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Abstract 
In this note, we discuss a supplementary explanation about works of Takaha-
shi and Tanaka, which are a kind of replication study of Wilks & Meara 
(2002), where they discuss the structure of learners’ mental lexicon network 
from the viewpoint of psycholinguistics. Here we mainly discuss some ma-
thematical structures which support their studies latently. Using some simple 
random graph techniques, we propose that the role of “densities” is important 
and useful under some suitable assumptions. Then, we exhibit the effective-
ness of our method by applying it to the data of experiments in Takahashi 
and Tanaka, where some inequalities obtained mathematically help us to in-
vestigate some of the aspects of the L2 mental lexicon network. Mathematical 
proofs and detailed discussion are collected in the final section, in which we 
give also mathematical interpretation on some models which were shown by 
computer simulations in previous works. 
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1. Introduction 

The basic object to examine “mental lexicon” is to investigate how humans or-
ganize huge “words” in their mind. Many researchers in various areas are at-
tracted to the structure of mental lexicon and try to illustrate it. Many types of 
findings are found in the standard textbooks, for example, (Aitchison, 1987, 
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2012) and (Boyd, 1993); an overview of various fields on psycholinguistics in-
cluding mental lexicon is found in (Gaskell, 2009). There exist various methods 
or ideas due to the difference of the communities where researchers belong to, 
but no one will imagine each word in the mental lexicon is completely isolated. 
Thus it is natural to consider words are linked one another and the whole 
words form “word-web”, a kind of network. In this sense, a model of the mental 
lexicon becomes a network, that is, graph; a graph is a notion in mathematics 
and constructed by vertices corresponding to “words” and edges corresponding 
to relationships among words. Classically graphs are known to be applied effec-
tively to chemistry, physics, social science and so on. Also in the context of lin-
guistics and psychology, there exist many works on graph-theoretical mental 
lexicon. For instance, refer to (Kiss, 1968; Meara, 1992; Rapaport, Livant, & 
Boyd, 1966; Scott, 1991; Wilks & Meara, 2002; Wilks & Meara, 2007; Wilks, 
Meara, & Wolter, 2005). In many works, graph-invariants, which are some sta-
ble quantities measuring a given graph, in the structure of mental lexicon are 
discussed: the distribution of degrees, cluster coefficient, path length, commu-
nity and so on. See also Marcus (2001) for the study on the mental lexicon with 
computer sciences. Moreover, after the original idea of complex network, or, 
scale-free network are brought by Barabási & Albert (1999) and Barabási (2009), 
one can see this concept describes many phenomena in sociology, biology or 
economics well. Therefore many researchers try to apply it to the mental lex-
icon: (Gruenenfelder & Mueller, 2007; Gruenenfelder & Pisoni, 2005, 2009; 
Schur, 2007; Stella, Beckage, Brede, & De Domenico, 2018; Vitevitch, 2008; Vi-
tevitch, Goldstein, Siew, & Castro, 2014), for instance. In summary, graph- 
theoretical approach for the mental lexicon has been well developed. 

However, there is considerable disagreement over how the mental lexicon is 
constructed in human mind. In particular, it is not clear how different the men-
tal lexicons between first language (L1) and second language (L2) are. Refer to, 
for instance, (Harley, 2010) for the mental lexicon for bi- or multi-lingual. 
Theoretically it is discussed that the link occurs between two words when they 
have some semantic relationship, and that co-ordination or collocation is stronger 
than others, superordination or synonymy, for instance, (Aitchison, 1987, 2012); 
this seems to be agreed for L1. However, no one may know whether this holds or 
not for L2; the co-ordination or collocation may be stronger in the semantic re-
lation, or, the syntactical or phonological relation may be stronger than the se-
mantic one, or, the relation in the wide meaning of “co-occurrence” may be 
stronger than others. Then, to examine how humans link among words actually 
and the mental lexicon for L1 and/or L2, we believe we should pursue phycho-
linguistic experiments. In the word association task of Wilks and Meara (Wilks 
& Meara, 2002), participants were 30 learners of French whose L1 was English 
and 30 native speakers of French and were asked to identify associations from a 
given set of randomly chosen five French words. These experiments bring the 
number of “hits”, that is, pairs of associated words, for each participant, then we 
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know, as a result, native speakers than nonnative ones perceive significantly 
more associations. This simple experiment gives to us slight information on how 
the L2 mental lexicon is organized; that is, “densities” in word associations are 
different between L1 and L2 since the network of word associations is consi-
dered to be denser as the number of word associations increases. Thus main 
conclusion in (Wilks & Meara, 2002) is that L1 networks are denser than L2 
networks of the learners in French. We should remark the linkage “association” 
in (Wilks & Meara, 2002) depends on the individual impression of each partici-
pant, that is, we cannot know what type of reasons generates their links. In other 
words, it is natural to investigate the L2 mental lexicon without any restriction in 
a way to associate. 

Following the work stated above, Takahashi and Tanaka (Takahashi & Tana-
ka, in preparation; Tanaka & Takahashi, 2019) try to investigate how the L2 
lexical network is organized in English, where some mathematical methods es-
sentially help them to state conclusions but explicit expressions and details are 
hidden since their discussion should have been done mainly in the context of 
(psycho)linguistics. Therefore one of the main objects of this paper is to give a 
supplementary explanation on mathematical ideas used in (Takahashi & Ta-
naka, in preparation; Tanaka & Takahashi, 2019) explicitly. To investigate the 
structure of the mental lexicon as a network, we need many psychological ex-
periments for a large number of persons and many tools guaranteed theoreti-
cally for analysing properties of the model. As a first step, our methods with 
mathematically rigorous discussion in the sense of random graph, which are 
quite basic and useful, will be more developed in the future research. 

This paper is organized as follows: In Section 2, we briefly review the study of 
Wilks & Meara (2002) (Section 2.1) and explain their methods in terms of graph 
theory and random graphs (Subsection 2.2). We discuss the main study in this 
paper in Section 3: firstly the brief review of the studies of Takanashi and Tanaka 
(Takahashi & Tanaka, in preparation; Tanaka & Takahashi, 2019) is given in 
Subsection 3.1. Then we explain some latent mathematical ideas for (Takahashi 
& Tanaka, in preparation; Tanaka & Takahashi, 2019) in Subsections 3.3. After 
that, we propose and apply our methods to the data of experiments in (Takaha-
shi & Tanaka, in preparation; Tanaka & Takahashi, 2019) in Subsection 3.4. Fi-
nally we discuss concluding remarks about our methods and mental lexicon 
networks of L2 learners’ in Section 4. Some supplements in the text (some ma-
thematical proofs, some sample of experiments in (Takahashi & Tanaka, in prep-
aration; Tanaka & Takahashi, 2019), mathematical interpretations and so on) 
are exhibited in the Appendix. 

2. Background 
2.1. The Study of Wilks and Meara 

In this paper, our methods are almost the same as in (Wilks & Meara, 2002). In 
a given set of words, one construct a kind of network of words individually; such 
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a network is so-called a graph. Here the set of vertices (in the terms of Graph 
Theory) corresponds to that of words and the set of edges does to that of “asso-
ciations”, where association implies the existence of strongly link of two words. 
The density of a given graph is defined as the ratio of the number of all the edges 
in the number of all possible edges which equals to ( )1 2n n − , where n is the 
number of all the words. Wilks & Meara (2002) investigated a difference be-
tween the densities of L1 and L2 in French. Their experiment was designed as 40 
questions (items) in one questionnaire and each question is: for 5 words chosen 
randomly from the first 1000 most frequency words,  

1) if any pair of 5 words are thought to be no association, nothing should be 
written; 

2) if one or more pairs of 5 words are thought to be associated, the only one 
pair of strongest association should be circled.  

We say the “hit rate” for the ratio of the number of answers to be associated 
over that of all questions. 

Through this “five-word task” experiment, we should remark that we cannot 
obtain the structure of associations of the individual mental lexicon network 
since, under the instruction (2), we can only see the strongest link pair of two 
words; so to say, we asked the participant to break the “detail structure” of asso-
ciations. However, it is important to see the ratio of items with no-association. 
Once the network of mental lexicon was constructed, the density p behaves like the 
existence probability of association between any pair of words in this network. 
Under the assumption that such a probability p is identically and independent dis-
tributed, the probability of an item with no-association occurring is estimated as 
( )101 p−  since the number of all possible pairs is 10. Therefore, by observing the 
ratio of items with no-association, we can get the density p. We are very careful 
to treat items with association, which was forced to be indicated one-pair only. 

