
Journal of Biosciences and Medicines, 2019, 7, 156-167 
https://www.scirp.org/journal/jbm 

ISSN Online: 2327-509X 
ISSN Print: 2327-5081 

 

DOI: 10.4236/jbm.2019.712013  Dec. 13, 2019 156 Journal of Biosciences and Medicines 

 

 
 
 

Theoretical Solutions of Dynamic Responses of 
Cancellous Bone 

Shaohua Wang1, Jianli Jiang2, Xiaobing Lu3 

1The Second People’s Hospital of Yichang, Yichang, China 
2The First People’s Hospital of Yichang, Yichang, China 
3The Institute of Mechanics, Chinese Academy of Sciences, Beijing, China 

 
 
 

Abstract 

Human bone may be damaged by impact in the cases of traffic accidents and 
ship impact. The impact responses of cancellous bone were analyzed based on 
the two-phase media theory. A direct analytical method is introduced for 
solving this type of problems. First, flow function and potential function were 
introduced to decouple the controlling equations. Then direction solving 
method was used to obtain the solution. The solution is determined by the 
parameters of a (related with wave speed) and b (related with damping), as 
well as the boundary conditions. These two parameters a and b determine the 
propagation speed of the responses along the bone and the attenuation rate. It 
is shown that the responses: deformation, stress and pressure of the corpus 
medullae caused by loading, propagate toward the other end when the impact 
is acted on one end of the bone. The responses are discontinuous during 
propagate. The discontinuous surface moves with a constant speed. The res-
ponses at the cross section increase gradually from the bottom to the top be-
cause of the distribution of the loading at the boundary. The solutions can be 
used as the basis for certification of numerical simulation as well as the design 
of impact prevention of bone.  
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1. Introduction 

In the cases of traffic accidents, ship impact and blast, human bone is easy to be 
hurt by the impact load [1] [2]. The human tibia and femur are the positions 
being often damaged. It is practical to study the dynamic responses of the hu-
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man bone under impact load for either the prevention of bone damage or recov-
ery. 

The human tibia and femur are a kind of long tubular bone composed of can-
cellous bone with high percentage porosity. The cancellous bone is composed of 
the skeleton and the corpus medullae. Recently, the mechanical properties and 
responses were concerned because of the requirement of fracture treatment and 
artificial limb design [3] [4] [5]. The permeability, strength and stiffness of the 
cancellous bone were studied experimentally. These studies provide the basic 
data for the following research. 

The cancellous bone is composed of a kind of cellular porous material. The 
corpus medullae are filled fully in the porosity. The mechanical properties of the 
cancellous bone are closely related with the density [6] [7]. 

The position and the form of damage by impact are related with the human 
posture during bearing load. For example, the lower limbs, especially the calca-
neus and the femur, are easy to be hurt when a person is standing up. The dam-
age degree is determined by the load level and the mechanical properties of the 
bone [8]. Under impact, the cancellous bone is compressed and the corpus me-
dullae flow out of the porosity totally or partially. The stress and displacement 
increase. The pore pressure changes accordingly by the load level and boundary 
conditions. The displacement rebounds totally or partially and the corpus me-
dullae flow back into porosities once the impact is unloaded [6] [7]. The region 
of large stress is located near the load end of bone such as the neck of femur un-
der impact while it is located at the backbone under static load [9]. 

The damage of the cancellous bone has also been studied. Abdel-Rahman et 
al. [10] showed that the impact can cause the occurrence of the micro fractures 
at the joint. The study of Dakin et al. [11] showed that the pelvic joint becomes 
flabby after healing up if one person bears impact load. Yang et al. [12] showed 
that the strain of ligament and the motion trajectory of the joint will change after 
impact. The shape of the sacral fracture, propagation of stress wave and strain 
responses were studied by Quan et al. [13]. 

However, it is less considered that the cancellous bone should the taken as 
two-phase media in the former study on the damage of bone during impact. In 
fact, the properties and behavior of the two media: skeleton and corpus medul-
lae, are very different. The loading acted on the cancellous bone causes the de-
formation of bone trabecula, which leads to the pressure changes and flow of 
corpus medullae. Conversely, the flow of corpus medullae affects the deforma-
tion of bone trabecula. The relative motion between corpus medullae and bone 
trabecula forms the resistance [14]. Therefore, it is limited to take the bone as a 
kind of one-phase media during the analysis of the responses under impact. 

