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Abstract 
The paper considers the asymptotic solution of two-point boundary value 
problems ( ) 0,  0 1y A x y xε ′′ ′+ = ≤ ≤ , when 0 1ε<  , A(x) is smooth with 

isolated zeros, ( )0 0y =  and ( )1 1y = . By using perturbation method, the 

limit asymptotic solutions of various cases are obtained. We provide a reliable 
and direct method for solving similar problems. The limiting solutions are 
constants in this paper, except in narrow boundary and interior layers of 
nonuniform convergence. These provide simple examples of boundary layer 
resonance. 
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1. Introduction 

A typical turning point problem consists of the linear differential equation 

0,y xy nyε ′′ ′− + =                          (1) 

for a nonnegative integer n on 1 1x− ≤ ≤  with prescribed boundary values 
( )1y ±  and a small positive parameter ε , i.e., 0 1ε<  . Limiting solutions, 

away from narrow so-called boundary and interior shock layers of rapid change, 
take the form 

( )0
nY x x C=                            (2) 

as 0ε →  for constants C, so satisfy the limiting reduced equation  

0 0 .xY nY′ =                             (3) 

Determining constants C and the location of layers is a nontrivial task, the 
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subject of boundary layer resonance [1]. It involves detailed asymptotic analysis 
and often uses special functions. The classical techniques of matched asymptotic 
expansions [2] [3] and the boundary function method of Vasil’eva et al. [4] may 
break down, though the newer composite asymptotic expansions [5] seem to ap-
ply. Many experts have studied such problems over the last fifty years [6] [7] [8] 
for surveys. An important application to stochastic differential equations in de-
scribed in the 2017 SIAM von Neumann lecture by Matkowsky [9]. Computing 
solutions to such problems remains a challenge, although Trefethen et al. [10] 
succeed for some examples using the program Chebfun. 

A simple, but still rich, the related problem concerns the asymptotic solution 
of the two-point problem [11] 

( ) 0,  0 1,y A x y xε ′′ ′+ = ≤ ≤                     (4) 

with the special boundary values 

( ) ( )0 0  and  1 1y y= =                        (5) 

and a smooth coefficient ( )A x . Its unique exact solution is 

( )
( )

( )

0

0

1 d

0
1 d1

0

e d
, .

e d

s

s
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A t t

s
y x

s

ε

ε

ε

−

−

∫

∫
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                     (6) 

Since 

( )
( )

( )

0

0

1 d

1 d1

0

e, 0,
e d

x

s

A t t

A t t
y x

s

ε

ε

ε
−

−

∫

∫
′ = >

∫
                   (7) 

the solution y will increase monotonically with x. The asymptotic value of 

( )
0

, d
x
I s sε∫  in (6) is the area under the curve  

( )
( )0

1 d
, e

s A t t
I s εε

− ∫
≡                         (8) 

for 0ε → . Sophisticated techniques to obtain the asymptotic evaluation of in-
tegrals can be found in Olver [12], Wong [13] and elsewhere. Simple arguments 
often provide the limiting ratio (6), often after rescaling I.  

The variety of limiting behaviors to singularly perturbed linear two-point 
boundary value problems with turning points has not been clearly described. 
The first papers by Pearson in 1968 stressed a numerical approach. In the inter-
vening fifty years, software has improved tremendously, though finding the li-
miting solution is extremely ill-conditioned as Trefethen recently observed. Due 
to the serious instability of direct numerical methods, the examples found in 
scattered literature are usually less detailed. Inspired by this, in this paper we 
consider the asymptotic solution of two-point boundary value problems (4)-(5). 
In our examples, we’ll find the constant “outer” limits 0, 0.5, and 1. 

