of dried red 
pepper (Capsicum annuum) powder into the anodic chamber. Mediator-less 
H-type MFCs were set up where the anode chamber contained rumen micro-
organisms as inocula on cellulose (Avicel) and the cathode chamber of phos-
phate buffered saline (pH 7.4), both separated by cation exchange membrane. 
Electrical power generation in MFC was monitored daily over a 10-day pe-
riod and the accumulated amounts and components of gaseous byproducts 
were measured at the end of 10 d operation of MFC. For both groups of MFCs 
with red pepper and the control, the head space gases collected were methane 
and CO2, and its volume and composition were similar between treatments. 
Methane and CO2 produced for 10 d operation were 210.7 and 106.5 mL, re-
spectively, in MFC. The addition of red pepper powder caused an average 
power density to increase from 24.0 mW/m2 to 39.6 mW/m2 (P < 0.0001). 
The greatest power density was 25.9 and 35.6 mW/m2 for control and bellflow-
er, respectively. This study provides the strong evidence that red pepper (Cap-
sicum annuum) supplementation might modify the anaerobic fermentation 
characteristics of rumen microorganisms in anode chamber and improve the 
cellulosic bioenergy production in MFC. 
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1. Introduction 

Fossil fuels such as petroleum, coal and natural gas are limited resources that 
will be eventually depleted and are not renewable in short term, however have 
served as the main energy resources for the past century [1] and represent around 
79.4% of the global primary energy use in 2001 [2]. Fossil fuel combustion and 
natural gas and petroleum systems generate tremendous amount of greenhouse 
gases such as CO2, methane (CH4) and nitrous oxide (N2O) to atmosphere [3] 
and represent 94% to 96% of total greenhouse emission in the USA [4]. Green-
house gases absorb infrared radiation and consequently result in global warm-
ing. Demands on technologies generating clean and sustainable energy sources 
that would replace or displace fossil fuels are increasing for these energy and en-
vironmental concerns [5].  

Cellulosic biomass is particularly attractive renewable resources for clean and 
sustainable energy production because of its low cost, abundance [6] [7] and 
neutral carbon balance [8]. Cellulose is a significant component in the annual 
production of 1.3 billion dry tons of biomass feedstock, 250 million tons of mu-
nicipal solid wastes and 40 billion cubic meters waste water [9]. Cellulosic bio-
mass can be used in the production of bioethanol [10] biodiesel [11] and hydro-
gen and electricity [8].  

The direct conversion of biomass to electric energy through microbial fuel 
cells (MFCs) system or to biohydrogen through microbial electrolysis cells (MECs) 
system is the potential clean and sustainable energy production representing 
alternative methods of renewable energy recovery [12]. MFCs and MECs are 
bioelectrochemical reactors that convert wide range of renewable biomass and 
wastewaters using electrochemically active microorganisms as biocatalysts di-
rectly into electricity [12] or biohydrogen [13] that are endowed with tremend-
ous electron donor versatility including glucose, acetate, and lactate [14] [15] 
[16]; municipal and industrial wastewaters [17] [18] and cellulose [1] [19] [20] 
[21] [22]. Electrochemically active microorganisms in MFCs or MECs transfer 
electrons to anode and initiate electric current, however none of them showed 
cellulolytic activity to directly generate electrons but require products of cellu-
lose hydrolysis as electron donors [14] [23]. With the lack of an isolated micro-
organism providing both cellulose lysis and solid extracellular electron acceptor 
reduction, mixed microorganisms have been tested as biocatalysts for use in 
MFCs including mixed cultures from sea floor sediments [24], municipal and 
industrial wastewater or anaerobic digester [25] soil [1], [26] and rumen micro-
biota [22].  

The rumen microbiota contains both strict and facultative anaerobes, which 
effectively hydrolyze cellulose, and conserve energy via anaerobic respiration or 
fermentation [27] and have been used for enhancing anodic efficiency [22]. How-
ever reduction in power production due to loss of substrate to methanogens makes 
methanogenesis a serious performance limitation in MFCs. Red peppers (Capsi-
cum annuum) contain capsaicin (8-methyl-N-vanillyl-6-nonenamide; C18H27NO3) 
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which is a carotenoid [28] and have antioxidant activity [29]. Capsaicin addition 
has modified microbial fermentation characteristics. Dose of capsaicin decreased 
intestinal gas production in patients with irritable bowel syndrome [30]. When 
capsicum oil containing capsaicin was added into rumen microbial fermenta-
tion, the ammonia nitrogen concentration was reduced, total VFA production 
and the propionate proportion were increased, and the acetate proportion and 
acetate-to-propionate ratio was reduced at higher acidity (pH 5.5), while the total 
VFA and ammonia N concentrations were reduced and the acetate-to-propionate 
ratio was increased at lower acidity (pH 7.0) [31]. 

