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Abstract 
In this paper, I study the invariant subspaces of quantum states under SWAPα 
gates arising from the exchange interaction and their use in quantum compu-
tation. I investigate the generation and characterization of invariant-subspace 
vector-states that arise from such gates. I also state a condition for the locus 
of states that are accessible using the SWAPα gates, given an initial input 
state. 
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1. Introduction 

The non-local physical phenomena related to quantum entanglement [1] [2] [3] 
have played a pivotal role in the development of quantum mechanics during the 
last century. Entanglement in many-particle states has been extensively studied 
[4] [5] [6], and such states are known to have symmetries that help in determin-
ing their entanglement properties [7] [8]. This is useful in determining the usa-
bility of these quantum states as resource-states for application in quantum in-
formation processing tasks [9]-[14]. Prior to using these resource-states, the 
generation of these quantum states is important, and this is an arduous task that 
requires a high degree of control. Quantum state engineering has been a way to 
generate arbitrary quantum states experimentally [15]-[19]. The existence of en-
tanglement equivalence classes [20] of quantum states, particularly symmetric 
states, simplifies the experimental generation of these states. By producing a sin-
gle state of an equivalence class, the entire subspace of states in that class can be 
accessed using a reduced set of operations. As a result of this, the characteriza-
tion of symmetries in quantum states goes conjointly with the study of re-
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source-states for quantum information applications, for example, quantum op-
eration sharing [21]and super-dense coding [22] [23]. 

A form of symmetry that has been of significant interest to the world of 
quantum information is that of symmetry under permutations [24] [25] [26] 
[27] [28]. An early example of a success of the systematic mathematical study of 
permutation-symmetric states was the discovery of noiseless subspaces [25], in 
which quantum states can evolve without the introduction of bit-flip errors. This 
follows from the inherent parity constraints on permutation symmetric states. 
Permutation symmetric states (e.g. Dicke states) can occur as ground states in 
certain physical systems, some of which have been recently implemented expe-
rimentally [29] [30] [31]. A (partial) permutation on two qubits can be carried 
out by a (partial) SWAP gate [32]. Moreover, the SWAPα gate, together with sin-
gle-qubit operations, is found to produce a universal set of quantum gates 
(enabling any quantum computation) [33]. These two-qubit gates can be realised 
in several physical systems. In electronic systems, the exchange interaction pro-
vides a natural framework for the implementation of the SWAPα gate [34] [35], 
but equivalent implementations also exist for atomic systems [36] [37], nitrogen 
vacancies [38] and photonic systems [39] [40] [41] [42]. 

Burkard et al. [43] showed how the SWAP  gate can be used to create a 
controlled phase-flip gate (CPHASE), which in turn can be used to create a XOR 
gate. Barenco et al. [44] showed that any unitary two-qubit gate can be simulated 
by four one-bit gates and two XOR gates, thereby effectively leading to universal 
quantum computation using only the SWAP  and single qubit rotation gates}. 
Since local single-qubit operations are difficult to implement in hardware, Di-
vincenzo et al. subsequently looked at how universal quantum computation can 
be achieved by using only SWAPα gates if one encodes pseudo-spin qubits us-
ing three physical qubits [33]. This naturally leads to the question of whether 
universal quantum computation could be implemented purely using SWAPα 
with a specific value of α. It was shown by Tanamoto et al. [45] that upon  

preparing the initial state as ( )( )1 0 1 0 1
2

± = + −  and applying the  

SWAP  one can obtain Raussendorf’s cluster state [46] but only after two sin-
gle-qubit rotations. 

In this paper, I am interested in the general question of what kinds of states 
are accessible from an arbitrary quantum state, which is easier to produce in 
physical systems than entangled states, using the SWAPα operators and what are 
their applications? Our approach to this is to determine the invariant subspaces 
of the permutation group nS  when applied to the Hilbert space of n-qubits. 
These subspaces comprise vectors that map back onto a linear superposition of 
the same vectors under the action of SWAPα operators. In Section II, we look 
more closely at the invariant subspaces for the combinations of SWAPα gates 
and look at the kinds of invariant subspaces that can arise for quantum states 
with different numbers of 0  and 1  in them. In Section III, we highlight the 
numerical complexity of the problem and look closely at the analytical method 
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to generate vector states for our quantum system. In Section IV, we look at the 
idea of symmetry under parity of this system and discuss an efficient algorithm 
for generating n-qubit vector states for SWAPα gates. In Section V, we look at 
the problem of accessibility of quantum states using Power-of-SWAP gates and 
devise conditions for the output states, given aninput state and combination of 
SWAPα gates. 