Of course, we know such instruction (2) may be suitable for actual experiment 
with psychological reasons for participants. If such a experiment was done for 
subjects not having human emotions, for example, in computer simulations, the 
restriction in (2) would not be needed. Namely, instead of (2), if the condition 
that all pairs of association might be indicated was asked, it would be somewhat 
difficult for participants to choose “no-association” in the item just after indi-
cating “many associations”. 

Repeatedly we should say it is important to obtain the number of items with 
no-association as accurately as possible. 

2.2. Random Graphs 
2.2.1. Interpretation of the Setting of Wilks and Meara 
Among huge words in one’s mind, it is natural to consider a kind of network of 
words, mental lexicon network, is constructed, and some associations appear 
and other ones disappear every time one sees or hears words. Namely, such a 
network will be drastically changing its structure depending on the input of 
words. However, once the context generating words is confirmed, it is consi-
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dered to be almost stable with small fluctuation. On the other hand, how does 
the network of “mental lexicon” behave every time words are given randomly 
without any context? We believe the network appearing in such a situation may 
be a “basic” or “core in (Wilks & Meara, 2002)” mental lexicon; although it will 
change its structure at every input of words, its density is considered to be stable 
in the same way as in (Wilks & Meara, 2002), where they actually examined to 
compare the relative densities of first language (L1) in French and second lan-
guage (L2) in such “basic” lexical networks. Here the word “density” can be 
treated as the proportion of the number of the associated word pairs over the 
number of all possible pairs in the whole given words. In addition, its “density” 
can correspond to a probability p; if a pair of words is chosen randomly, they 
will associate each other with probability p. The model of network with proba-
bility is usually said to be a random graph in mathematics. In particular, the 
Erdös-Rényi model is well-known and much research on it have been actively 
studied; the first remarkable paper about this model is appeared in (Erdös & 
Rényi, 1959). Once the density, or probability, is given, we can generate a sample 
network of mental lexicon in the context of random graphs. The set of words 
and that of associations are the set of vertices and edges in the term of graph 
theory, respectively. Then ( ),G n p  denotes a random “undirected” graph such 
that every possible edge occurs independently with probability 0 1p< <  for n 
vertices. See also Figure 1.  

In Wilks and Meara (Wilks & Meara, 2002), they derived the density by many 
computer simulations to generate regular random graphs and observe the exis-
tence of edges in randomly selected subgraph of 5 vertices. However, we em-
phasize the relationship between a hit rate and its density can be obtained ana-
lytically, whose concrete form will be seen in Proposition 2.1 in Section 2.2.2. 
Namely, once we obtained the hit rate, we can derive its density immediately. In 
this sense, we calculated the densities in the paper of Wilks and Meara, then 
their evaluations were about half of our ones. We imagine there was a little bit of 
mistake or ambiguity in generating random “regular” graphs in their paper. They 
introduced all notions in graph theory in terms of “undirected” graph: for instance, 
symmetric adjacency matrices representing the structure of undirected graphs, the 
density represented by the ratio of the number of all undirected edges in the com-
plete graph and so on. So it is natural to recognize their results in the setting “un-
directed” graphs. In fact, we re-examined their strategy in using a statistical pro-
gramming language R (R Core Team, 2019) and a graph theoretical package 
iGraph (Csardi & Nepusz, 2006), then our estimation seems to be right. How-
ever the essence and importance of their paper cannot suffer from tiny errors;  
 

 
Figure 1. Samples of random graphs of 20 vertices, G(20, p): Edge probabilities p are set 
as 0.7. 0.5, 0.15, 0.08 and 0.03, respectively. 
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as will be seen in Remark 2.4, if we apply “directed” random graphs to the asso-
ciation task for 5 words chosen randomly in (Wilks & Meara, 2002), we can find 
the estimations in our way coincide with the results in their simulation. 

2.2.2. Basic Relations around Densities 
As stated in the above, we first give a simple relation between the hit rate in the 
five-word task and the density.  

Proposition 2.1. We can easily find, for the five-word task,  

( )10hit rate 1 1 density” .“ “ ”= − −                   (1) 

Thus, once the hit rate is given from actual experiments, we soon obtain the 
density as  

( )
1

10“ ” “density 1 1 hit ” rate .= − −                  (2) 

Here the exponent “10” of the right hand side of (1) comes from 
5
2
 
 
 

 in 

“five-word task,” which is the number of all possible pairs on one question con-
sisting of 5 words chosen randomly. Thus, if we use a questionnaire such that 
each question consists of “ n -words” ( n∈N ) chosen randomly, that is, “ n -word 

task,” each exponent of the right hand sides of (1) and (2) is replaced with 
2
n 
 
 

 

and 1
2
n 
 
 

, respectively. 

Before stating the next relation, we give a definition in terms of graph theory. 
The set of all words correspond to the set of vertices ( )V G  of a given graph G. 
Similarly the set of all associations among words corresponds to the set of edges 
( )E G  and the density does to the ratio of the number of edges of G in that of 

the complete graph with size of ( )V G .  
Definition 2.2 Let ( ) ( )( ),G V G E G=  be a finite simple undirected graph 

and let A be a non-empty proper subset of ( )V G  and ( ) \B V G A= . Then we 
define four types of densities , ,A B AA BBp p p+  and ABp  as follows:  

( ) ( ) ( ) ( )# ## # ,
, , and ,

 2 2 2

A B AA BB AB
A B A B A B

E A E BE G E A B
p p p p

n n n n n n+ = = = =
+     

     
     

(3) 

where Un  is the number of elements of the set U, U  is the subgraph of G 
induced by the set of vertices U and ( ),E A B  is the set of edges connecting two 
set of vertices A and B.  

We find the following relation is trivial from Definition 2.2 but important in 
this paper. It may be said to be a kind of mean field theoretic approximation; the 
left hand side of the following equation implies a “one-body system” A + B and 
the right hand a “two-body system” A and B. 

Proposition 2.3 We have the relation among four densities as  

.
2 2 2

A B A B
A B AA A B AB BB

n n n n
p p n n p p+

+     
⋅ = ⋅ + ⋅ ⋅ + ⋅     

     
         (4) 
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Let us express the symbols shown in the above in the context of the word as-
sociation, which will be discussed in Section 3: An  and Bn  are the numbers of 
words in Group A and Group B, respectively; thus A Bn n+  indicates the num-
bers of the whole set of all words, Group A + B. Moreover, AAp , BBp , ABp  
and A Bp +  imply the densities connecting two words in Group A, in Group B, 
one word in Group A and the other in Group B, and in Group A + B, respec-
tively. In actual experiments, we may say (4) becomes a kind of assumption for 
derived/underived “small” densities satisfying in the sense of mean field theoret-
ic approximation. In particular, we discuss in Section 3 the relationship among 
densities in our “five-word task” experiments under the relation (4) for simplic-
ity. For more details about the relation (4) in the “k-word task” experiments, re-
fer to Section A3 in Appendix. 

Remark 2.4. Throughout this paper, we treat “undirected” random graphs on-
ly. As stated in the previous subsection, “undirected” random graphs seemed to 
be treated in (Wilks & Meara, 2002). However, by seeing the differences between 
our estimations and their results and referring to the sequential works of Meara 
et al. (Wilks, Meara, & Wolter, 2005; Meara, 2007), we confirm they treated 
“directed” graphs, or, “digraphs” in their simulations. Now let us show the rela-
tionship between a hit rate and a density in the case of “digraphs” in the similar 
way to that in the above. Let ( ) ( )( ),G V G A G=  be a di-graph, where ( )A G  
is the set of all directed edges, or, arcs: [ ] ( ),x y A G∈  implies [ ],x y  is an arc 
from x to y. In this setting, it is natural that x and y in ( )V G  are considered to 
be “associated” if and only if [ ] ( ),x y A G∈  or [ ] ( ),y x A G∈ . We set the den-
sity of a digraph ( ) ( )( ),G V G A G=  as 

( )
( ) ( )( )

#
.

# # 1
A G

p
V G V G

=
−

                     (5) 

Under the assumption that such a probability p is identically and indepen-
dently distributed, the probability of no-association occurring between x and y is 
estimated as ( )21 p− . Moreover we can easily find, for a randomly selected 
n-words experiment, that is, “n-word task,”  

( )2
2hit rate 1 1“ ” .
n

p
 
 
 = − −                      (6) 

Thus, once the hit rate is given from actual experiments, we soon obtain the 
density p as  

( ) ( )
1

11 1 hit r“ ”ate .n np −= − −                     (7) 