In this paper, the theoretical analysis on the dynamic responses of cancellous 
bone under impact load is carried out to provide analytical solutions as the basis 
for certification of numerical simulation and design of impact prevention of 
bone. The solutions can also be the references of the impact experiments of 
bone. The behavior of cancellous bone is described as poro-elastic media. By in-
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troducing the potential and flow functions, the controlling equations are simpli-
fied and decoupled. The analytical solutions are obtained by using the direct 
method. The development of dynamic responses is discussed. 

2. Formulation of the Problem 

As two-phase media, dynamic load will certainly result in the changes of pres-
sure of corpus medullae, stress and deformation of the cancellous bone. As-
sumption of a plane strain problem is adopted for simplicity considering the aim 
of this paper is to present an analytical method for solving this kind of problem. 
The impact load (p shown in Figure 1) is applied on one end of the cancellous 
bone. The load is divided into pressure of the corpus medullae and stress of the 
skeleton. At the other end, the pressure is zero, indicating the corpus medullae 
can freely flow in or out, while the stress is equal to that at load end in amplitude 
but inverse in direction which is caused by the person’s weight and limitations. 
The other surfaces are free of deformation but permeability is forbidden. The 
change of porosity is small and its gradient can be neglected. Density of each 
phase is constant. Hooke’s law is adopted to describe the behavior of the skele-
ton at elastic stage (Figure 1) [6]. 

3. Controlling Equations 

Momentum conservation of the skeleton and the corpus medullae 
The skeleton and the corpus medullae affect each other by the deformation, 

pore pressure and resistance between them. Biot is the first one to propose the 
mathematical model for two-phase media and the model have been widely used 
[15]. But the couple mass coefficient is difficult to determine in his model. Thus 
most researchers adopted the modified model. The controlling equations are 
similar to Biot’s model in this paper by neglecting the couple mass coefficient 
but considering the changes of porosity [16]. 

The skeleton and the corpus medullae should satisfy the mass conversation 
respectively. Since there are no source items, the mass conservation equations 
can be written as 

( ) ( )2

0

1 1
0

ερερ

ε ρ ε ρ

∂∂ + = ∂ ∂

∂ − ∂ − + = ∂ ∂ ∂

i

i

s s i

i

v
t x

u
t t x

                   (1) 

 

 
Figure 1. Sketch of the problem. 
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Considering the assumption of constant densities, the following equation can 
be obtained by combining the two equations in Equation (1) 

( )2 1
0

εε ∂ −∂
+ =

∂ ∂ ∂
ii

i i

uv
x t x

                      (2) 

The momentum conservation equations are as follows 

( ) ( )
2

2

2

1 1
σ

ερ ε ρ ε ρ ερ

ε ε ε µ ερ ερ

∂ ∂ ∂∂
− − − − = − + ∂ ∂ ∂∂


∂ ∂∂ ∂  − + − − − =  ∂ ∂ ∂ ∂ 

ij i i
i s i s

j i

i i
i i

i i

u vp g g
x x tt

u vp p v g
x x K t t

        (3) 

in which K is the physical permeability, ε is the porosity, u is the displacement of 
skeleton, v is the velocity of corpus medullae, p is the pressure of corpus medul-
lae, σij is the stress of the skeleton, ρ is the density of corpus medullae, ρs is the 
density of skeleton, g is the gravity acceleration, μ is the viscosity of corpus me-
dullae, i and j are tensor notations and denotes the three directions. To remove 
the gravity terms we shall replace henceforth σ ij  by ( )( )1σ ε ρ ρ δ− − −ij s ijgy
and p by ρ+p gy . Then the above equations become homogeneous 

( )
2

21
σ

ε ρ ερ

εµ ρ

∂ ∂ ∂∂
− = − + ∂ ∂ ∂∂


∂ ∂∂  − − − =  ∂ ∂ ∂ 

ij i i
s

j i
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i

i

u vp
x x tt

u vp v
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                (4) 

From Equation (4), p can be eliminated, so 

( )
2

21
σ εµ ε ρ ρ
∂  ∂ ∂ ∂ + − = − −  ∂ ∂ ∂∂   

ij i i i
i s

j

u u v
v

x K t tt
             (5) 

