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ABSTRACT 
Electromagnetic (EM) radiation is both wave and heat. Waves are characterized by spectral 
distribution, spatial distribution, time coherence, spatial coherence, energy flux, and pola-
rization. Heat, namely energy transferred from a hot body to a cold one, is characterized by 
its energy and entropy, and the ratio between them is the temperature. Here we calculate the 
entropy and temperature of a single radiation mode from the wave properties of the radia-
tion. Using the Heisenberg uncertainty principle and Planck law, we calculate, from the 
optical properties of the radiation, the number of modes and their occupation number. 
Then we calculate the entropy and temperature of a single-mode EM radiation. It is shown 
that the entropy of a single-mode varies from zero for low occupation number, namely in 
the quantum limit to one Boltzmann constant for high occupation number, namely in the 
classical limit. The temperature varies from zero Kelvin in the quantum limit to infinity at 
high energies in the classical limit. This analysis is consistent with Fourier optics and statis-
tical mechanics namely: Stephan-Boltzmann Law, Wein Law, Zipf law, IT File’s entropy, and 
the canonical distribution. 

 

1. INTRODUCTION 
Thermodynamics is the science of energy flow. Most energy flow in nature is electromagnetic radia-

tion. The electromagnetic radiation has different names for different wavelengths: The longest wavelengths 
(longer than one centimeter) are called radiowaves, in the millimetric range, microwaves in the microns 
range, infrared (that we feel as “heat”) in the range between around 0.8 to 0.3 micron, visible waves or 
light. In the less than microns, ultraviolet or UV, the shortest wavelength is the X-ray and γ  rays that can 
ionize molecules. The energy of the electromagnetic radiation is moving at the speed of light [1] and 
therefore it is, per definition, heat, namely transferred energy from the emitter to the absorber. Heat is 
characterized by its energy, entropy, and temperature. Hereafter we discuss in a unified way all these 
quantities for electromagnetic radiation and the laws that are derived from them. 

Entropy is a measure of the uncertainty of a system. If a system can be found in W  distinguishable 
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configurations (microstates), its entropy is the logarithm of W  multiplied by the Boltzmann constant kB. 
Therefore, if we assume that each microstate has identical probability as the others, entropy is the measure 
of lack of knowledge in what microstate the system is. Nevertheless, entropy interpreted as uncertainty 
mostly in information theory, and in sparse physical systems, like gases, it is described erroneously as a 
disorder. The concept of uncertainty in physics is dedicated to the Heisenberg uncertainty principle that 
formulates the limit of the accuracy of simultaneous measurements of energy and time or momentum and 
space, i.e. if we want to measure the energy with very high accuracy, we need to give up the time resolu-
tion, etc. In fact, the Heisenberg uncertainty principle is a direct outcome of Fourier wave analysis [1] that 
yields, that the distribution widths multiplication of any Fourier pair is greater than 1/2π, namely, 

1 2v tδ δ ≥ π  and 1 2xk xδ δ ≥ π                               (1) 

where vδ  is the spectral width, and tδ  is the coherence time, xkδ  is the width of the wavenumber 
distribution and xδ  is the spatial coherence. This uncertainty bound 1/2π, depends on the profile of the 
beam, i.e. in a Gaussian beam the limit is 1/4π. These relations were known about 100 years before Hei-
senberg. Basically, Heisenberg following Planck invoked the Planck constant to connect between energy 
and frequency and momentum and wave number, namely hv=  and x xp hk=  where   is the energy 
and xp  is the momentum in the direction of the propagation axis. Therefore, for a wave described by 

( )2Ψ e xi vt k xA − π += , Equation (1) yields the famous uncertainty principle, 
2t hδ δ ≥ π  and 2xp x hδ δ ≥ π                               (2) 

Here we address the question, what is the contribution of the Heisenberg uncertainty principle to the 
entropy, which is also the uncertainty of the energy emission of blackbody radiation. 