When 5n = , we can see the formula (6) almost recovers the results of simu-
lations in Table 1 and Figure 3 in (Wilks & Meara, 2002). In their sequential 
works (Wilks, Meara, & Wolter, 2005; Meara, 2007), they treat digraphs without 
ambiguity and introduce a modified model considering associations linked “in-
directly” in some way. We give mathematical interpretations on some of their 
models and results in simulations in Section A6 in Appendix. Repeatedly we 
remark we treat “undirected” random graphs only in this paper. 
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3. Main Study 
3.1. The Study of Takahashi and Tanaka 

The studies in (Takahashi & Tanaka, in preparation; Tanaka & Takahashi, 2019) 
report on a word association task for Japanese learners who learn English as 
an L2. The English words used in our word association task were chosen from 
The New JACET List of 8000 Basic Words (JACET, 2016), which is a list of 
essential English vocabulary for university students in Japan. In total, we 
chose 1090 words essential for junior high school students and 1744 words 
essential for senior high school students; hereinafter the former set of words 
is called “Group A”, the latter “Group B”, and the whole set of words “Group 
A + B.” The format of our word association task was similar to the one per-
formed in Wilks and Meara (Wilks & Meara, 2002). However, we performed it 
using English words instead of French words. In the experiment, we presented a 
set of five words in each trial. See also Figure 2. There were 80 word sets in a 
word association test as follows: in the word set 1 - 40, we selected 5 words 
randomly from Group A + B; in the word set 41 - 80, we chose 5 words only 
from Group B; the two types of words sets appeared in a random order in each 
questionnaire. Participants were asked to identify a single association, if any, 
in a given set of randomly chosen five words in the word association tests that 
we devised. Then we measured the “hit rate”, the ratio of word associations. 
An example and the flow of our actual experiment can be found in Section 
A1. 

In (Takahashi & Tanaka, in preparation), the participants were five Japanese 
undergraduate students whose proficiency level of English was intermediate 
(their TOEIC Listening and Reading score was approximately 600), and five 
Japanese researchers who used English on daily basis in their research. The 
data of the students showed that the mean hit rate was higher when the words 
from Group A were included, suggesting that the words in Group A might be 
functioning as hub vertices that help link the words in the lexical network in 
their L2 mental lexicon. See also Figure 3. This tendency was not observed in 
the test results of the researchers. See also Table 1. 

In Tanaka & Takahashi (2019), the participants were thirty-two native  
 

Table 1. Result in (Takahashi & Tanaka, in preparation). 

  
Students (# = 5) Adults (# = 5) 

Group A + B 
Mean hit rate  
(# of answered pairs/40 × 5) 

0.705 (141/200) 0.780 (156/200) 

(2834 words) Estimated density A Bp +  0.1149 0.1405 

 
[# of each type in answered pairs] 

AA = 30,  
AB = 67, BB = 44 

AA = 32,  
AB = 66, BB = 58 

Group B 
Mean hit rate  
(# of answered pairs/40 × 5) 

0.550 (110/200) 0.800 (160/200) 

(1744 words) Estimated density BBp  0.0767 0.1487 
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Figure 2. An example of associations in given five words. 

 

 
Figure 3. Sample of another kind of random graph: Group A (white-squared 10 ver-
tices) and Group B (black-circled 20 vertices); Edge probabilities in two vertices with-
in A, within B, and between A and B, are set as 0.15, 0.08, and 0.11, respectively. 

 
Table 2. Result in (Tanaka & Takahashi, 2019). 

  
Students (# = 32) 

Group A + B 
Mean hit rate  

(# of answered pairs/40 × 32) 
0.6805 (871/1280) 

(2834 words) Estimated density A Bp +  0.1078 

 
[# of each type in 871 answered pairs] AA = 162, AB = 427, BB = 282 

Group B 
Mean hit rate  

(# of answered pairs/40 × 32) 
0.5961 (763/1280) 

(1744 words) Estimated density BBp  0.0867 

 
speakers of Japanese whose proficiency level of English was also intermediate 
and their TOEIC Listening and Reading score was approximately 400 in av-
erage. We found a significant difference between the mean hit rate in Group 
A + B (68%) and that in Group B (60%, p < 0.001). This suggests that the ra-
tios of how one word is associated with another are different in Group A and 
Group B. See also Table 2. In addition, we found that estimated densities for 
word associations were 0.11 for Group A + B, whereas 0.09 for Group B, 
which might indicate that the word associations involving Group A were 
denser than those in Group B. 

For interpretation and analysis in terms of (psycho)linguistics for these re-
sults, refer to (Takahashi & Tanaka, in preparation; Tanaka & Takahashi, 2019). 
We should remark that the young participants selected for our experiments in 
(Takahashi & Tanaka, in preparation; Tanaka & Takahashi, 2019) are interme-
diate-level learners of English in a Japanese university. We believe partici-
pants must not be too high-grade nor low-grade in investigating the standard 
structure of the L2 mental lexicon for the majority. In this sense, our partici-
pants might be quite suitable. 
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3.2. Taste of Scale-Free Network 

The concept of complex networks, or, scale-free network has relied on the 
construction of network evolution models. Most of studies on complex net-
work, which are based on (Barabási, 2009; Barabási & Albert, 1999), discuss 
the topological statistics of the evolving network. 

In our studies, we cannot evaluate such properties since the number of ver-
tices, or equivalently, words, is very large but fixed. However we imagine the 
mental lexicon network of L2 learner may evolve like a complex network 
evolution model as they acquire new words more and more. In this sense, we 
can say that we could see some snapshot in their evolution and some trend as 
complex network. Thus, through the actual experiment, we would find the 
existence of “hubs”, which correspond to “important words” in the process of 
acquiring words. 

Let us assume that Group A is the set of “more important” words in the 
whole set of words Group A + B. If this assumption is true, we can find the 
significant differences between the hit rates of Group A + B and Group B; 
moreover the density involving Group A is denser than that involving Group 
B. In other words, the significant differences can be said to be in favour of 
complex network in the process of L2 learners’ mental lexicon evolution 
model. However, we cannot state that the mental lexicon forms the scale-free 
network due to lack of showing the scale-free properties (Barabási, 2009; Ba-
rabási & Albert, 1999; Schur, 2007; Vitevitch, Goldstein, Siew, & Castro, 2014), 
for example, a power law distribution of degree of vertices. At this stage, all 
we can say is that the L2 mental lexicon network has a possibility to be a kind 
of scale-free network. Here let us recall our main purpose is to show that the 
whole set of words can be divided into more and less important groups and to 
propose some modelling for our experiment.  

3.3. Latent Mathematical Ideas 

As is seen in Section 3.1, the data of the students shows that the mean hit rate in 
Group B is lower than that in the whole set of words Group A + B. Thus the 
density of word associations in Group A is expected to be higher and affect that 
of Group A + B. However, by this result only, it is not sufficient to state that “the 
set of basic words”, Group A, plays an important role in the whole set and act 
like “hubs”. 

A natural question which may arise is why they did two types of experiments, 
Group B only and Group A + B, and did not another type, Group A only. There 
exist two types of answers: one is that the total number of questions becomes 
over 100 and seems to be too much to keep the qualities in participants’ answer-
ing (Dörnyei & Taguchi, 2010; Gillham, 2008). Another is that, by using only 
the data we obtained so far, we can derive some qualitative expressions exhibit-
ing words on Group A are more important. These expressions can be seen in 
(Takahashi & Tanaka, in preparation; Tanaka & Takahashi, 2019) without de-
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tails. Here let us state their explicit expressions; their proofs are given in Section 
A4. First, let us introduce the “densities of association” including at least one 
word in Group A and at least one word in Group B denoted by Ap ∗  and Bp ∗ , 
respectively.  

Definition 3.1. We define two probabilities Ap ∗  and Bp ∗  as follows:  

2

2

A
AA A B AB

A
A

A B

n
p n n p

p
n

n n
∗

 
⋅ + ⋅ ⋅ 

 =
 

+ ⋅ 
 

 and 
2

2

B
BB A B AB

B
B

A B

n
p n n p

p
n

n n
∗

 
⋅ + ⋅ ⋅ 

 =
 

+ ⋅ 
 

    (8) 

Remark 3.2. As are seen in (Takahashi & Tanaka, in preparation; Tanaka & 
Takahashi, 2019) or in Table 1 and Table 2, the densities we can obtain are just 

A Bp +  and BBp . Thus we cannot evaluate Bp ∗ . On the other hand, thanks to (4) 
in Proposition 2.3, which is, so to say, the general assumption, we can fortunate-
ly evaluate Ap ∗  via An , Bn , A Bp +  and BBp  as follows:  

2 2
.

2

A B B
A B BB

A
A

A B

n n n
p p

p
n

n n

+

∗

+   
⋅ − ⋅   

   =
 

+ ⋅ 
 

                 (9) 

Proposition 3.3. Assume that A Bn n<  and that A Bp +  and BBp  are given. 
Then, if ,AA A Bp R> , we have  

,A Bp p∗ ∗>                           (10) 

where  

( ), , , ,

2 2 2 2 2
.