2. SWAPα and Invariant Subspaces 

Quantum logic gates are essential building blocks of a quantum computer. The 
SWAPα quantum gate with 0 1α< ≤  is one of the most efficient quantum gates 
in two-qubit quantum computation, with three SWAPα gates combined with six 
single-qubit gates being able to realize any arbitrary two-qubit unitary operation 
[47] [48] [49]. The SWAPα gate can be experimentally implemented in several 
physical systems such as in the exchange interaction between electrons trapped 
by surface acoustic waves [34] [50]. In our paper, we look at the use of only 
SWAPα operators for generation of quantum states and our analysis applies to 
any n-qubit quantum state that can undergo SWAPα operations, where α is any 
real number.  

We find that a combination of all SWAPα gates between a finite number of 
qubits comprise a group that is isomorphic to the Symmetric Group 𝑆𝑆𝑛𝑛 , which is 
the group of all permutations or self-bijections of a set of 𝑛𝑛elements with the 
operation of composition, and that only certain points in the Hilbert Space are 
accessible using the SWAPα gates, given a particular input state. To find the 
kinds of states that are accessible under the repeated action of a SWAPα opera-
tor, we need to study the invariant subspaces1 associated with this combination 
of SWAPα operators. We find the structure of the invariant subspaces of the 
combination of SWAPα gates to be the same for all α.  

The invariant subspaces of a vector space under the action of a group emerge 
from the irreducible representations of the group. For any group, the number of 
irreducible representations is equal to the number of conjugacy classes2. It is 
seen that for the Symmetric Group nS , the way in which we can permute n 
elements without changing the structure of the superposition of vector states 
characterize the specific conjugacy class, and by extension the invariant subspace 
of the group, associated with those vector states. In other words, the invariant 
subspaces of the Symmetric Group nS  comprise of vector states, whose linear 
superposition remains invariant under the action of permutation of elements 
within the partition that corresponds to the invariant subspace. For instance, in 
the case of permutation symmetries of four elements, we have conjugacy classes 
of the Symmetric Group 4S  such as [4] (cyclic permutation of all four ele-

 

 

1A subspace W of a vector space V is invariant, with respect to a group G, if ( )g W Wρ ⊂  for every 

g G∈ , where ρ  is a representation of the group G of the group nS . 
2A Conjugacy Class is an equivalence class that, for every element a in a group G, contains b G∈  
such that there exists g G∈  with 1b gag −= . 

https://doi.org/10.4236/jamp.2019.712219


M. G. Majumdar 
 

 

DOI: 10.4236/jamp.2019.712219 3119 Journal of Applied Mathematics and Physics 
 

ments), [31] (transposing three, leaving one alone) and [1111] (no change)3. A 
point to note here is that there could be several cases for each cycle pattern. For 
instance, for four qubits 1-2-3-4, (12) (34) and (13) (24) are specific [22] cycles 
that correspond to a 12 34T T -invariant and 13 24T T -invariant subspaces respec-
tively, where ijT  correspond to transposition of the ith and jth qubit. 

All the vector states that are associated with any specific invariant subspace 
corresponding to the Symmetric Group nS  are found to have the same Ham-
ming weight in their qubit representation. We find that the number of basis 
vectors comprising a specific invariant subspace and the forms of these vector 
states are related to the kind of permutation permissible within the partition 
corresponding to the invariant subspace. For n-qubit states, those vector states 
that span the entire subspace of states with a particular Hamming weight in as 
close to an equiprobabilistic manner (over the basis vectors) as possible are 
found to be closer to being invariant under all possible permutations of the n 
qubits, and are found to be part of one-dimensional invariant subspaces (with 
only one constituent vector state). For instance, the three-qubit quantum state 
that is invariant under all permutation under 3S  of its qubits is  

( )1 001 010 100
3

ψ = + +  and this is the only vector comprising the  

invariant subspace corresponding to the trivial irreducible representation for 
three-qubit states with Hamming weight 1 in their qubit representation. 

The number of 0  and 1  qubits in multiqubit states, represented by their 
Hamming weight, is found to uniquely define the kinds of invariant subspaces, 
with their associated permutation symmetries and corresponding partitions, of 
the SWAPα gates we can create with those states.  