2. HISTORY: BLACKBODY AND PLANCK LAW 
A blackbody is any materialistic body in thermal equilibrium and therefore has a well-defined tem-

perature T. The materialistic particles reach thermal equilibrium by exchanging electromagnetic radiation, 
namely photons, with each other. The blackbody’s volume V contains many radiation modes, N, in all the 
frequencies and directions that are possible in its geometric boundaries. The blackbody is linked to a 
thermal bath of temperature T such that its temperature remains constant despite the electromagnetic 
radiation that it emits. Till Planck’s publication in 1901 [2], it was assumed that each oscillator, namely a 
radiation mode, carries kBT energy, where kB is the Boltzmann constant. This value is the average energy of 
a classical oscillator in a bath at temperature T (i.e. each oscillation degree of freedom in ideal gas has in-
ternal energy kBT). Therefore, to calculate the energy emitted by blackbody radiation we have to count the 
number of modes and multiply it by the average energy. The amount of heat Q emitted by the blackbody 
depends on the measuring time t∆ . Equation (1) yields that 1 2t vδ δ≥ π . However, we can increase the 
measuring time without changing the spectrum as long as we wish, namely 1 2t t vδ δ∆ > = π . The ratio  

l
t N
tδ

∆
= , which is the number of the coherence length in the pulse, is called the number of longitudinal  

modes. 
The number of the possible oscillators per unit volume V, in a frequency interval v vδ+ , is derived 

from the number of radiation modes N calculated from Maxwell equation [3] is given by, 
2

3
8 v vVN

c
δπ

=                                    (3) 

The fraction of the modes contained within a solid angle Ω  will be, 

( )
2

3
2

4
N vN V v

c
δΩ = =

π
                                (4) 

Now assume that a beam of duration t∆  emerges from a square on the blackbody surface having a 
cross-section 2a . Its volume is 2V a c t= ∆  and the number of modes that participate in its emission is, 
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( )
2 2 2

2
2 2 2

2 2 2 l
v a aN va t v t N

c
δ δ

λ λ
 

Ω = ∆ = ∆ =  
 

                       (5) 

Now we go back to Equation (2) 2xp x hδ δ ≥ π  and divide both sides of Equation (2) by xp . Since 

the wave vector 2
xk

λ
π

= , where λ  is the wavelength, we obtain that 
2

x

x

p x
p
δ λδ
 

≥  π 
, x

x
x

p
p
δ

δ= Ω  is 

the diffraction limit angular divergence in the x direction and xδ  is the size of the spot of the focused 
beam in the x direction, therefore, 2xδ λ> π  and the minimum area resolution of the spot size is 

( )22 2x yδ δ λ> π . With analogy to the definition of longitudinal modes, the ratio between the spot size 

resolution ( )22 2a π  and the diffraction limit resolution, namely 
2

2
a
λ

 is called the number of spatial 

modes sN . We see that a spatially coherent beam, in which 1sxN = , cannot be resolved better than 
2λ π . Equation (5) now can be written as, 

2 l sN N N=                                      (6) 

The number 2 stands for the two independent polarizations, lN  is the number of the coherence 
length of a beam and sN  is our ability to focus the beam as compared to the diffraction limit spot size 
[4]. 

N is a function of the temporal coherence and the spatial coherence and the polarization. The heat 
emitted from a blackbody is thus, 

BQ Nk T=                                       (7) 

The entropy reduction of a Blackbody due to energy emission is, 

B
QS Nk
T

= =                                      (8) 

Equations (7-8) are the expressions of the heat and entropy of N classical modes of electromagnetic  

radiation. A single classical radiation mode has an energy B
Qq k T
N

= =  and an entropy B
Ss k
N

= = . This  

well-known result is sometimes overlooked and it is assumed by some, that a single-mode pulse has zero 
entropy. The reason for this somewhat common mistake is that the expression of the entropy in statistical 
mechanics is proportional to the logarithm of the number of microstates. Since a single oscillator may be 
considered as one microstate, and since the logarithm of one is zero, one may conclude that a solitary 
event, well defined in space and time, has zero entropy. However, single-mode radiation, because of the 
Heisenberg uncertainty principle, has a built-in uncertainty (entropy) in the oscillation itself, namely the 
potential and the kinetic energy and the spatial resolution, therefore even a single classical oscillator has kB 
entropy. Moreover, if a single oscillator would have zero entropy since entropy is extensive, it would lead 
to the conclusion that any combination of single oscillators has zero entropy, including the blackbody 
radiation that is a plurality of oscillators in different modes. This conclusion is, of course, a violation of the 
second law. A simple proof that electromagnetic radiation should carry entropy can be demonstrated by 
building a heat machine which consists of a hot bath that is a blackbody at temperature TH and a cold bath 
that is also a blackbody with a temperature TC. We replace the cylinder with a piston that contains gas by 
an ideal fast shutter that can transmit or reflect the electromagnetic emitted radiation. Now we open the 
shutter for a very short time such that the energy of the electromagnetic radiation leaves the hot blackbody 
but not yet be absorbed by the cold blackbody. In the short time interval that the electromagnetic radiation 
is between the two black bodies, the entropy of the hot blackbody decreases but the entropy of the cold 
blackbody is not yet increased, therefore, if electromagnetic radiation does not carry, entropy, the second 
law is violated. The only explanation for this “paradox” is that the electromagnetic radiation must carry 
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entropy equal to that removed from the hot blackbody. 
Equation (7) is known as Rayleigh-Jeans approximation. The problem in Equation (7) is that when λ 