2 2

A B A B A B BB

B B A B B A
BB A B A B

A A
A B

R R n n p p

n n n n n n
p n n p

n n
n n

+

+

=

  +           
+ − −            

            =
    

+    
    

    (11) 

In particular, if  

2 2
,

2 2 2

B B
A B

A B

BB A B B A

n n
n n

p
p n n n n

+

    
+    

    >
+       

−      
      

                  (12) 

then A Bp p∗ ∗>  always holds. Here, for any fixed 0An > , the right hand side of 
(12) monotonically decreases as ( )B An n>  increases; moreover it tends to 1 as 

Bn →∞ . 
Next let us introduce the average numbers of associations of each word in 

Group A and Group B denoted by Ad  and Bd , respectively.  
Definition 3.4. We define two expected degrees Ad  and Bd  as follows:  

( )1A A AA B ABd n p n p= − ⋅ + ⋅  and ( )1B B BB A ABd n p n p= − ⋅ + ⋅      (13) 
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Proposition 3.5. Assume that A Bn n<  and that A Bp +  and BBp  are given. 
Then, if ,AA A Bp S> , we have  

,A Bd d>                           (14) 

where  

( ) ( )
( ) ( ),

1
, , , .

1
B B

A B A B A B BB A B A B BB
A A

n n
S S n n p p p p p

n n+ + +

−
= = − −

−
     (15) 

In particular, if  

( )
( ) ( )

1
,

1 1
B BA B

BB B B A A

n np
p n n n n

+ −
>

− − −
              (16) 

then A Bd d>  always holds. Here, for any fixed 0An > , the right hand side of 
(16) monotonically decreases as ( )B An n>  increases; moreover it tends to 1 as 

Bn →∞ .  
Under the assumption A B BBp p+ > , we should remark that the restriction for 

AAp  becomes weaker for the conclusions as Bn  is bigger than any fixed An  
in both Propositions 3.3 and 3.5. Furthermore, the next corollary shows the con-
dition in Proposition 3.5 is stronger than that in Proposition 3.3, that is, 

A Bp p∗ ∗>  always holds if A Bd d>  but the converse does not.  
Corollary 3.6. Assume that A Bn n< . Then , ,A B A BR S<  if and only if  

A B BBp p+ > . 
Let us apply these estimates to results in experiments in (Takahashi & Tanaka, 

in preparation; Tanaka & Takahashi, 2019). Here we use a statistical program-
ming language R (R Core Team, 2019) for numerical calculations throughout 
this paper. 

3.3.1. In Preliminary Study of Takahashi and Tanaka 
In the preliminary study of Takahashi and Tanaka (Takahashi & Tanaka, in 
preparation), for students, there was a significant difference between mean hit 
rate in Group A + B and that in Group B via a statistical test (Welch t-test): t = 
3.2399 and p-value = 0.001297 < 0.01. See also Table 1. For students in this case, 
we will show A Bp p∗ ∗>  and A Bd d> ; in other words, Group A is more im-
portant for students. 

Let us calculate ,A BR  in Proposition 3.3 and ,A BS  in Proposition 3.5 for stu-
dents. Here 1090An = , 1744Bn = , 0.1149A Bp + =  and 0.0767BBp = . Thus 
we have, by (11) and (15),  

, 0.01925604A BR = −  and , 0.01707433A BS =            (17) 

By Proposition 3.3, we immediately have  

0.1381755 ,A Bp p∗ ∗= >  

where we apply (9) to obtaining the value of Ap ∗ . Also we should remark 
that  

https://doi.org/10.4236/ojml.2019.96037


Yu. Higuchi et al. 
 

 

DOI: 10.4236/ojml.2019.96037 488 Open Journal of Modern Linguistics 
 

1.498044A B

BB

p
p

+ =  and 
2 2

1.398099

2 2 2

B B
A B

A B B A

n n
n n

n n n n

    
+    

     =
+       

−      
      

, 

which satisfy (12) in Proposition 3.4. 
We recall a kind of exact value of AAp  or ABp  cannot be obtained. Howev-

er, by using (34), (36) in Appendix and the information on “the number of each 
type in answered pairs” in Table 1, we can estimate AAp  and ABp  below:  

Claim 3.7. We have  
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   (20) 

where AA, AB and BB are the numbers of answered pairs in the experiment 
connecting both two words in Group A, between one word in Group A and the 
other in Group B, and both two words in Group B, respectively. 

Depending on the requirement (2) in Subsection 2.1 for experiments, “hidden” 
associations, which may exist, cannot be counted. Thus we only have such in-
equalities stated in the above. 

Applying “total number of participants” = 5, AA 30= , AB 67=  and  
BB 44=  in Table 1 to Claim 3.7, we can obtain  

0.1014573AAp ≥  and 0.07074378ABp ≥              (21) 

Here we can also get 0.05810657BBp ≥ , which does not contradict the value 
0.0767BBp =  obtained by the actual experiment. By (21) and (17) with Propo-

sitions 3.5, we can obtain  
.A Bd d>  

As a further observation, combining Proposition 2.3 and (21), we have the 
upper bound estimates for AAp  and BBp . Actually we can see  

https://doi.org/10.4236/ojml.2019.96037


Yu. Higuchi et al. 
 

 

DOI: 10.4236/ojml.2019.96037 489 Open Journal of Modern Linguistics 
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Similarly, we have 

2 2 2

0.1149 0.0767 0.1014573
2 2 2

0.1496395.

A B B A
A B BB AA

AB
A B

A B B A

A B

n n n n
p p p

p
n n

n n n n

n n

+
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− −     

     =
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=

      (23) 

Consequently, by the experiment in (Takahashi & Tanaka, in preparation), 
we have  

0.1149, 0.0767, 0.1014573 0.3541553A B BB AAp p p+ = = ≤ ≤  

and 0.07074378 0.1496395ABp≤ ≤  
for students. 

On the other hand, for adults, no such significant difference can be found be-
tween mean hit rate in Group A + B and that in Group B: t = −0.48995 and 
p-value = 0.6244. Refer to Table 1 and (Takahashi & Tanaka, in preparation). 
Thus we cannot expect A Bp p∗ ∗>  or A Bd d>  holds. Let us discuss the den-
sities for adults by the same arguments as in the above. Here 1090An = , 

1744Bn = , 0.1405A Bp + =  and 0.1487BBp = , Thus we have, by (11) and (15),  

, 0.1692979A BR =  and , 0.1614992A BS = .          (24) 

Furthermore we have  

0.1355037.Ap ∗ =  

Next Applying “total number of participants” = 5, AA 32= , AB 66=  and 
BB 58=  in Table 1 to Claim 3.3.1, we can obtain  

0.1082211AAp ≥  and 0.0696879ABp ≥             (25) 

Here we can also get 0.07659502BBp ≥ , which does not contradict the value 
0.1487BBp =  obtained by the actual experiment. Obviously, by (25) and (24) as 

far, we cannot conclude whether  

A Bd d>  or A Bp p∗ ∗>  

holds; in fact, our intuition in (Takahashi & Tanaka, in preparation; Tanaka & 
Takahashi, 2019) is that A Bd d=  and A Bp p∗ ∗=  hold approximately, which 
does not contradict the discussion above. 
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Again, by the same argument as in the case for students with the results for 
adults in (Takahashi & Tanaka, in preparation), we consequently have  

0.1405, 0.1487, 0.1082211 0.3463076A B BB AAp p p+ = = ≤ ≤  

and 0.0696879 0.1440217ABp≤ ≤  
for adults. 

3.3.2. In Further Study of Tanaka and Takahashi 
In a further study of Tanaka and Takahashi (Tanaka & Takahashi, 2019), for 
32-students, there was also a significant difference between mean hit rate in 
Group A + B and that in Group B via classical Welch t-test: t = 4.4578 and 
p-value = 8.637e-06 < 0.00001. Also in this case, we will show A Bp p∗ ∗>  and 

A Bd d>  by the same arguments as in the previous subsection 3.3.1. 
Let us calculate ,A BR  in Proposition 3.3 and ,A BS  in Proposition 3.5. Refer-

ring to Table 2, we find 1090An = , 1744Bn = , 0.1078A Bp + =  and  
0.0867BBp = . Thus we have, by (11) and (15),  

, 0.0336981A BR =  and , 0.0537654A BS = .            (26) 

In this case, we see 0.1206564Ap ∗ =  and  

1.243368A B

BB

p
p

+ =  and 
2 2

1.398099

2 2 2

B B
A B

A B B A

n n
n n

n n n n

    
+    

     =
+       

−      
      

, 

which does not satisfy (12) in Proposition 3.4. 
Now applying “total number of participants” = 32, AA 162= , AB 427=  

and BB 282=  in Table 2 to Claim 3.7, we can obtain  

0.0856046AAp ≥  and 0.07044681ABp ≥             (27) 

here we can also get 0.05818911BBp ≥ , which does not contradict the value 
0.0867BBp =  obtained by the actual experiment. By (27) and (26) with Propo-

sitions 3.3 and 3.5, we can obtain  

A Bp p∗ ∗>  and A Bd d> . 
Again, by the same argument as in the previous subsection, we consequently 

have  
0.1078, 0.0867, 0.0856046 0.2814746A B BB AAp p p+ = = ≤ ≤  

and 0.07044681 0.1316ABp≤ ≤  
for this experiment. 