Constitutive equations―Hooke’s law 
In this study, the skeleton is taken as poroelastic media, e.f., Hooke’s law is 

suited for describing the mechanical behavior:  

2
1 2

νσ δ
ν

 ∂∂ ∂
= + +  ∂ ∂ − ∂ 

ji k
ij ij

j i k

uu uGG
x x x

                 (6) 

Decoupling of equations 
Obviously, the above Equations (1)-(5) are difficult to solve directly because 

the variables are coupled. In other words, the variables are contained in each 
partial differential equation, which causes the solving process very much com-
plex. Only to decouple these equations into those containing one variable in each 
equation, the solving process can be simplified. Therefore, the following poten-
tial and “flow” functions are adopted: 

with
0

0

ϕ ψ
ϕ ψ

ψ
ψ

= +

= +

=

=

s s

s

u Grad Curl
v Grad Curl

Div
Div

                      (7) 
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Substitute Equation (7) into the mass conservation Equation (2), the following 
equation can be obtained 

( )1 0
ϕ

εϕ ε
∂

+ − =
∂

s

t
                         (8) 

From the second of Equation (4), the relation between the pore pressure and 
the potential and flow functions can be obtained as follows considering Equation 
(8) 

ϕϕ εµρ ϕ
∂∂  = − − − ∂ ∂ 

sp
t K t

                      (9) 

and 
ψεµ ψψ ρ
∂ ∂ − = − ∂ ∂ 

s

K t t
                     (10) 

Similarly taking the divergence and curl of Equation (5) respectively, we can 
obtain 

( )
2

2
2
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ε ρ ρ
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and 
2
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  ∂
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in which ( )
( )

2 1
1 2

ν
λ

ρ ν
−

=
−m

s

G
. 

Now, the above equations have been decoupled as Equations (8)-(12). From 
Equations (11) and (12), ϕs  and ψ s  can be solved solely. Then instituting ϕs

and ψ s  into Equations (8)-(10), ϕ , p, ψ  can be obtained. The solving 
process is presented in the following section. 

4. Solution and Discussion 

To obtain the solutions, the above equations are further changed. Instituting 
Equation (8) into Equation (9) to eliminate ϕ : 

( ) 2
2 2 2

2

1ρ ε µϕ ϕ
ε
− ∂ ∂

∇ = ∇ + ∇
∂∂ s sp

K tt
               (13) 

Instituting Equation (11) into Equation (13), the controlling equation of p can 
be obtained: 

2
2

2

∂ ∂
∇ = +
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1 1 21
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Assuming pressure of corpus medullae caused by the external load at the 
boundary x = 0 is p0y (indicating that the pressure linearly distributed along the 
section), at the other end of x = l, the pore pressure is a constant (here set as ze-
ro). At the boundary y = 0 and y = h, 0∂ ∂ =p y , e.g. the seepage is forbidden. 
Then the controlling equation of pore pressure and the boundary and initial 
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conditions can be written as follows: 
2
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p can be solved as [17]: 

1) if 
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in which 

( )
0 0

3 2
1 1 1

81 1 1sin sin cos
2 2 1

→∞ →∞ →∞

= = =

π π π
= − +

π π +
∑ ∑ ∑

m n m

m n m

p h p hm x m x n yA
m l m l hn

 

By Equation (13) and initial condition 
0

0ϕ
=
=s t

, ϕs  can be obtained as: 
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3) if 
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By Equation (12), ψ s  can be obtained in the following way. 
The controlling equation and the boundary and initial conditions are rewrit-

ten as:  
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  (22) 

The boundary conditions indicate that the axial stresses of the skeleton at the 
two ends are equal which are caused by the external load. The shear stresses at 
the other sides are equal to zero, e.g. the boundaries are free. The initial values 
are zero. 
ψ s  can then be solved as: 
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in which =d D C , 
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Based on the above solutions of p, ϕs  and ψ s , it is easy to obtain the dis-
placements and stresses by using of the following equations 
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2 2
2
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To reduce the article length, the detailed expressions of the displacements and 
stresses are not shown here. 