Case 1: ( ) 0A x > . 
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Here, ( ),I s ε  decays exponentially as 0ε → , so for any fixed 0x > , the 
numerator and denominator of (6) are both ( )O ε  and the ratio (6) is asymp-
totically one. Since ( )0, 0y ε = , there is an initial boundary layer region of 
( )O ε  thickness involving nonuniform convergence of y. Here, we’re using the 

big O order symbol.  
As an example, take ( ) 1A x ≡ , 0.1,0.01ε =  and 0.001, and plot the solution 

(6). One gets  

( ) 0

1
1

0

1 e d 1 e, .
1 e d 1 e

s
x x

s

s
y x

s

ε
ε

ε ε

εε

ε

−
−

− −

−
= =

−

∫

∫
                   (9) 

The constant limiting solution ( )0 1Y x =  for 0x >  as 0ε → , satisfies the 
reduced equation 0 0Y ′ =  away from 0x = . We plot the solution for three 
small ε  values in Figure 1. 

The limit of ( ),y x ε  is discontinuous at 0x = , signaling nonuniform con-
vergence. 

Case 2: ( ) 0A x < . 
Now ( ),I x ε  grows exponentially large as 0ε → . This causes y to be 

asymptotically zero for any 1x <  and a terminal boundary layer of nonuniform 
convergence to occur near 1x = .  

As an example, take ( ) 1A x ≡ −  and plot 

( )

1

1 1

0

1 1

1
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e e d e e, .
e 1 ee d
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                (10) 

For 1x < , the limiting solution 
1

e
x
ε
−

 as 0ε →  is trivial. The limiting ter-
minal layer will have ( )O ε  thickness. 
 

 
Figure 1. ( ),y x ε  from (9). 
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2. Turning Points 

Case 3: ( ) 0.5A x x= − . 
Now there’s a simple turning point at 0.5x =  and 

( )
2 21 1 1 1 11

2 2 4 2 28, e e e .
s s

I s ε εεε

     − − −  − −      = =  

We write the ratio (6) as  

( )
( )
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                     (11) 

The exact solution is  

( )

1
2
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1, 1 ,
2 1
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y x
erf

ε

ε

ε

  −  
  
  
  = +      
 
 
 

                 (12) 

where ( ) 2

0

2 e d
z terf z t−=

π ∫  is the error function [14]. It satisfies 0z xz′′ ′+ = , 

it is odd, it increases monotonically, and it tends to ±1 as x → ±∞ . 
Since the integrands of (11) peak at the turning point and are asymptotically 

negligible elsewhere, we will have  

( )
10,  for
2,
11,  for .
2

x
y x

x
ε

 <

 >


                    (13) 

The numerator and denominator of (11) are both ( )O ε . Clearly,  

1 1,
2 2

y ε  = 
 

, there’s antisymmetry about 1
2

s = , and an ( )O ε  thick region 

of nonuniform convergence about the midpoint.  
Plotting the solution (12) for 310ε −= , we get Figure 2. 
Case 4: ( ) , 0 1A x x α α= − < < . 
We rescale I to get  

( )
( )

2 21
2 2e , e ,

s
I s

α α
ε εε

− − −
=  

a function that peaks in an ( )O ε  interval about s α=  and is asymptotically 
negligible elsewhere. This implies that a shock layer of nonuniform convergence 
occurs about the turning point. The exact solution (6) is  

( ) 2 2, .
1

2 2

xerf erf
y x

erf erf

α α
ε εε
α α
ε ε

−   
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              (14) 
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Figure 2. ( )3,10y x −  from (12). 

 

For 
1
3

α =  and 310ε −= , we get Figure 3. 

Not surprisingly, the asymptotic solution is essentially a translation of that for 
0.5α = . For 0α = ,  
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so we again get an ( )O ε  initial layer (see Figure 4(a) and Figure 4(b)). 
For 1α = , there is an analogous terminal layer. For 0α <  or 1α > , the 

boundary layer is ( )O ε , i.e. thinner. 
Case 5: ( ) ( )3 , 0 1A x x α α= − < < .  
We have a third order turning point at x α= . Again, the rescaled integral 
( ),I s ε  peaks at s α= , causing y to jump there. The shock layer is now  

1
4O ε

 
  
 

 thick. The exact solution is  
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where ( ) 1, e da u
z

a z u u
+∞ − −Γ = ∫  is the incomplete gamma function. 

Evaluating ( ),y x ε  for 
1
3

α =  and 310ε −= , we get Figure 5. 