is very small, the number of the spatial modes increases to infinity and the blackbody should then emit an 
infinite amount of energy which is, of course, not possible. This problem was known as the “UV catastro-
phe”. In 1901 Planck replaced the frequency-independent average energy of a mode Bq k T=  in Equation 
(2) with the famous frequency-dependent formula, 

exp 1
B

hvq nhv
hv

k T

= =
 

− 
 

                              (9) 

and added a new universal constant h to physics. 
The famous Planck’s assumption is that energy is not continuous and can be divided into quanta hv 

that are a linear function of their frequencies. Therefore, a spatial radiation mode having a very small wa-
velength has a very high frequency and therefore its quantum, the photon, may have energy that is higher 
than kBT. Therefore, according to classical mechanics, it cannot emit energy. 

In quantum mechanics, the emission of photons with energy higher than the average energy kBT is 
possible. The reason for this strange phenomenon is the uncertainty expressed by the entropy. The second 
law is about the propensity of entropy to grow. In a closed system, it will reach its maximum value where it 
cannot grow anymore. This point is the equilibrium point. Planck was the first to calculate the distribution 
of photons among the radiation modes that maximized the Boltzmann entropy lnBS k W=  under the 
constraint of conservation of energy [5]. His technique is called today MaxEnt or microcanonical ensem-
ble. Planck started by calculating the number of different microstates of B indistinguishable particles 
(photons having a given frequency) in N distinguishable boxes (radiation modes). This yields, 

( )
( )

1 !
1 ! !

N B
W

N B
+ −

=
−

, applying Stirling’s approximation to calculate lnW  he obtained that, 

( ) ( )1 ln 1 lnBS k N n n n n≅  + + −                                (10) 

Here Planck replaced the total number of particles B by n B N=  which is the average number of 
particles in a box. To maximize the entropy, he applied the conservation of energy constraint 
( )Q n Nq Nnhv= = , where, q is the energy per mode, and therefore, to find the equilibrium distribution, he 

used Lagrange multiplier technique, namely to find the maximum of the function ( ) ( )F S n Q nβ= −   

with respect to n, where β  is a Lagrange multiplier, namely 0F
n

∂
=

∂
, where, 

( ) ( ) ( )1 ln 1 lnBF k N n n n n q nhvβ≅  + + − − −                       (11) 

Since it can be shown that 1

Bk T
β = , he found out his famous result for n that maximizes the entropy 

namely, 

( ) 1,

e 1B

hv
k T

n v T =

−

                                  (12) 

Now the energy carried by a radiation mode is not Bk T  but ( ),n v T hv  as given by Equation (9). 

3. CLASSICAL LIMIT: ZIPF LAW 
In the classical limit, the energy is continuous, the photon’s energy is infinitely small, and therefore 

the number of photons is infinitely large. We rewrite Equation (12) as 
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1ln 1Bhv k T
n

 = + 
 

                                  (13) 

Since the energy of the mode is q nhv= , in the classical limit where n →∞  

1lim ln 1
n

B n Bq nhv k T k T
n→∞

 = = + = 
 

 

And the entropy of a classical mode is Bs k= , namely, one Boltzmann constant as was assumed in 
the Rayleigh-Jeans formula. 

It is worth noting that both the entropy and the frequency of a classical oscillator are independent of 
its energy. The energy-independent frequency of the classical oscillators is used for time measurements i.e. 
pendulum clocks and watches. The energy-independent entropy of classical oscillators is used for digital 
communication [6]. Since the entropy of a sequence of N classical bits is ln 2BS Nk=  (N bits), theoreti-
cally, it is possible to recover the full content of a file, regardless of the unavoidable energy attenuation in 
its transmission. This explains the huge success of digital communication. 