Therefore, we hypothesized that addition of red pepper (Capsicum annuum) 
powder which has antioxidant activity and contains capsaicin into anode of MFCs 
would decrease methanogenesis and increase power generation. In the current 
study, we established MFCs using rumen mixed microorganisms as biocatalysts 
to generate electricity from cellulose and investigate the effects of red pepper 
powder on anolyte gas production and power production. 

2. Materials and Methods 

1) Microorganisms and culture media: The rumen fluid collected from dry 
dairy cow was filtered through 4 layers of cheese cloth and glass wool to remove 
feed debris while flushing CO2 gas through heated copper column, and maintained 
anaerobically by flushing and bubbling with CO2 gas through heated copper 
column until transferred to MFCs.  

A medium containing KH2PO4, 0.48 g; K2HPO4, 0.48 g; (NH4)2SO4, 0.48 g; 
NaCl, 0.96 g; Trypticase, 5.0 g; yeast extract, 1.0 g; isobutyric acid, isovaleric ac-
id, and DL-2methylbutyric acid, 0.1 ml of each; cysteine hydrochloride, 0.5 g; 
CaCl2·2H2O, 0.13 g; MgSO4·7H2O, 0.2 g; Na2CO3, 4.0 g; sodium fumarate, 1.0 g, 
and resazurin, 1.0 mg per 1L of volume with distilled deionized (dd) H2O was 
prepared anaerobically [32] and autoclaved at 121˚C for 30 min and stored at 
room temperature until transferred to MFCs.  

Phosphate buffered saline (PBS) was prepared by dissolving NaCl, 8 g; KCl, 
0.2 g; Na2HPO4, 1.44 g; and KH2PO4, 0.24 g in 800 ml dd H2O and adjusting pH 
to 7.4 and volume to 1 L with dd H2O. PBS was autoclaved at 121˚C for 30 min 
and stored at room temperature until transferred to MFCs. 

2) Microbial Fuel Cells: Microbial fuel cell was constructed using two 125 
mL-volume glass bottles clamped at branched tubular bridge and separated with 
a cation exchange membrane (CMI-7000S, Membranes International Inc., NJ). 
Two gram of cellulose (Avicel PH-101, Sigma-Aldrich, MO), 80 mL of anaerobic 
medium and 20 mL of stained rumen fluid were transferred to the anode cham-
ber and suspended by agitation. Graphite flat stick (12 cm2) connected with copper 
wire was placed in the middle of anode chamber and the butyl rubber stopper 
was placed to prevent air contamination. 100 mL PBS was transferred to the ca-
thode chamber and a graphite flat stick (12 cm2) connected with copper wire was 
placed in the middle. The cathode chamber was capped with butyl rubber stop-
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per but was made open to air through a tubing on the stopper. Anode and ca-
thode were connected externally through a copper wire and a load resistor (300 
ohm). MFCs were operated in a water bath at 39˚C for 9 d prior to treatment 
inoculation  

After 9 d of MFC pretrial operation and before the treatments were added, 
current density of MFCs was 210.3 ± 4.23 mA/m2. MFCs for treatment group 
received 0.1 g dried red pepper powder (CJ CheilJedang, Seoul, Korea) in anode 
chambers at d 0. All anode chamber stoppers were open to the atmosphere in 
order to equalize pressure and remove headspace gas, then 2 L-volume Mylar 
balloons were connected to each anode chamber to collect gases produced. 

3) Measurements and calculation: During the experimental period, voltage 
across external resistor, end point potential and current were measured daily 
using a digital multimeter. The power density (P) was calculated using an equa-
tion: P = I × V/A, where I = current, V = voltage, R = external resistance (Ohm), 
and A (m2) = the projected area of the anode.  

In the end of operation at d 10, the volumes of gas produced from anode 
chamber in Mylar balloons were measured using a 250 mL-glass syringe. Me-
thane and CO2 compositions were analyzed using an Agilent 6890 series gas 
chromatograph equipped with a thermal conductivity detector and a stainless 
steel packed column containing 60/80 Carboxen 1000 (12390-U Supelco, Sig-
ma-Aldrich, MO). 

4) Statistical analyses: Red pepper effects on electricity generation, gas pro-
duction and gas composition were analyzed using the one-way ANOVA proce-
dure of JPM 14.1.0 (SAS Institute Inc., NC). Significance was declared at P < 
0.05. 