Let us consider a quantum state of the form 

( )


PERM
00 011 1

k
i

i n k i

ψ α
−

= ∑






                    (1) 

where i is an index related to each permutation of the qubits and the summation 
is over i, all the permutations of the qubits. We find that only certain permuta-
tions (and ways of partitioning) are applicable and important for a given set of 
vector-states that have a specific value of k. The change in an arbitrary superpo-
sition of the vector states resulting from these specific permutation operations 
can be used to express the change in the superposition of these vector states un-
der any other permutation operation. In this respect, for n-qubit states with even  

n and 
2
nk ≤ , we find that the relevant partitions (and corresponding permuta-

tion symmetries) are ( ) ( ){ } [ ] [ ] [ ]{ }, 1,1 , , ,k
iC n n n k k= = − − k , where the i is  

the index of the partitions for a fixed value of $k$. This is because the symme-
tries under permutations ( ) ( )1 , 1 , , 11 timesn k k n− + +         are encapsu-

 

 

3Here, we use the notation [ ]1 2, ,t t   to represent a transposition where 1t  qubits are rotated by 

one among themselves, 2t  qubits by one among themselves, and so on.  
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lated in the existing set iC . An example of this is shown in Figure 1 for 2k = , 
where the permutation within the partition [ ]3,3n −  is shown to be equivalent 
to permutation within the partition [ ]n . For n qubits states with even n and 

2
nk > , the relevant partitions are ( ) [ ] [ ] ( ){ }, 1,1 , , ,k

iC n n n n k n k= − − − −  
. If 

we consider all possible values of k for a fixed value of n, the total number of sets 
of vector-states that correspond to the partition [ ]n  is ( )1n + . Similarly, we 
have ( )1n −  sets of basis-vectors for the partition [ ]1,1n − , ( )3n −  for the  

partition [ ]2,2n −  and so on till we have 1 set for the partition ,
2 2
n n 
  

, with 

there being 1
2
n
+  kinds of subspaces that are relevant. As a result,  

( ) ( )( ) ( )2even 1 11 1 1 2
2 2 4

n
inv

nN n n = + + + = + 
 

. For odd n, we have conjugacy classes 

( ) [ ] [ ] [ ]{ }, 1,1 , , ,k
iC n n n k k= − −  for 1

2
nk −

≤  and  

( ) [ ] [ ] ( ){ }, 1,1 , , ,k
iC n n n n k n k= − − − −  

 for 1
2

nk +
≥ . We have ( )1n +  

basis vector-sets associated with the invariant subspace [ ]n , ( )1n −  for 

[ ]1,1n − , ( )3n −  for [ ]2,2n −  and so on till 2 sets for 
1 1,

2 2
n n+ − 
  

, with 

there being 1 1
2

n −
+  kinds of partitions that need be independently described 

and are relevant. As a result, 

( ) ( )( ) ( )( )odd 1 1 11 1 2 1 3
2 2 4

n
inv

nN n n n− = + + + = + + 
 

. Thus, we find that the 

number of invariant subspaces, invN , for an n-qubit system, operated upon by 
the SWAPα, is given by: 
 

 
Figure 1. Permutations for 6, 2n k= =  state: In this case, we have four qubits of one 
kind (say 1 ) and 2 qubits of the other kind (say 0 ). (a) the 0  qubits have two 1  

qubits in between; rotating the first three qubits among themselves, while rotating the 
next three qubits among themselves, is equivalent to rotating all the qubits (to the right) 
once; (b) the 0  qubits have one 1  qubit in between, as shown; then carrying out the 

same operation: rotating the first three qubits among themselves, while rotating the next 
three qubits among themselves, is equivalent to rotating by a [5, 1] transposition followed 
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by two instances of the complete rotation [6]. 