3.4. Modelling towards Actual Experiments 

Assumption 3.8. (The Lorentz-Berthelot rules) We assume the relation among 
three densities as  

,AB AA BBp p p= ⋅                         (28) 

where ,AA BBp p  and ABp  implies the density (probability) connecting two words 
in Group A, Group B and between Group A and B, respectively.  
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Let us give a brief explanation of Assumption 3.8 stated above. The relation 
(28) corresponds to the Lorentz-Berthelot rules or the Berthelot rule, which is 
well known as one of basic combining rules in computational chemistry and 
molecular dynamics. In our context, it is natural to consider every word in 
Group A and B corresponds to a particle of two categories of identical particles 
A and B, respectively. Therefore three densities ,AA BBp p  and ABp  can be also 
considered as the interaction force within A, B and between A and B, respec-
tively. In this sense, it is natural to give the relation (28) among ,AA BBp p  and 

ABp  by the Berthelot rule in our setting. We should remark that we put 
1090, 1744A Bn n= =  in the experiments of Takahashi and Tanaka. In addition, 

once densities A Bp +  and BBp  are obtained by actual experiments, we can cal-
culate other densities AAp  and ABp  by the relations (28) and (4). The explicit 
expressions of AAp  and BBp  in terms of An , Bn , A Bp +  and BBp , which 
are somewhat complicated forms, can be seen in Subsection A5 in Appendix. 
Calculated results are shown concretely in Table 3 and Table 4 in Subsections 
3.4.1 and 3.4.2, respectively. 

As stated before Claim 3.7, we should take care in dealing associated pairs in 
the participants’ answers. The requirement asked for all participants, which is 
suitable in the actual experiments discussed in Subsection 2.1, is that the partic-
ipants must indicate at most one-pair with association per question. By virtue of 
this requirement, when two words are chosen as one pair in some item, we can-
not judge whether it may be only one pair in this item, or it may be stronger one 
pair than other one or more pairs, or it may be one pair in a triangle or more 
complicated subgraph. In other words, we cannot know how strong the ans-
wered pair is, and whether other hidden pairs are within Group A, Group B, or, 
between Group A and Group B. Namely, this requirement might break the 
structure of associations which may exist potentially in answering. For these  

 
Table 3. Results summary for (Takahashi & Tanaka, in preparation). 

  
Students Adults 

Results from 
experiments 

cf. Table 1 AA = 30, AB = 67, BB = 44 AA = 32, AB = 66, BB = 58 

 
(normalized ratio) (0.212766:0.475177:0.312057) (0.205128:0.423077:0.371795) 

1) Ratio without 
densities 

: :AA AB BBP P P  
(normalized) 

0.14785:0.47354:0.37861 

Result of 
chi-square test 

X-squared = 5.6692, df = 2, 
p-value = 0.05874 

X-squared = 4.3197, df = 2,  
p-value = 0.1153 

 
calculated  
densities 

0.192023AAp = ,  

0.12136ABp =  

0.12786AAp = , 

0.13789ABp =  

2) Ratio via our 
modelling 

: :AA AB BBQ Q Q  
(normalized) 

0.24709:0.50017:0.25274 0.13455:0.46474:0.40071 

Result of 
chi-square test 

X-squared = 2.8114, df = 2, X-squared = 6.6839, df = 2, 

p-value = 0.2452 p-value = 0.03537 
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Table 4. Results summary for (Tanaka & Takahashi, 2019). 

Results from experiments 
cf. Table 2 AA = 162, AB = 427, BB = 282 

(normalized ratio) (0.185993:0.490241:0.323766) 

1) Ratio without densities 

: :AA AB BBP P P  
(normalized) 

0.14785:0.47354:0.37861 

Result of chi-square test 
X-squared = 16.004, df = 2,  

p-value = 0.0003348 

2) Ratio via our modelling 

Calculated densities 0.14634AAp = , 0.11264ABp =  

: :AA AB BBQ Q Q  
(normalized) 

0.20070:0.49479:0.30451 

Result of chi-square test 
X-squared = 2.0358, df = 2,  

p-value = 0.3613 

 
reasons, it is dangerous to investigate the details among all the answered “as-
sociations”, nevertheless they have fruitful information. Let us illustrate an ex-
ample using the concrete density 0.1149A Bp + =  in the result for student in 
(Takahashi & Tanaka, in preparation); refer to also Table 1. Here we should 
remark the following holds:  

5
Expected number of associated pairs per question density.

2
 

= ⋅ 
 

 

Then there is expected to be 45.96, derived from 
5

40
2 A Bp +
 

× × 
 

, associations  

for one participant in average, but the number of answered association, which 
are asked to be answered as one association per question, is 28.2, derived from 
141/5, per participant in average. The difference per participant between them, 
about 18-associations, are considered to be hidden due to the requirement in 
one person’s answering. On the other hand, the impression for almost all par-
ticipants is that almost all answered association were unique and there were 
three questions at most having two or three associations (Takahashi & Tanaka, 
in preparation; Tanaka & Takahashi, 2019). The interpretation about this dif-
ference between the measured quantities and their impressions is a further 
problem for (psycho)linguistics. 

Although there exist some problems like stated above, it is plausible to con-
sider the ratio among three types of answered associations, AA:AB:BB, as a “cri-
terion” for the ratio among three types of associations which might be appeared 
in minds. Moreover, each expected number of pairs per question derived from 
our experiments (cf. Table 1 and Table 2) is at most 1.5 fortunately; this sug-
gests the hidden association are somewhat small. In any case, the ratio of pairs 
within Group A, Group B and between Group A and Group B among all the 
answered associations should be treated very carefully. 

Under such discussion above, let us compare the ratio AA:AB:BB with two 
types of ratios: one is the ratio : :AA AB BBP P P , which does not contain any densi-
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ties and another is the ratio : :AA AB BBQ Q Q , which contains densities derived 
from our experiments and modelling. Their details are as follows. 

1) The ratio : :AA AB BBP P P  among the numbers of pairs of both in Group A, 
between Group A and Group B and in Group B becomes  

: : : :
2 2
A B

AA AB BB A B

n n
P P P n n   

=    
   

                 (29) 

by Equation (38) in Appendix. For details, refer to Subsection A2 in Appendix; 
here we write : :AA AB BBP P P  for ( ) ( ) ( ): :AA AB BBP E P E P E  in Subsection A2. 
In this case, we do not consider any densities. Since 1090An =  and 1744Bn =  
in all experiments we treat, we have the normalized ratio : :AA AB BBP P P  as  

: : 0.14785 : 0.47354 : 0.37861.AA AB BBP P P =              (30) 

2) Considering the densities AAp  and ABp , which are calculated via Claim 5.5, 
and BBp  derived from the experiments, we define the ratio : :AA AB BBQ Q Q  as  

: : : : .
2 2
A B

AA AB BB AA A B AB BB

n n
Q Q Q p n n p p   

=    
   

            (31) 

If we assume that all densities would be equal, AA AB BB A Bp p p p += = =  in 
(31), then we have (29). 

3.4.1. For Preliminary Study of Takahashi and Tanaka 
From experiments (cf. Table 1), we have the total numbers of answered pairs 
connecting two words in Group A, between Group A and B, and in Group B are 
follows: 

Students: AA = 30, AB = 67, BB = 44; AA + AB + BB = 141 (total 200 items); 
Adults: AA = 32, AB = 66, BB = 58; AA + AB + BB = 156 (total 200 items). 
Also we recall that 0.1149A Bp + =  and 0.0767BBp =  for students;  

0.1405A Bp + =  and 0.1487BBp =  for adults.  
We can see a slight difference of the ratio AA:AB:BB of student for the ratio 

among ,AA ABP P  and BBP  (without their densities); in addition, we can see a 
slight difference of adults for the ratio among ,AA ABQ Q  and BBQ  (with their 
densities). Here we use a statistical programming language R (R Core Team, 
2019) for numerical calculations and the chi-square test. See Table 3. 