3. Results and Discussion 
3.1. Electricity Generation 

During the 9 d pretrial period MFCs established with 20 mL of stained rumen 
fluid, 80 mL of anaerobic medium and 2% w/v cellulose (Avicel®) were stabi-
lized, and voltage across resistor 109 and 107 mV (P = 0.8762) and open circuit 
voltage (end point potential) were 417 and 419 mV (P = 0.9789) for control and 
pepper group MFCs, respectively, prior to treatment addition. Voltages across 
resistor and end point potential (Table 1) in control MFCs were steady and av-
erages were 111 ± 6.4 and 405 ± 35.6 mV, respectively, during 10d operation. In 
MFCs received red pepper powder, voltages across resistor were higher (P < 
0.05) for d 3 through d 9 than for d 0 to d 2, and end point potentials were also 
higher (P < 0.05) for d 3 though d 10 except d 5 than for d 0 and d 2. Red pepper 
group yielded greater (P < 0.05) voltage across resistor and end point potential 
than control group on d 5, 6 and 9, and on d 1, 4, 7 and 10, respectively. 

Power density (power normalized to the electrode surface area) is a critical 
parameter determining the MFCs bioelectrochemical performances [33]. Power 
density in control group was steady with operation time (P = 0.9399) at between  
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Table 1. Closed circuit voltage across 300 ohms resistor and terminal voltage measured 
from microbial fuel cells established with strained rumen fluid and 2 g of cellulose with or 
without red pepper (Capsicum annuum: PEP) addition. 

Day 
Voltage across resistor (300 ohms), mV Open circuit voltage, mV 

Control PEP SEM1 P2 Control PEP SEM1 P2 

0 108.5 107.0b 0.0060 0.8762 417.0 418.5de 0.0355 0.9789 

1 111.0 108.5b 0.0028 0.5876 402.5 458.5cde 0.0040 0.0102 

2 110.0 107.5b 0.0057 0.7846 351.0 406.0e 0.0099 0.0594 

3 110.5 133.0a 0.0057 0.1083 406.0 538.0ab 0.0326 0.1037 

4 109.0 133.5a 0.0049 0.0718 409.5 511.0abc 0.0102 0.0196 

5 115.0 128.5a 0.0008 0.0068 406.5 475.5bcd 0.0233 0.1714 

6 104.5 134.5a 0.0034 0.0241 427.5 501.5abc 0.0293 0.2156 

7 110.0 135.5a 0.0048 0.0631 409.5 518.0abc 0.0120 0.0237 

8 114.0 126.5a 0.0048 0.2042 393.5 515.0abc 0.0290 0.0975 

9 115.5 128.5a 0.0018 0.0364 411.5 497.5abc 0.0143 0.0513 

10 115.5 123.0ab 0.0028 0.1948 421.5 543.5a 0.0112 0.0165 

SEM1 5.41 2.98   28.90 11.01   

P3 0.9373 <0.0001   0.8668 <0.0001   

abcdeMeans within a treatment with different superscripts differ, P < 0.05. 1Standard error of means. 2P-value: 
probabilities that treatments effect is not significant within the day. 3P-value: probabilities that day effect is 
not significant within the treatment. 

 
21.2 and 25.9 mW/m2 (Figure 1), however in red pepper group it changed (P < 
0.0001) with operation time. Power density increased after d 3 and was main-
tained until d 9 in red pepper group. Power density in red pepper group was 
greater (P < 0.05) than in control group at d 5, 6 and 9. Power density during 
10d operation was also greater (P = 0.0009) in red pepper group with average of 
30.1 mW/m2 than in control group (24.0 mW/m2). In a similar experiment per-
formed with sole rumen fluid as anolyte [22] the highest and stable power den-
sity were 55 and 26.7 mW/m2, respectively, however in their setup, aerobic po-
tassium ferricyanide solution (50 mM K3Fe(CN)6) had been employed as the ca-
tholyte to enhance oxygen reduction while the current MFCs were constructed 
using PBS which is nontoxic and environmentally friendly as catholyte. Further-
more, the performance in the current study could be restricted by the intrinsic 
large internal resistance of H-type fuel cells with long distance between the anode 
and cathode and small surface area of the cation exchange membrane [12]. Thus, 
the performance of the current MFCs will not stand a direct comparison to the 
previous report, but the stable power density of 24.0 mW/m2 in control group is 
close to the previously reported value in the MFC system established with the 
similar anolyte.  