In the classical limit where the energy of the photon is very small, e 1B

hv
k T

B

hv
k T

≈ + , therefore, from 

Equation (12) we can see that Bk Tn
hv

≈ . Namely, the number of photons is the average energy of a mode  

divided by the energy of the photon. That means that the higher the energy of photons the higher their 
frequency and smaller their number, n. Namely, there are more poor-energy photons than high-energy 
photons.  

To find the exact ratio between the frequency v and the number of photons n in N modes, we nor-
malize the photon energy of Equation (13), by dividing it in the total sum of the energies over the modes. 
Namely, 

( ) ( )1 1
1, ln 1 ln 1N N

B Bn nhv n T k T k T N
n= =

 = + = + 
 

∑ ∑  

The normalized distribution is given by ( ) ( ) ( )1, , ,N
nn T hv n T hv n Tε == ∑  or: 

( ) ( ) 1

1ln 1
1, log 1

ln 1 N
nn N

N n
ε +

 +    = = + +  
                          (14) 

( )nε , which is a parameter-free long-tail distribution, called the Planck-Benford distribution [7-9], is 
the relative energy of the modes having n photons as compared to the energy of all the N modes. It is seen 
that the higher the photon’s energy, the smaller the number of photons having this energy. 

The reason for the surprising result, that the Planck-Benford distribution has no physical constants, is 
that in the classical limit the radiation modes are pure harmonic oscillators and therefore have the univer-
sal statistics of harmonic oscillators. 

This outcome that in the energy normalization process all “physics” disappeared, namely: h, kB and T 
are canceled out, makes the Planck-Benford distribution more universal than the Maxwell-Boltzmann dis-
tribution. The Planck-Benford law is also the Maximum Entropy distribution of identical balls in N dis-
tinguishable boxes, where the number of balls is greater than the number of boxes [7]. This statistics yields 
that there are more poor people than rich people (energy is money and people are modes), and there are 
more people in the big cities than there are in small villages (here people are the energy and cities are the 
modes). Planck-Benford law yields without any free parameter for 9N =  the Benford law [7]. For large 
N it yields Zipf law with slop 1 [8]. In the Economy, it yields correctly the wealth distribution in the OECD 
countries, the average Gini inequality index in the OECD countries, the Pareto 80:20 law, the vote’s dis-
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tribution among parties in democracies, the population of cities distribution and most of sociological sta-
tistics [9] [10]. 

Here we show that Planck-Benford law is the empirical Zipf law. Zipf law is a probability function 
found in many distributions in nature i.e. n people in N cities or the redundancy n of words in a text of N 
different words. Zipf law was found, empirically, to be, ( ), 1 s

Nn N n Hϕ = , where HN is the harmonic 
number and s  is some parameter (usually close to one). To show that Zipf law is Planck-Benford law 
with 1s = , we assume that n is a continuous function, therefore, we can use the Riemann sum to find the  

area between two sequential integers n and 1n + , namely, ( ) ( )1 d 1ln 1 ln ln 1
n

n

n n n
n n

+ ′  = + − = + ′  ∫ . Simi-

larly, the Harmonic number defined by 1
1N

N nH
n== ∑  becomes, 

( )1
1 1

d ln 1
N

N
nH N
n

+
+

′
= = +

′∫ . 

Note that the integration is until 1N +  because we start to count the N ranks from 1n =  and not 
from zero (from zero to one we are in the quantum regime). Now we can write Planck-Benford law as, 

( ) ( )
1

1 1ln 1
1, 1ln 1 N N

n

n nn N
N nH

n

ε

=

 + 
 = = =

+ ∑
                          (15) 

This is the Zipf law with slope 1. 

4. QUANTUM LIMIT: MAXWELL-BOLTZMANN DISTRIBUTION 
In the quantum limit, the photon energy has approximately 1/n times more energy than the average 

energy kBT. One may expect that the probability to emit photons will be also 1/n. However, from Equation 
(13) we see that in the quantum limit where 1n < , the frequency of a photon increases linearly with the 
temperature of the blackbody and logarithmically with the number of photons n. For very small n’s,  

1 11
n n

+ ≈  and ( ) 1, ln 1 lnB Bhv n T k T k T n
n

 = + ≈ − 
 

. This equation usually is written as exp i
i

B

hvn
k T

 
≈ − 

 
. 