( )

( )( )

21 2 , if is even
4 , 1
1 1 3 , if is odd
4

inv

n n
N n

n n n

 += >
 + +


.             (2) 

Invariant subspaces of the Symmetric Group nS  and reducibility of repre-
sentations are closely linked [51]. If a representation ρ  of the group G has no 
non-trivial invariant subspace, we say that it is irreducible. Defining  

{ } { } { }( )SWAP ,i jU q q  as the SWAP operation between the ith and jth qubits in an 

n-qubit state { } { } { }1 2 i j nq q q q q  
, we find that the matrix representation 

{ } { } { }( )SWAP ,i jU q q  can be transformed into a block form D, comprising of  

irreducible representations of the Symmetric Group nS  associated with each 
invariant subspace, with a similarity (equivalence) transformation S. If one has r 
distinct SWAP operations between qubits applied consecutively, then the resul-
tant operation can be block-diagonalized as follows: 

( )( ) ( )1 1 1 2 1
1 2 SWAP SWAP SWAP

r
rD D D D S U S S U S S U S− − −= =        (3) 

where SWAP
iU  represent the ith distinct SWAP operation.  

This similarity transformation is found to be useful in block-diagonalizing the 
basic SWAPα-gates representations as well, since by definition, 

( )SWAP 2 2SWAP

1 e 1 e
2 2

i i

U U Iα

α απ π

×

− +
= +                (4) 

where ( )2 2I ×  is a 2 2×  identity matrix. As a result, the similarity transforma-
tion S that transforms the composite SWAP operator to a block-diagonal form: 

1
SWAPD S U S−= , will also transform the 

SWAP
U α  in the same block form, up to  

certain additive terms: ( )
1

1 2 2SWAP

1 e 1 e
2 2

i i

S U S D I Dα

α απ π
−

×

− + ′= + ≡ . Due to the  

relation established in (2), the similarity transformation and associated invariant 
subspace associated with 

SWAP
U α  must be of the same structural form as those 

for the SWAPU  gate. This is also true for a combination of 
SWAP

U α  gates: 

( ) ( )( ) ( )1 1
SWAP SWAP

 
nn n nS U S S U Sα α

⊗−⊗ ⊗ ⊗ −= . 
The matrix decomposition thus formed is block diagonal, as shown in the il-

lustrative example in Figure 2 for the case of two matrices. Thus, we find that 
the various combinations of n copies of SWAPα gates, operating over a mul-
ti-qubit input state, produce a group that is isomorphic to the symmetric group 

nS . In fact, any function of SWAPα gates can be put into the block form using  
the same similarity transformation: ( ) ( )1 1

2 2SWAP
0S f U S f S I Sα

− −
×= +

 

( ) ( )1 1 1
SWAP SWAP

10 0
2! SWAP

f S U S f S U SS U Sα α α
− − −′ ′′+ + , using Taylor series  

expansion of the function of 
SWAP

U α , and pre- and post-multiplying with S and 
1S −  respectively. As a result, the determination of the similarity transformation 

for SWAP alone gives us a useful tool for finding the invariant subspaces and 
associated vectors for any arbitrary combination or function of partial SWAP 
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gates. 

 
Figure 2. Illustrative example of tensor Product of two block diagonal matrices with one 
3 × 3 block, two 2 × 2 blocks and one single block. For the case of block-diagonal matrices 
D, the combination of such matrices leads to a resultant block-diagonal matrix, thereby 
showing that various combinations of n copies of SWAPα gates, operating over a mul-
ti-qubit input state, produce a group that is isomorphic to the symmetric group nS . 

3. Generation of Vector States 

Due to the non-commutativity of adjacent SWAPα gates with at least one com-
mon qubit, the number of output states generated for a given input state and 
gate-combination is a lot more than in the case of commutative gates. For an 
l-qubit separable input state and k gates used, we have the following number of 
cases and associated accessible output states: 

2l k l
accN l= × .                          (5) 

As can be seen, the problem grows exponentially with the number of qubits in 
the input (separable) states. The number of gates also scales this value exponen-
tially. Certain cases are degenerate but the problem, all in all, grows exponen-
tially with the number of qubits in the input state and the number of gates being 
operated with on the input state. As a result, this is a problem that cannot be 
treated efficiently using numerical methods, as the number of qubits involved 
increase. To resolve this problem, we look at analytic methods, using techniques 
for the representation theory for the symmetric group nS . 