On the other hand, we can see no significant difference of the ratio AA:AB:BB 
of student for the ratio among ,AA ABQ Q  and BBQ  (with their densities) and 
that of adults for the ratio ,AA ABP P  and BBP  (without their densities). 

Therefore we may say the density of adults would be uniform in all the words 
A and B and our densities derived in our modelling are fit on the data for stu-
dents in the sense that there exists no significant difference from the ratio among 
AA, AB and BB. 

3.4.2. For Further Study of Tanaka and Takahashi 
From experiments (cf. Table 2), we have the total numbers of answered pairs 
connecting two words in Group A, between Group A and B, and in Group B are 
as follows:  
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AA 162; AB 427; BB 282.= = =  

Also we recall that 0.1078A Bp + =  and 0.0867BBp = .  
We derived, from the chi-square test, a significant difference of the ratio 

AA:AB:BB for the ratio among ,AA ABP P  and BBP  in 1). On the other hand, we 
cannot derive a significant difference of the ratio AA:AB:BB for the ratio among 

,AA ABQ Q  and BBQ  in 2). See Table 4. 
Then, combining with the discussion in the previous subsection 3.4.1, we may 

say our densities for students in our modelling are fit on the data in the sense 
there exists no significant difference from the ratio among AA, AB and BB. 

Consequently, we presume the Lorentz-Berthelot rules in (28) can be applied 
to the densities in the mental lexicon network of L2 “young” learners, which is 
considered to be in the process of evolution; for L2 “matured” learners, their 
mental lexicon network are considered to be almost completed. For details, these 
topics should be discussed in the context of linguistics or psychology. 

4. Concluding Remarks 

The main topics discussed in (Takahashi & Tanaka, in preparation; Tanaka & 
Takahashi, 2019) are explorations of the structure of the mental lexicon of L2 
learners’ in the context of (psycho)linguistics. Though a concept of random 
graph is introduced and applied essentially, only rough ideas derived mathemat-
ically are provided and details are omitted. Thus one of main topics in this paper 
is to give the explicit formulae and their proofs, which are seen in Section 3.3 
and in Section A4, respectively. In addition, we propose a kind of modelling for 
actual experiments in (Takahashi & Tanaka, in preparation; Tanaka & Takahashi, 
2019). We know that there exist many types of restriction in doing actual expe-
riments although we always want to get sufficiently many kinds of data. In the 
sense that much information is derived by the actually obtained data so far, our 
proposal may be useful. For example, the “hit rate” in the n-word task brings us 
the “density” via a generalized form of Proposition 2.1 and Remark 2.4.  

Here we discussed almost all topics in terms of mathematics, but many results 
should be interpreted and discussed in the context of (psycho)linguistics (cf. 
Takahashi & Tanaka, in preparation; Tanaka & Takahashi, 2019), that is, we be-
lieve many fruitful and further studies are brought. 
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Appendix 
A1. Flow of Actual Experiment-Five-Word Task 

1) INPUT: Participant looks at 5 words per one question. See also Figure A1.  
2) Example of possibilities in a participant’s mind: total number of possibili-

ties is 1024(=210). See also Figure A2.  
3) Required condition: Choose the at most one association (or two words) 

with the strongest link, even if two or more associations exist. 
4) OUTPUT: Answer one association of two words or no association. See also 

Figure A3. 
5) Go to the next question, that is, return to 1) in the next one. 

A2. Counting and Probability 

Let An  and Bn  be the numbers of words in Group A and Group B, respec-
tively. The event that both two associated words belong to Group A in a given 
word set consisting of five words selected randomly from Group A + B is de-
noted by AAE . Let us show the probability ( )AAP E  can be given as  

( ) 2
.

2

A

AA
A B

n

P E
n n

 
 
 =
+ 

 
   

Let X be the random variable such that the number of words belong to 
Group A in a word set, that is, randomly selected five words. Then we have the 
probability ( )P X k=  as 

 
slice onto maybe test mental 

Figure A1. Example of a questionnaire in Step (1). 
 

 
Figure A2. Example of Step (2): latent patterns of association. 

 

 
Figure A3. Example of Step (3): answer. 
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( ) 5
.

5

A B

A B

n n
k k

P X k
n n

  
  −  = =

+ 
 
 

 

Thus ( )AAP E  can be expressed by 

( ) ( )5 5
2 2

2 5 2
.

5 5
2 25

A B

AA k k
A B

k n n k
k k

P E P X k
n n= =

     
     −     = = =

+    
    
    

∑ ∑        (32) 

Here we remark the following relation: for positive integers n m≥ ≥� ,  

.
n n n m

m m m
−     

=     −     

�
� �

                   (33) 

Thus we can express the numerator and denominator in (32) as follows by 
putting ( ) ( ), , , , 2An m n k=�  and ( ) ( ), , ,5, 2A Bn m n n= +�  in (33), respectively:  

2
2 2 5
A A Bn n n

k k
−   

   − −   
 and 

2
2 3

A B A Bn n n n+ + −  
  
  

. 

Then we obtain  

( )
5

2

3

0

2
2 2 5

2
2 3

2
2 3 2

,
2

2 3 2

A A B

AA
k A B A B

A A B A

A B A B A B

n n n
k k

P E
n n n n

n n n n

n n n n n n

=

=

−   
   − −   =

+ + −  
  
  

−      
      −      = =
+ + − +     

     
     

∑

∑
�

� �

        (34) 

where we use the total mass for the hypergeometric distribution is equal to 1:  

0 1.k n

K N K
k n k

N
n

≤ ≤

−  
  −   =

 
 
 

∑                     (35) 

The argument stated above similarly gives  

( ) 2

2

B

BB
A B

n

P E
n n

 
 
 =
+ 

 
 

 and ( ) ,

2

A B
AB

A B

n nP E
n n

=
+ 

 
 

          (36) 

where ( )BBP E  and ( )ABP E  are probabilities such that both two associated 
words belong to Group B and one word belongs to Group A and the other does 
to Group B in a given word set consisting of five words selected randomly from 
Group A + B, respectively. 
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Then the ratio of numbers of association pair that both two words are in 
Group A, one word is in Group A and the other in Group B or both two words 
are in Group B is estimated as  

( ) ( ) ( )

( ) ( )

2 2
: : : :

2 2 2

1 : 2 : 1 .

A B

A B
AA AB BB

A B A B A B

A A A B B B

n n
n nP E P E P E

n n n n n n

n n n n n n

   
   
   =
+ + +     

     
     

= − −

     (37) 

In experiments in Takahashi and Tanaka (Takahashi & Tanaka, in prepara-
tion; Tanaka & Takahashi, 2019), we have approximately the normalized ratio  

( ) ( ) ( ): : 0.14785 : 0.47354 : 0.37861,AA AB BBP E P E P E =         (38) 

since 1090An =  and 1744Bn = . 

A3. Mean Field Theoretic Approximation 

If we consider the mental lexicon network model in which a unique probability 
of association occurring p, then the relations (1) and (2) hold and its “density” 
coincides with p via the “hit rate” derived from word association tasks. However, 
in the setting where two or more kinds of densities, the hit rate from “k-word 
task” ( 2k ≥ ) is estimated in another expression. Let us show it in our model ex-
hibited in Section 2.2.2. The “hit rate” can be expressed explicitly as follows:  

( )

( ) ( ) ( ) ( )

2

2 2
0

1 1

1 1 1 1 1 ,

 

k

A B

k
kk A B

AA AB BB
A B

p

n n
p p p

n n k
k

 
 
 +

−   
−   

   
=

− −

   
= − − − −   + −     
 
 

∑
� �

� �

� � �
 (39) 

where we set 0
2
s 

= 
 

 for 2s < . In the above, the probability A Bp +  from (2) 

may be said to be the averaged “probability” in the whole set Group A + B, that 
is, two bodies system of Group A and Group B with AAp , ABp  and BBp  is 
translated into one body system Group A + B with A Bp + . We should remark 
that A Bp + , which is expressed by AAp , ABp  and BBp , cannot coincide with 
the ratio of number of edges in G as is shown in (3), in general, and that the re-
lation (39) coincides with the general assumption (4) when 2k = . Referring to 
(35) in Section A2, we obtain  

( )

( ) ( ) ( ) ( )

2

2 2
0

1
 

1 1 1 ,

k
A B

A B

k
kk A B

AA AB BB

n n
p

k

n n
p p p

k

 
 
 +

−   
−   

   
=

+ 
− 

 
  