To steepen the shock layer, we must take ε  much smaller.  
We change the sign of A for the next three examples. 

Case 6: ( ) 1
2

A x x= − . 

Rewriting (6) as  
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Figure 3. ( )3,10y x −  from (14) with 
1
3

α = . 

 

 
(a) 

 
(b) 

Figure 4. (a) ( )3,10y x −  from (15) in the initial layer; (b) ( )3,10y x −  from (15). 
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Figure 5. ( )3,10y x −  from (16) for 
1
3

α = . 

 
the exact solution is 
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We note that the solution could be expressed in terms of Dawson’s integral 
( ) 2 2

0
e e d

zz tF z t−= ∫ . The integrands in (17) peak symmetrically at 0s =  and 1,  

being asymptotically negligible elsewhere. Moreover, 
1 1
2 2

y   = 
 

. Indeed  

( ) 1
2

y x   for 0 1x< < , and twin ( )O ε  boundary layers occur near both end-

points. For 310ε −= , we have Figure 6. 

Case 7: For ( ) 1, 0
2

A x xα α= − < < , we have 
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Its exact solution is  

( )
2 2

2 2

2 2
0 0
1

2 2
0 0

e d e d
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e d e d
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t t

t t

t t
y x
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                 (20) 

The integrand of (19) is asymptotically negligible for 2s α< , but asymptoti-
cally large for 2s α> . This implies that  

( ) 0  for 1,y x x <  

so there is as ( )O ε -thick terminal layer. 
As an example, consider 

3 110 0.
3

y x y−  ′′ ′+ − = 
 

 

We have Figure 7 for picture of ( )3,10y x − . 
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Figure 6. ( )3,10y x −  from (18). 

 

 

Figure 7. ( )3,10y x −  for 
1
3

α = . 

 

Case 8: For ( ) 1,
2

A x xα α= − > , the integrand in (19) decays for 0 2s α< < . 

Thus 

( ) 1  for 0y x x >  

and there is an ( )O ε  thick initial layer (see Figure 8). 

For appropriate ( )1 1
2

oα + , we’d expect that the shock layer moves across 

the interval. We’re now using the little o order symbol, which admittedly isn’t 
very explicit. 

Case 9: For ( ) 1 3(
4 4

A x x x  = − −  
  

, we have simple turning points at 1
4

 

and 3
4

. Moreover, ( )
23

3 4, e
x x

I x εε
 − − 
 =  peaks at 0x =  and 3

4
 and is asymp-

totically negligible elsewhere. The sizes of the contributions to the integral differ, 

however. The area under I near 0x =  is ( )O ε , but that near 3
4

x =  is 

( )O ε , i.e., larger. Thus, the ratio (6) is ( )O ε  for 30
4

x< <  and ( )1O  

for 3 1
4

x< < . 
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Computing for 310ε −= , we get Figure 9. 
This relies on the following figures. We’ve increased ε  in Figure 10 to 

show the relative contributions. Normalizing to get ( )1 1y = , we get the solu-
tion in Figure 9. And Figure 11 shows the picture of integral for ( ),I x ε  with 

310ε −= . 
 

 

Figure 8. ( )3,10y x −  for 
3
4

α = . 

 

 

Figure 9. ( )3,10y x − . 

 

 
Figure 10. ( ),0.002I x . 
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Figure 11. ( )3

0
,10 d

x
I s s−∫ . 

3. Conclusion 

We have not been exhaustive, but we have certainly demonstrated a wide variety 
of asymptotic solutions to turning point problems of the form (4) - (5). They 
mimic the asymptotics of the more general boundary layer resonance problem. 
When the problem of turning points becomes complicated, numerical methods 
will become unreliable. Finding the limiting solution is extremely ill conditioned 
as Trefethen recently observed. Due to the serious instability of direct numerical 
methods, the examples found in scattered literature are usually less detailed. In 
this paper, we only give asymptotic solutions for a class of singularly perturbed 
with a turning point. Indeed, the techniques developed here might be expected 
to apply to that problem. Readers are encouraged to study other limiting possi-
bilities for (4) - (5). 
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