The system we are considering is an arbitrary n-qubit state and we are oper-
ating combinations of SWAPα operations on such an input state. The action of  

the is: 00 00→ , 
{ } { }1 e 1 e01 01 10

2 2

i iα απ π+ −
→ + ,  

{ } { }1 e 1 e10 10 01
2 2

i iα απ π+ −
→ + , 11 11→ . The relevance of the SWAP or  

partial SWAP arises from the fact that any permutation of elements can be ex-
pressed as a combination of transpositions [52], which on the physical level can 
be realized using SWAP operations. The matrix representation for these SWAP 
operations can be found efficiently using a standard sorting algorithm operated 
on a 2 2n n×  identity matrix and permuting the relevant rows of the matrix de-
pending on which qubits are being swapped by the particular SWAP operation. 
This is efficient since instead of finding all the !n  permutation matrices using a 
scheme such as that based on Cayley trees, one can simply use 2n n−  transpo-
sitions to generate the group. Any arbitrary element of the group can then be 
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found using a combination of these transpositions. 
The next significant step in the process of generating the vector states is to 

look at the irreducible representations { }, 1, 2, , !iD i N=   of the group. The 
first step in this regard is to find the dimensions of the irreps using the Young’s 
Tableau [53]. For any n qubit system, we can find the dimensionality of the irrep 
using the hook lengths of the elements in it [54] [55] and the hook product [56] 
h of the tableau. The dimension d of the irrep is then given by 

!nd
h

= .                           (6) 

Once we have found the dimensions of the irreps, the next step is to find the 
forms of the irreps. We find the Young’s orthogonal form for the irreps using 
the equation [57] 

[ ] ( )( ){ }[ ]

( )( ){ } [ ] [ ]
1

1 1 1

1
1

, 1

ˆ ˆ  ; 1,

n

n k k n

M M

n M M M M M M

D k k e

M M k k e Ae

µµ

µ µρ
+

−

+

= + +



  



,         (7) 

where ( )( ) 2
1    1 ; 1,nA M M k kρ

−
= − +

 and where we use the orthonormal ba-

sis { }ˆ ieµ  where [ ] [ ] [ ]( )ˆ ˆ1, 2,3, , : ,i j iji f e eµ µµ δ= = . The index i of the basis-vector 

is related to the Yamanouchi symbol M for the tableau [53]. 
Using this formula, we can look at the irreducible representations for all ele-

ments of the group. A point to note here is that not all irreducible representa-
tions may be required to describe a physical system. A good way to see which ir-
reducible representations are relevant, we must construct a Character Table. We 
do so by considering the trace (character) values of the irreps for a given conju-
gacy class and kind of irrep (as defined by its dimensionality). The columns of 
the Character Table are for elements of the same conjugacy class while the rows 
of the Table are for elements of the same irrep. Once we have constructed the 
entire Character Table, we assign a variable (say iα  for the ith irrep) to each ir-
reducible representation, and multiply these with the character of the irrep (say 

ia  for the ith irrep) for each conjugacy class, before adding them up. We equate 
this sum to the trace (character) of the permutation matrix for each conjugacy 
class ξ  that we found previously: 

i ii aξ α= ∑ .                           (8) 

This leads to a system of linear equations, whose solutions determine uniquely 
the kinds of irreps that are relevant along with the number of irreps of each kind 
that constitute the block-diagonalized form of the permutation matrices. The 
permutation matrices { }, 1, 2, , !iP i N=   can be simultaneously diagonalized to 
irreps { }, 1, 2, , !iD i N=   with the same block form using a similarity trans-
formation. These two sets of matrices are related by the relation: 

{ }1 , 1, 2,3, , !i iD S PS i N−= =                    (9) 

Solving this set of linear equations algebraically, gives us a similarity trans-
formation S. However, this solution is not unique and there may be several un-
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resolved elements within the matrix representation of the similarity transforma-
tion S. For our system, we resolve this problem using the imposition of a condi-
tion of unitarity on this matrix.  

Let us say we had a permutation operator P operating on an initial state ψ  
to give a final output state ψ ′ : 

Pψ ψ′ = .                           (10) 

Then operating with the similarity transformation 1S − , gives us: 

( )1 1 1 1 1S S P S PS S DSψ ψ ψ ψ− − − − −′ = = = .           (11) 

Therefore, the eigenvectors of the block-diagonalized matrices are of the form: 
1Sφ ψ−= .                          (12) 

Usually ψ  is taken to be the basis comprising of all 2n  separable n-qubit 
states, and the vector φ  is regarded as the invariant subspace vectors, since 
the block-diagonalized forms have blocks corresponding to the invariant sub-
spaces of the system. So, if one was to begin with any linear combination of n- 
qubit vectors that are spanned by the constituent-vectors of an invariant sub-
space, the state that emerges out of the application of an arbitrary combination 
of SWAPα gates is always a linear combination of those constituent-vectors of 
the invariant subspace as well. We find that for n-qubits, we have the following 
number of such vectors 