= − − −  −  
∑

� �
� �

� � �

        (40) 

where ( ) ( ) ( ) ( )2 21 1 1
k

k
AA AB BBp p p

−   
−   

   − − −
� �

� �  implies the probability of any as-
sociation not occurring in “k words” selected randomly, which consist of  
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“ ( )k − �  words” in Group A and “ �  words” in Group B. Let p be  

( )max , , ,AA AB BB A Bp p p p +  and p be sufficiently small. Then, the left hand side of 
(40) is  

( )
2

A B A B
A B

n n n n k
p o p

k k +

+ +    
− +    

    
                (41) 

and the right hand side of (40) is  

( ) ( )0 1 ,
2 2

k A B
AA AB BB

n n k
p k p p o p

k=

 −       
− − − − +       −       

∑�

� �
� �

� �
   (42) 

where ( )o ⋅  is the asymptotic little-o notation. Referring to (35) again in Section 
A2, we obtain  

( )0

2

.
2 1 1 2

A B
A B

k A B
AA AB BB

n n k
p

k

n n k k
p p p o p

k

+

=

+  
  
  

 − −          
= + + +          −          
∑�

� � � �
� �

  (43) 

Moreover, referring to (33) in Section A2, we can see that the left hand side of 
(43) is  

2
2 2

A B A B
A B

n n n n
p

k +

+ + −  
  −  

                  (44) 

and the right hand side of (43) is  

( )

0

2 1 1
2 2 1 1

   2
,

2 2

k A B A A B
AA A B AB

B A B
BB

n n n n n
p n n p

k k

n n n
p o p

k

=

 − − −      
+      − − − − −      

−   
+ +   − −  







∑� � � � �

� �


     (45) 

where we set 0
s
t
 

= 
 

 if 0t < . Thanks to (35) again in Section A2, (45) can be 

simplified as  

( )
2

.
2 2 2

A B A B
AA A B AB BB

n n n n
p n n p p o p

k
+ −       

+ + +      −      
        (46) 

Consequently we have  

( )

2

,
2 2

A B
A B

A B
AA A B AB BB

n n
p

n n
p n n p p o p

+

+ 
 
 
   

= + + +   
   

              (47) 

which implies the exact relation (40) in the “𝑘𝑘-word task” for 3k ≥  can be well 
approximated by the relation (4) if all densities are sufficiently small. This is a 
reason why the relation (4) is set as the plausible general assumption throughout 
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this paper. However, if some density in the networks is not small, the relation 
(40) may no longer be approximated by the relation (4), that is, the averaged 
probability A Bp +  may be quite different from the “density” in the network, the 
ratio of number of edges in a graph G as is shown in (3). See an example in Sec-
tion A6.2; see also (Meara, 2007). 

A4. Proofs of Inequalities for Our Estimation 

Proof of Proposition 3.3. Let us evaluate A Bp p∗ ∗− . By Definition 3.1 and Prop-
osition 2.3, we have  

2 2

2 2

2 2 2 2

2 2

A B
AA A B AB BB A B AB

A B
A B

A B A B

B A A B
A B AA A B AB A B BB A B AB

A B
A B

n n
p n n p p n n p

p p
n n

n n n n

n n n n
n n p n n p n n p n n p

n n
n n

∗ ∗

   
+ +   

   = −
   

+ +   
   

              
+ + − + +             

              =
    

+    
  

−



2 2 2 2 2 2

2 2

2 2 2

A B

B A B B A A B A
A B A B BB A B A B AA

A B
A B A B

B A A B

n n

n n n n n n n n
n n p p n n p p

n n
n n n n

n n n n

+ +

 
+ 

 
   +     +            

+ − − + −                 
                  =

     
+ +     

     
  +     

−     
      =

2 2 2 2
.

2 2

B B A A
A B A B BB A B AA

A B
A B A B

n n n n
p n n p n n p

n n
n n n n

+

          
− + + +           

          
     

+ +     
       

Therefore we obtain A Bp p∗ ∗>  if and only if  

,

2 2 2 2 2
.

2 2

B B A B B A
BB A B A B

AA A B
A A

A B

n n n n n n
p n n p

p R
n n

n n

+

  +           
+ − −            

            > =
    

+    
    

(48) 

If the inequality (12) holds, then , 0A BR < ; thus ,AA A Bp R>  holds for any 
0AAp ≥ . Let us show the monotonically decreasing of the right hand side of the 

inequality (12), that is, 

2 2
.

2 2 2

B B
A B

A B B A

n n
n n

n n n n

    
+    

    
+       

−      
      

 

Then we have, by remarking the relation 
2 2 2

A B A B
A B

n n n n
n n

+     
= + +     

     
,  
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2 2

2 2 2

2 2 2 2 2 2
1

2 2 2 2 2

B B
A B

A B B A

B A B A A A B B

A B B A A B B

n n
n n

n n n n

n n n n n n n n

n n n n n n n

    
+    

    
+       

−      
      

 +   +            
− −              

              = = +
+   +         

−         
         

( )
( )( )

( )
( )( )

( )
( )( )

2

2

2

1 2 1
1

1 1

1 3 1
1 2 ,

1

A

A A A A B

A B A B B A A B

A A A

B AA B A B

n

n n n n n
n n n n n n n n

n n n
n nn n n n

  
−   

   
− + −

= +
+ + − − + −

−  −
= + + −+ + −  

      (49) 

which implies that this monotonically decreases as ( )B An n>  increases and 
tends to 1 as Bn →∞ . Thus the proof is completed.  

Proof of Proposition 3.5. Let us evaluate A Bd d− . By Definition 3.4 and 
Proposition 2.3, we have  

( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

1 1

2 2 2
1 1

2 2 2

1 1
2

A B A AA B AB B BB A AB

A B A B
A B AA BB

A AA B A B BB
A B

A A B B
A B AA B A A B A B BB

A B

A B
A A AA B A A B

A B

d d n p n p n p n p

n n n n
p p p

n p n n n p
n n

n n n n
n n p n n p n n p

n n
n n n n p n n n n

n n

+

+

− = − ⋅ + ⋅ − − ⋅ + ⋅

+     
− −     

     = − + − − −

+     
+ + − − +     

     =

+
= − + − + − ( )1 .A B B B BBp n n p+ − −  

 

Therefore we obtain A Bd d>  if and only if  
( )
( ) ( ) ,

1
.

1
B B

AA A B A B BB A B
A A

n n
p p p p S

n n+ +

−
> − − =

−
              (50) 

If the inequality (16) holds, then , 0A BS < ; thus ,AA A Bp S>  holds for any 
0AAp ≥ . The remaining part is trivial from the form of the right hand side of the 

inequality (16). Thus the proof is completed.  
Proof of Corollary 3.6. Let us recall Equation (11):  

,

2 2 2 2 2
.

2 2

B B A B B A
BB A B A B

A B
A A

A B

n n n n n n
p n n p

R
n n

n n

+

  +           
+ − −            

            =
    

+    
    

 

In addition, we can express ,A BS  in Equation (15) as  

,

2 2 2
.

2

A B B
A B BB

A B
A

n n n
p p

S
n

+

      
− +      

      =
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Then we have, by remarking the relation 
2 2 2

A B A B
A B

n n n n
n n

+     
= + +     

     
,  

, ,

2 2 2 2 2 2 2

2 2

2 2 2

A B A B

A B A A B B A B
A B A B BB A B A B

A A
A B

A B B
A B

S R

n n n n n n n n
p n n p n n n n

n n
n n

n n n
p

+

+

−

    +                  
− + − + + − +                    

                      =
    

+    
    

     
− −     

     = ( )
2 2 2 2

,

2 2 2 2

B B B A
BB

A B BB
A A A A

A B A B

n n n n
p

p p
n n n n

n n n n
+

           
+ −           

           = −
          

   
  

+ +       
        

 

(51) 

which completes the proof. 