The responses of the cancellous bone can be investigated by just instituting 
the values of parameters into the above analytical solutions. The basic parame-
ters are referenced from the literature [6] and shown as follows: The elastic 
modulus E = 2.5 × 105 N/m2, the Poisson’s ratio υ = 0.30, porosity ε = 0.60, den-
sity of skeleton ρs = 2.0 × 103 kg/m3, density of corpus medullae ρf = 930 kg/m3, 
permeability k = 4.0 × 10−2 m/s, and the load amplitude 20 N - 2000 N. The 
permeability and elastic modulus are changed based on the above values to in-
vestigate the effects of parameters. 

Figures 2-4 show the responses (stress, displacement and pore pressure) of 
the cancellous bone along the length at different time. It can be seen that the 
pressure of the corpus medullae increases near the load end and there is a dis-
continuous surface and then decreases with distance (Figure 4). The reason is 
the load causes the increase of pressure, while the other end is permeable freely 
so the pressure is zero. The stress and displacement propagate also with a dis-
continuous surface respectively. Before the discontinuous surface, the changes 
are obvious while after the discontinuous surface the responses are small. At the 
cross section, the responses increase gradually from the bottom to the top 
(Figure 5). The reason is that the loading at the boundary is linearly distributed 
along the cross section. 

Figure 6 and Figure 7 show the dynamic responses with distance and para-
meters of a and b at the time t = 0.18 s. It is shown that the dynamic responses  
 

 
Figure 2. Development of stress along the length. 

 

 
Figure 3. Development of displacement along the length. 
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Figure 4. Development of pore pressure along the length. 

 

 
Figure 5. Development of displacement along cross section. 

 

   
(a)                                      (b) 

Figure 6. Effects of parameters a. (a) Pressure of corpus medullae; (b) Stress of skeleton. 
 

   
(a)                                       (b) 

Figure 7. Effects of parameters b. (a) Pressure of corpus medullae; (b) Stress of skeleton. 
 
increase with the decrease of the parameters a. It can be seen from Equation (14) 
that 1/a is the square of the wave speed. Thus the decrease of a means the dis-
turbance caused by the loading propagates speed increase and, the propagation 
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distance increases at the same time. Accordingly, the attenuation of disturbance 
in the bone increases. In other words, the responses (displacement, strain pres-
sure and stress) decrease with decrease of a.  

The increase of b means the increase of damping, so the responses decrease 
with time and distance. It can be seen from Figure 7 that the responses decrease 
more than 10 times with the value of b changing from 13.5 m/s2 to 1.35 × 10−3 
m/s2. However, the propagation speed keeps as a constant, which is determined 
by only the value of a.  

5 Conclusions 

Dynamic responses of the cancellous bone under impact load were analyzed 
theoretically. Analytical solutions were presented by using a decoupling method. 
First, based on liquid-solid media theory, two dimensional two-phase control-
ling equations were obtained. Flow function and potential function were then 
introduced to decouple the controlling equations and the solutions were solved.  

The solutions show that the responses (pressure of the corpus medullae, 
strain, stress and deformation) increase near the load end and then decrease with 
distance. There is a discontinuous surface. The dynamic responses increase with 
the decrease of the parameters a. The increase of b causes the dynamic responses 
decrease with time and distance. The responses at the cross section increase 
gradually from the bottom to the top similar to the distribution of the loading at 
the boundary. 

According to the obtained solutions, the end near the loading, such as the 
lower end of tibia and femur, is the priority position for protection. In experi-
ments, the loading form and distribution at the loading end and the boundary 
condition at the other end should be strictly controlled because these factors 
greatly affect the dynamic responses of the cancellous bone. More sensors should 
be placed near the loading end to measure fine information. 
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Nomenclature 

ρw: density of fluid 
ρs: density of solid 

iu : displacements of solid in three directions 

iv : velocities of fluid in three directions 
ε: porosity 
p: fluid pressure 
σ ij : effective stress 
g: gravitational acceleration 
G: shear modulus 
ν: Poisson ratio 
ϕs : potential functions of solid 
ψ s : flow functions of solid 
ϕ : Potential functions of water 
ψ : flow functions of water 
K: the physical permeability ( ( )ρ µ= w g k ) 
k: the Darcy’s permeability 
g: the gravity acceleration  
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