{ }

( ) [ ]

( ) [ ]

2
,0

1
2

,0

1 2 if is even
 

1 2 if is odd

N

n i ii
v N

n i ii

n i d n
N

n i d n

−=

−

−=


+ − ×=

 + − ×

∑

∑
.            (13) 

The vectors that comprise the invariant subspaces have characteristic entan-
glement patterns. Invariance of the quantum states under Stochastic Local Op-
erations and Classical Communications (SLOCC) is a way to classify these states 
into entanglement-families [58] [59] [60] [61]. One of the key aspects of this is 
that since the SWAPα gate commutes with the total z-spin operator  

{ }    z
vz v VS σ

∈
= ∑ , the action of the Power-of-SWAP gate 

SWAP
U α  breaks the Hil-

bert Space into a direct sum 0Γ
N k
kH =≅ ⊕  [6], where { }0 00 0Γ =  , 

{ }1 10 0 , 01 0 , , 00 1Γ =     , { }2Γ  \ 11 0 , 101 0 , , 00 11=       
and so on, with { }11 1NΓ =  . These subspaces are found to have distinct 
symmetries, depending on the number of 0  and 1  qubits in the state. The 
states for one-dimensional irreps: the perfectly permutation symmetric Dicke 
states have been studied for the categorization under SLOCC (Stochastic Local 
Operation and Classical Communication) invariant families using geometric 
measures of entanglement [10] [62]. In this paper, we look at the relation of en-
tanglement to symmetries (under transposition cycles) in other kinds of irreps 
relevant for a general n-qubit state. 

A general n-qubit state with the same Hamming weight across all its superpo-
sition states can therefore be written as  
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d
ii a iψ = ∑                         (14) 

where i  are the vectors associated to the invariant subspace with that Ham-
ming weight and d denotes the dimensionality of the invariant subspace under 
consideration. More generally, we can express a general quantum state as 

( ) ( )kl d k k
ik i a iψ = ∑ ∑                    (15) 

where ( )ki  are the vectors associated to the invariant subspace with the 
Hamming weight k and dk denotes the dimensionality of the invariant subspace 
with that particular Hamming weight, while l denotes the number of Hamming 
weights present in the superposition (system) in the quantum state under con-
sideration.  

For four-qubits states, there are 16 vector-states comprising three [31] inva-
riant subspaces each comprising of three vectors, one [22] invariant subspace 
comprising of two vectors and five trivial representation vector-states. The 
one-dimensional invariant subspace vectors are the famous Dickestates. These 
states can be classified into the nine SLOCC-invariant families of entanglement 
classes defined by Verstaete et al. [58]. Any arbitrary four-qubit state can be 
written in terms of these invariant subspace vectors, with 5l =  and 

0 1 2 3 41; 1,3; 1,2,3; 1,3; 1d d d d d= = = = =             (16) 

in equation (15). This is because there are multiple invariant subspaces for the 
same Hamming weight, with the Hamming weights 1, 2 and 3 having multiple 
invariant subspaces in this case. The vectors in an invariant subspace remain 
within that subspace given any combination of SWAPα gates operated upon 
them. 

4. Symmetry under Parity and Efficient Algorithm for  
Generating n-Qubit Vector States for SWAPα Gates 

One of the fundamental properties of the SWAPα gates is that they conserve par-
ity. The number of 0 s and 1 s in a multiqubit state remain the same. This is 
a key to proposing an efficient algorithm for finding the vector states associated 
with the invariant subspaces for the SWAPα gates.  

Let us say we have the following families of n-qubit states: 

{ }
{ }

{ }
{ }

PERM 00 0 11 1i

n i i

W
−

  
  
      

=


                 (17) 

where PERM defines the permutation function for a given set of qubits. 
There is no map, ( )SWAP

f U α  comprising of only SWAPα that can take us 
from one such family iW  to another family jW  for  i j≠ . This property can 
be used to define the set of basis vector-sets by starting with a completely sym-
metric state using all the vectors in the family iW  and then finding the 
null-space vectors for the same. We have found an algorithm and realization of 
the same that can carry out quick and efficient generation of the vector-states for 
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n-qubits under operation by SWAPα gates. 