When it is normalized, by dividing it by the probability partition function, ( ),P iiZ n T n=∑ , we obtain  
the famous exponential “canonical energy distribution”. 

exp

exp

i

B
i

i
i

B

hv
k T

p
hv
k T

 
− 
 =
 
− 
 

∑
                                (16) 

The canonical distribution derivation deserves some remarks. Zipf law was obtained by energy nor-
malization. However, the energy is inversely proportional to the number of photons in a mode that is 
proportional to probability. The canonical distribution was obtained directly by probability normalization  

in which n was changed to p. The energy emission of a single-mode in this limit is, exp i
i i

B

hvhv
k T

ε
 

= − 
 

. 

5. STEPHAN-BOLTZMANN LAW 
Stephan-Boltzmann law enables us to calculate the energy flux of a blackbody as a function of its 

temperature [11]. The general expression of the emission of given single-mode radiation, having frequency 
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v is obtained from Equation (12), 

( ),

e 1 e 1B B

B
Bhv hv

k T k T

hv
k Thvq v T nhv k T= = =

− −

                        (17) 

And the entropy of a single mode of frequency v is, 

( ) ( ),
,

e 1B

B
B hv

k T

hv
q v T k Ts v T k

T
= =

−

                            (18) 

Let’s designate 
B

hvu
k T

= , therefore, the expression for the energy of a single-mode is  

( ),
e 1B u

uq v T k T=
−

, and its entropy is ( ),
e 1B u

us v T k=
−

. See Figure 1, 

To calculate the energy emission of a blackbody we have to integrate Equation (17) over all the tem-
poral modes. Let us start with the emission of a single spatial mode. The energy flux ( ),I v T  is ( ),q v T , is 
divided by the area of the spot size of a single spatial mode 2λ  on the surface of the blackbody and mul-
tiplied by the two polarizations. Thus the energy flux is, 

( ) ( )
20

2 ,
dE

q v T
I T v

λ
∞ 

=  
 

∫                               (19) 

Or, 

( ) ( )20
2 d

e 1E B u

TuI T k v
λ

∞
=

−∫  

Since d d
B

hu v
k T

=  and 
2

2 2
1 v

cλ
= , we obtain, 

( ) ( ) ( )
2 4 3

4
2 2 30 0

2 d 2 d
e 1 e 1E B Bu u

Tuv T uI T k v k u
c c h

∞ ∞
= =

− −∫ ∫  

The finite integral ( )
3 4

0
d 4

15e 1u
u u ζ

∞ π
= =

−∫  where ζ  is Reimann zeta function, therefore, the 

energy flux of a single spatial mode is, 

( ) ( )4
4

2 3

2
15

B
E

k T
I T T

c h
σ

π
= =                               (20) 

where ( )I T  has units of energy per unit area per unit time. 
The entropy flux is, 

( ) 3
sI T Tσ=                                      (21) 

One should remember that the area of a single-mode 2λ  that is part of the integration, vary from 
zero to the significant part of the blackbody surface. This point deserves careful consideration. The  

function ( )
e 1u

B

u sf u
k

= =
−

 is monotonically decreasing function as is seen in Figure 1. However, in the 

quantum limit ( )1 e uf u u −≅  has a maximum. 
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Figure 1. The entropy of a single oscillator in units of kB as a 
function of u. The expression of the entropy according to 

Planck law is ( ) ( )exp 1
uS u
u

=
−

 where 
B

hvu
k T

= . The en-

tropy of the oscillator reduces very fast from kB in the classical 
limit were 1u  to zero in the quantum limit, when 1u > . 

 
The reason for this paradox is that quantum modes have very short wavelengths and the energy flux  

increases by the factor 21 λ  as was derived in Equation (19). The function that obtained 
3

e 1u
uf ′ =
−

 has 

a maximum. 
Stephan-Boltzmann law was derived in the Ph. D. thesis of Boltzmann under the supervision of Ste-

phan. The derivation was done by classical thermodynamics argumentations and therefore the value of the 
Stephan-Boltzmann constant was not calculated. The constant that was calculated later was an additional 
validation of Planck’s theory. 