3.2. Gas Production and Composition 

Total gas production, 319 mL vs. 316 mL for control and red pepper group, re-
spectively, were similar (P = 0.8223) in anode chamber for 10 d operation of  
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Figure 1. Power densities over 10 day operation of MFCs. Anode chambers were estab-
lished for 9d with strained rumen fluid and 2g of cellulose (Avicel®), then 100 mg of red 
pepper (Capsicum annuum) was added to anode chamber of treatment group. After 
treatment was added, microbial fuel cells were incubated at 39˚C. And power generation 
over 300 ohm resistor was measured every 24 hrs. Power densities are presented as least 
square means (n = 2) with standard error of mean for control (   ) and red pepper 
treatment (   ). abcMeans within red pepper treatment with different superscripts differ 
(P < 0.05). *Means between control and red pepper treatment differ (P < 0.05). 
 
MFCs (Figure 2). Methane (P = 0.8960) and CO2 (P = 0.6862) productions were 
also not different between control and treatment group, and volumes were 211 
and 107 mL in control group, respectively, and 210 and 106 mL in red pepper 
group, respectively.  

Once sole proton donor substrates, cellulose, were degraded by cellulolytic 
microorganisms in the anolyte, the ideal glucose decomposition in MFCs is into 
CO2, proton and electron in anode chamber under anaerobic condition  
( 6 12 6 2 2C H O 6H O 6CO 24H 24e+ −+ → + + ) [34] by symbiotic microorganisms. 
The electrons and the protons move to cathode via the external electrical circuit 
and the cation exchange membrane, respectively, then reduce oxygen and pro-
duce water ( 2 224H 24e 6O 12H O+ −+ + → ). Overall scheme in whole MFC in 
this case is 6 12 6 2 2 2C H O 6O 6CO 6H O+ → +  + Electrical energy [34]. Cellulose 
fermentation products by rumen fluid like the anolyte in the current MFCs are 
mainly volatile fatty acids including acetate, propionate, and butyrate [35] and 
these products are readily metabolized and converted to electric energy by elec-
trochemically active microbial community on electrode [36]. However, in the 
most of MFCs, both acetoclastic methanogenesis ( 3 4 2CH COO H CH CO− ++ → + )  
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Figure 2. Components and total volume of gases produced in the anode chamber of mi-
crobial fuel cells for 10 d operation. Anode chambers were established for 9 d with strained 
rumen fluid and 2 g of cellulose (Avicel®), then 100mg of red pepper (Capsicum annuum) 
was added to anode chamber of treatment group. After treatment was added, microbial 
fuel cells were incubated at 39˚C and gases produced in anode chamber were collected in 
externally connected Mylar balloons for 10 d. Methane, CO2 and total gas are presented as 
least square means (n = 2) with standard deviation. 
 
and hydrogenotrophic methanogenesis ( 2 2 4 24H CO CH 2H O+ → + ) occurred 
and reduced the energy production. Both methanogeneses require exogenous 
energy consumption [37] and reduce the flow of proton and electron to cathode, 
therefore methane production is regarded as an inefficient process which de-
tracts from electricity generation.  

In the current study, similar quantity and overall pathway of cellulose fer-
mentation in all group can be deduced from the production of total gas, methane 
and CO2, which were not different between control and red pepper MFCs. There-
fore, the increase in power generation by red pepper addition in the current 
study may result from changes in intermediate products which were observed in 
previous capsaicin studies in rumen fluid fermentation [31] and/or the possible 
favorable environment for electrochemically active microorganisms which can 
be caused by antioxidant activity of red peppers [29]. 

4. Conclusion 

Cellulosic biomass is the most desirable resource for clean and renewable biofuel 
production because of its abundance and carbon neutral characteristics. In the 
current study, rumen fluid was used as anolyte in MFCs to generate electricity 
from cellulose and stable power generation was similar to the previous re-
searches employed rumen. Red pepper powder addition at 0.1% w/v into anolyte 
increased power generation but did not change gas production or its composi-
tion. The amount of cellulolysis, which was deduced from gas production, and 
overall fermentation pathway, which was reflected from gas composition, were 
not affected by red pepper addition in MFCs. These results imply that added red 
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pepper powder may change the intermediate cellulose fermentation products 
and/or provide antioxidant activity favorable to electrochemically active micro-
organisms which transfer electrons to electrode, and increase power generation 
in MFCs. Further researches are required to investigate the mode and mechan-
ism of red pepper effects on symbiosis and electrode reduction in anode or 
MFCs. 
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