5. Accessibility of Quantum States Using Power-of-SWAP  
Gates 

In this section, we will be looking at the accessibility of quantum states using 
only Power-of-SWAP gates for an arbitrary input quantum states. For the 
two-qubit case, let us begin with a state of the form 

{ } 00 01 10 11inψ α β γ δ= + + + .               (18) 

If we have a parameter [ ]0,1t∈  and the SWAP-gate is the unitary generated 
by the Heisenberg Hamiltonian for evolution time 1t = , then we can generate 
the fractional SWAP by doing the Hamiltonian evolution for time ( )0,1t∈ . For  

time steps of the form 1 ,t m
m

= ∈ , we obtain the so-called nth Power-of-SWAP 

(SWAPα) gates.  
In the two-qubit case, let’s fix a Power-of-SWAP circuit of depth m, such that 

for each 1, ,i m=  , we apply a SWAP i
iU γ=  with 1i inγ =  for in ∈ . Let 

us look at only the subspace spanned by { }01 , 10 . We have 
{ } 11 00 01 10 11 ,m mU U U

in fψ ψ α β γ δ− ′ ′ ′ ′= + +→ +
       (19) 

Since our unitaries are parity preserving, ,α α δ δ′ ′= = . Now we can consid-
er the inverse problem: fix the initial and final states, and a precision parameter 

( )0,1∈ , and compute a sequence 1, , mn n  such that ( ) 1 1: m mU U U U−Γ =   
brings inψ  within the  -ball around fψ , i.e., 

f inUψ ψ− ≤  . 

Noting that ( ) SWAPΓΓ ei HU = , we can also first solve for the time parameter 
Γ  and then obtain the sequence { }in . Let us do this for 0= . Taking the 
00 , 11  subspaces as invariant, we have the matrix equation 

1 e 1 e1
2 1 e 1 e

i i

i i

β β
γ γ

πΓ πΓ

πΓ πΓ

′ + −    
=     ′− +     

                (20) 

which we can solve for Γ to get the conditions (assuming $\alpha\neq\beta$) 
( ) ( )2 2

e ,i β β γ γ β γ
β γ β γ

πΓ ′ ′− + − +
= = −

− −
               (21) 

for which to have a solution, we require β γ β γ′ ′+ = + . 
The result given above can be generalized to the case of higher-number of qu-

bits. For any combination of Power-of-SWAP and general n-qubit input state of 
the form 0 1 2

000 00 000 01 111 11Nψ α α α= + + +     being trans-
formed to 0 1 2

000 00 000 01 111 11Nψ β β β′ = + + +    . We derive a 
condition for the coefficients of the vector basis states with the same Hamming 
weights. Let denote the set of all coefficients associated with vector states with  

the same Hamming weight i as 
( )( ){ }i
k
hw

α  in the input quantum state and denote 

the set of all coefficients associated with vector states with the same Hamming 
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weight 
( )( ){ }i
k
hw

β ′  in the output quantum state. Here k and k' denote the indices 

of the coefficients in each such set. Then, 

( )( ) ( )( )i i
k k

k khw hw
α β ′

′=∑ ∑                     (22) 

for any n-qubit case. This is a powerful result since it, along with the normaliza-
tion condition, helps us determine the kinds of states that are derivable from the 
operation of just Power-of-SWAP gates on a general n-qubit state.  

6. Conclusions 

In this paper, I have found a way to generate all the basis vector-states that span 
the space of states accessible by an arbitrary Power-of-SWAP gate. In doing so, 
we have found several classes of states. These include maximally entangled states 
such as the W-states, partially entangled cluster states and separable states. Each 
of these can be used for various kinds of applications in quantum information 
processing.  

With the exponential scaling of the computation basis with the number of ba-
sis, we see that the basis vectors of the invariant subspaces also increase expo-
nentially. It was found that only specific states can be generated using an initial 
quantum state and a combination of SWAPα gates, and hopping between these 
points represents a quantum computation. By understanding the invariant sub-
spaces, I realize an accessible resource for quantum computation using SWAPα. 
This quantum computation is resilient to parity changes and other forms of er-
rors due to the permutation symmetries of the vectors comprising the invariant 
subspaces. I hope that this paper will pave the way for the use of the SWAPα for 
generation of quantum resource-states in quantum information processing 
tasks. 
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