6. WEIN’S DISPLACEMENT LAW 
Another quantity that derives from Planck’s law is the maximum frequency of a blackbody’s emission 

as a function of its temperature [12]. Wein’s law was discovered several years before the Planck calculation  

in 1901. Here it is derived from the Planck law. We start with ( ),
e 1B u

uq v T k T=
−

 remembering that 

Bu hv k T= , the energy per mode per unit blackbody surface is  

( ) ( )
2 3

2
2 2

2 2, 2 ,
e 1 e 1

B
s u u

k T v u h vq v T q v T
c c

λ= = =
− −

. To find the maximum frequency on the energy distribu-

tion we ask that 
( )d ,

0
d

sq v T
v

=  or, 

( )
( )

3 2
2

2 2

d , 2 d 2 e3 0
d d e 1 e 1e 1

u
s

u uu

q v T h v h v uv
v vc c

  = = − =   − −  −  
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Namely, 

e 3
e 1

u

u
u

=
−

                                     (22) 

The function e
e 1

u

u
u
−

 has poles; nevertheless, we can calculate it in the limits. In the classical limit 

1u , so then we obtain that maxe 3u ≈  and therefore max ln3
B

hv
k T

= . 

In the quantum limit 1u  e e 1u u≈ − , therefore, max 3
B

hv
k T

= . 

Substitute max maxv cλ =  and obtain, 

max
b
T

λ =                                      (23) 

In the classical limit 
ln3class

B

hcb
k

=  and in the quantum limit 
3qunt

B

hcb
k

= . 

Usually, Wein’s law applied to Maxwell-Boltzmann distribution, which is in the quantum regime. 
Therefore, Equation (23) converges very fast to the area where b is constant. 

7. THE TEMPERATURE OF THE LIGHT 
Temperature is considered a macroscopic property. However, a microscopic entity which its energy  

can be measured and its entropy can be calculated from Clausius entropy definition qs
T

= , has a temper-

ature. One should ask, what is the physical meaning of it? 
In the classical approximation, the answer is straightforward: energy flows from the hot to the cold. 

I.e. two identical classical pendulums, one hot with high amplitude and one cold with low amplitude, if 
they linked together, their amplitudes will eventually equate. The laser beam is a classical oscillator as 

1n , its beam temperature is the maximum temperature that it can heat a materialistic object. Consider 
a laser beam having power P and coherence length xδ , therefore, its coherence time is t x cδ δ= . The  

energy per mode is the energy within the coherence time. Therefore, P xq P t
c
δδ= = . The temperature of 

the beam is, 

class
B B B

q P x nhvT
k ck k

δ
= = =                               (24) 

I.e. HeNe laser having a power of 1 mW and coherence length 30 cm yields a temperature of about 
1010 K and the energy of a mode is about 10−13 J (1 mW∙0.3/c). This is a very high temperature, but not in-
finite as it is usually assumed. Nevertheless, for any practical reason, this temperature is equivalent to infi-
nite temperature. The reason that the HeNe laser beam does not fit for heating is its negligible energy per 
mode 10−13 J. Namely, to heat 1 gram of water in one degree Kelvin one needs about 4 × 1013 modes, which 
means, of about 4 hours of heating. 

Digital communication is done by a transmission of a file that is a sequence of classical oscillators 
from Bob to Alice. Therefore, the entropy of the file which reflects its amount of data in it is not a function 
of the temperature of the bits. Nevertheless, we want that it will be well above the ambient’s temperature 
such that the thermal noise will not add noise bits the file. Therefore the power namely, the temperature of 
our antenna has practical importance. 

The general expression of the temperature of EM radiation is given by Planck expression of Equation 
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(12) for the occupation number n, that can be rewritten as, 

1ln 1B

hvT
k

n

=
 + 
 

                                   (25) 

In Figure 2(a) and in Figure 2(b) we see that the temperature at 1n  starts from zero and very 
fast go to the linear zone of the classical approximation in which T n∝ . 

It is seen that when n approach to zero both the entropy and the temperature are approaching zero. 
Entropy is heat divided by the temperature, therefore we might expect that zero temperature will yield in-
finite entropy, like in a zero temperature bath. The explanation to this “abnormality”, namely that  

0lim 0n
q
T→ = , is that the energy reduces exponentially to zero, while the temperature decay linearly. From 

Equation (17) we obtain that in the quantum limit e

e 1

B

B

hv
k T

hv
k T

hvq nhv hv
−

= = ≈

−

. The temperature of Equ-

ation (25), when we multiply by n both nominator and the denominator, yields 
1ln 1

n

B

nhvT
k

n

=
 + 
 

. 

Therefore in the quantum limit 
0 0

lim lim
n n B

nhvT
k→ →

=  the temperature converges to zero linearly with n while  

the heat converges exponentially so that both temperature and entropy approach to zero when n approach 
to zero. 

How to calculate this temperature? Suppose that we want to measure the temperature of a single 
photon, a single spatial mode source. We need a sensitive detector that can detect a single photon. Suppose 
that we measure on the average, P single photons over a time period t∆ . The detector is equipped with a 
filter that passes the frequency v, and its bandwidth is vδ . The number of modes 2N t vδ= π∆ . The  

occupation number is Bn
N

= . Photons with a narrower bandwidth vδ  can also pass the filter, therefore, 

2N t vδ≤ π∆  and 
2

Bn
t vδ

≥
π∆

. 

Can we transmit data with single-photon files? Suppose that we have a file composed of HeNe sin-
gle-photons bits. We ask that its temperature will be at least ten times higher than that of the ambient, to  

reduce thermal noise, namely 
42.28 10 10

1ln 1
ambientT T

n

×
= ≥

 + 
 

. At room temperature 300 KT = , thus we obtain 

1ln 1 7.6
n

 + ≥ 
 

 or 1
2000

n ≥ , that is an acceptable limit for communication. 

8. SUMMARY 

EM radiation is heat. In thermodynamics, heat is characterized by two independent quantities, energy 
and entropy. EM radiation has many more characteristics namely; frequency, spectral distribution, tem-
poral distribution, temporal coherence, spatial coherence, beam profile, polarization, and direction. How 
all these properties are connected to that of heat in general? Planck’s law connects between the numbers of 
photons in a mode  (occupation number) and their frequency in a thermal bath (blackbody) of a given 
temperature. Here we use the spectral distribution, temporal distribution, temporal coherence, spatial  
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(a) 

 
(b) 

Figure 2. (a) The temperature  of a mode (in units of hv/kB) as a function 
of occupation number of single modes. I.e. for HeNe laser each unit is 
about 2.28 × 104 K. (b) The same as Figure 2(a) but for small n’s (within 
the rectangular of Figure 2(a) in the quantum limit). 

 
coherence, beam profile, and polarization to calculate the number of modes. From the EM beam’s power, 
we calculate the number of photons. This enables us to calculate for EM radiation the entropy and the 
energy of a mode that is consistent with Planck’s law. 

It is shown that the EM radiation statistics vary smoothly from the classical limit in which all the 
radiation modes in equilibrium have an energy of kBT like in ideal gas oscillators and the quantum limit 
in which most of the modes are empty and some have very high energy as compared to kBT. Using 
Planck law, we review in a consistent way the calculation of all the thermodynamical properties, namely 
classical energy distribution—Zipf law; quantum energy distribution—Maxwell Boltzmann law; Energy 
flux—Stephan-Boltzmann law, and maximum frequency—Wein displacement law. 

The entropy of a single-mode as given by Equation (18) namely ( ) ( )
( )

,
,

exp 1B
q v T us v T k

T u
= =

−
 

where 
B

hvu
k T

= , monotonically increases from zero at very low occupation number in which u is very  

large namely, Bhv k T  to Bk  when the occupation number is going to infinity namely Bhv k T  and 
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0u → . From Equation (25) it is seen that for low occupation number 0n →  temperature increases mo-
notonically from zero in low occupation number to infinity in a very large occupation number. 
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LIST OF SYMBOLS 
vδ : spectral width 
tδ : coherence time 

xkδ : wavenumber’s width 
xδ : spatial coherence 
 : energy 
h: Planck constant 
v: frequency 
λ : wavelength 
c : speed of light 
T: temperature 
V: volume 
N: radiation modes 
Nl: longitudinal modes 
Ns: Spatial modes 
Ω : Solid angle 
a: beam waist 
kB: Boltzmann constant 
Q: Heat 
q: heat per mode 

t∆ : measuring time 
S: entropy 
s: entropy per mode 
n: occupation number – the number of photons in a mode 
B: total number of photons  
W: number of microstates 
β : Lagrange multiplier 
( )nε : normalized distribution of frequency 

HN: Harmonic number 
ZP: canonical partition function 
u: the energy of a photon relative to the average energy.  
I: energy flux 

maxv : The frequency of maximum emission of a blackbody. 
maxλ : The wavelength of maximum emission of a blackbody 

b: Stephan Boltzmann constant 
P: power 
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