A5. Exact Expressions of Densities under Assumption 3.8 

Claim 5.1. Let An  and Bn  be positive integers. Moreover let A Bp + , BBp , 

ABp  and BBp  be probabilities. Under the assumption that (4) and (28) hold, 
we have  

( ) ( ) ( )( )1 2 1 1
2 2 1

,

2

A B B A B
A B BB A B A B A A B B A A B

A BB
AA

A

n n n pp p n n n n n n n n n n n
n p

p
n

+
+

 + 
+ + + − − + − + − +    −   =

 
 
   

(52) 

( ) ( ) ( )( )1 1
1

BB A B
AB A B A A B B A A B

A A BB

p pp n n n n n n n n n
n n p

+
 

= − + + − + − +  −  
(53) 

for given A Bp +  and BBp .  
Proof. It follows from (4) and (28) that  

.
2 2 2

A B A B
A B AA A B AA BB BB

n n n n
p p n n p p p+

+     
= + +     

     
         (54) 

Let us consider the following function ( )f x  on x:  

( ) ( )2 .
2 2 2
A B A B

A B BB BB A B

n n n n
f x x n n p x p p +

+     
= + + −     
     

       (55) 

Here, remarking (4), we easily see that  

0
2 2
B A B

BB A B

n n n
p p +

+   
− ≤   

   
 and that 0

2 2
B A B

BB A B

n n n
p p +

+   
− =   

   
 

if and only if 0AAp = . In addition, again remarking (4), we easily see that  

( )1 0f ≥ ; thus there exists a unique solution [ ]0 0,1x ∈ , which corresponds to 

AAp , such that ( )0 0f x = . Solving the quadratic equation ( ) 0f x = , we ob-
tain  
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( )2

0

4
2 2 2

.
2

2

A B A B
A B BB A B BB BB A B

A

n n n n
n n p n n p p p

x
n

+

 +      
− + − −      

      =
 
 
 

 (56) 

Simplifying (56) leads to  

( ) ( ) ( )( )1 1 .
1

BB A B
AA A B A A B B A A B

A A BB

p pp n n n n n n n n n
n n p

+
 

= − + + − + − +  −  
(57) 

Combining (57) with  

AB AA BBp p p=  and 
2 2

2

A B B
A B BB A B AB

AA
A

n n n
p p n n p

p
n

+

+   
− −   

   =
 
 
 

, 

we can get the desired expressions (52) and (53) in Claim 5.1. 

A6. Mathematical Interpretations on Some Models in (Wilks,  
Meara, & Wolter, 2005); (Meara, 2007) 

A6.1. For a Model in Wilks, Meara, & Wolter 2005 
In Wilks, Meara, & Wolter (2005), they modified the original model in Wilks & 
Meara (2002) by considering some association “indirectly” linked between two 
words. In terms of a random digraph ( ) ( )( ),G V G A G= , two words x and y 
are associated if [ ] ( ),x y A G∈  or [ ] ( ),y x A G∈  in the original model; in ad-
dition, they consider two words 𝑥𝑥 and 𝑦𝑦 are also associated “indirectly” if 
there exists a word ( )z V G∈  such that [ ] ( ),x z A G∈  and [ ] ( ),y z A G∈ . In 
such a model, referring to Remark 2.4 for random digraphs, we can easily find, 
for a randomly selected n-words experiment,  

( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

#1 1

#1 #

hit rate 1 1 1

1

“

.

” 1

1 1 1

V G nn n n n

V G nn V G

p p np p

p n p

−− −

−−

= − − − + −

= − − + −
       (58) 

Here we should remark that the values ( ) ( )11 n np −−  and ( ) ( ) 11 1n np np p −− + −  
imply the probabilities of no direct association occurring within a randomly se-
lected n-words and no indirect association occurring in a randomly selected 
n-words via some word z outside n-words, where the total number of such 
words are ( )#V G n− , respectively. Following (Wilks, Meara, & Wolter, 2005), 
we put ( )# 1000V G =  and 5n =  in (58); we have  

( ) ( )4000 995hit rate 1 1 1 4 ,“ ” p p= − − +                (59) 

where we put 999p k=  and k is the “number of links per word”, in other 
words, the regularity of outer degree in digraph; this formula (59) almost recov-
ers the results of simulations in Table 3 in (Wilks, Meara, & Wolter, 2005). See 
Table A1. 
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Table A1. Outputs of (59) for 999p k=  ( 1,2, ,20k = � ). 

Number of 
links  

per word 
1 2 3 4 5 6 7 8 9 10 

hit rate 0.0295 0.0767 0.1387 0.2121 0.2932 0.3782 0.4633 0.5456 0.6225 0.6923 

Number of 
links  

per word 
11 12 13 14 15 16 17 18 19 20 

hit rate 0.7539 0.8068 0.8511 0.8874 0.9163 0.9390 0.9563 0.9693 0.9788 0.9856 

A6.2. For a Model in Meara (2007) 
In Meara (2007), as a kind of small world model, the following random digraph 
model is introduced: 1) 1000 words are grouped into 20 cluster, each consisting 
of 50 words; 2) within these clusters, every word has random k-out-degree 
( 3k ≥ ); 3) among these clusters, we give additional 50 arcs. For details, see Sec-
tion III.2 in (Meara, 2007). In the sense of the probability of arc occurring, it is 
obvious that 49q k=  within every cluster is quite denser than  

( )50 950 50 20 1 1900r = × × =  among clusters; this implies every cluster is al-
most isolated. For such a model, the results of “hit rates” in the task of five ran-
domly selected words under the computer simulations are given. Now let us in-
terpret these results in our context and methods. First we divide into 7 cases 
based on the number and type of clusters to which selected 5 words belong: case 
(1, 1, 1, 1, 1), case (2, 1, 1, 1), case (2, 2, 1), case (3, 1, 1), case (3, 2), case (4, 1), 
case (5). 

1) For case (1, 1, 1, 1, 1): This implies there exist 5 clusters such that each of 
them includes just one word in randomly selected 5 words. Then, considering 
“direct” and “indirect” associations by the similar way to that in the previous 
subsection, we can obtain the probability of association occurring within 5 
words in this case that  

( ) ( ) ( )( )75020 5 45
1

201 50 1 1 1 5 1 .
1000 5

5

p r r r r   = ⋅ ⋅ − − ⋅ − + −      
 
 

     (60) 

here any association occurs among clusters only and never occurs within each 
cluster in this case. 

2) For case (2, 1, 1, 1): This implies there exist 4 clusters such that just one of 
them includes two words and each of three others does just one word. Then, 
considering “direct” and “indirect” associations within cluster and among clus-
ters, we can obtain the probability of association occurring within 5 words in 
this case that  

( ) ( ) ( )( ) ( ) ( ) ( )( )

3
2

48 8002 2 20 5 4

20 501 4 50
1000 4 2

5

1 1 1 2 1 1 1 5 1 .

p

q q q q r r r r

   
= ⋅ ⋅ ⋅        
 
 

 × − − − + − ⋅ − ⋅ − + − 
 

 (61) 
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3) For case (2, 2, 1): This implies there exist 3 clusters such that one of them 
includes one word and each of two others does just two words. Similarly we have  

( ) ( ) ( )( ) ( ) ( ) ( )( )

3

96 8504 2 16 5 4

20 50 501 3 50
1000 3 2 2

5

1 1 1 2 1 1 1 5 1 .

p

q q q q r r r r

     
= ⋅ ⋅ ⋅ ⋅            
 
 

 × − − − + − ⋅ − ⋅ − + − 
 

(62) 

4) For case (3, 1, 1): This implies there exist 3 clusters such that one of them 
includes 3 words and each of two others does just one words. Similarly we have  

( ) ( ) ( )( ) ( ) ( ) ( )( )

2
4

47 8506 3 2 14 5 4

20 501 3 50
1000 3 3

5

1 1 1 3 1 1 1 5 1 .

p

q q q q r r r r

   
= ⋅ ⋅ ⋅        
 
 

 × − − − + − ⋅ − ⋅ − + − 
 

 (63) 

5) For case (3, 2): This implies there exist 2 clusters such that one of them in-
cludes 3 words and another does just 2 words. Similarly we have  

( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

488 2
5

47 9003 2 12 5 4

20 50 501 2 1 1 1 2 1
1000 2 3 2

5

1 3 1 1 1 5 1 .

p q q q q

q q q r r r r




     
= ⋅ ⋅ ⋅ ⋅ − − − + −            
 
 

× − + − ⋅ − ⋅ − + − 



  (64) 

6) For case (4, 1): This implies there exist 2 clusters such that one of them in-
cludes 4 words and another does just 1 word. Similarly we have  

( ) ( ) ( )( ) ( ) ( ) ( )( )

6

46 90012 4 3 8 5 4

20 501 2 50
1000 2 4

5

1 1 1 4 1 1 1 5 1 .

p

q q q q r r r r

   
= ⋅ ⋅ ⋅        
 
 

 × − − − + − ⋅ − ⋅ − + − 
 

(65) 

7) For case (5): This implies there exists just one cluster including 5 words se-
lected randomly. Similarly we have  

( ) ( ) ( )( )4520 5 4
7

20 501 1 1 1 5 1 .
1000 1 5

5

p q q q q     = ⋅ ⋅ − − ⋅ − + −          
 
 

    (66) 

Here any association occurs within one cluster only and never occurs among 
clusters in this case. 

Thus we find, combining all formulae stated above,  
7

1“ ”hit rate p
=

= ∑ ��
                      (67) 

for a randomly selected 5-words experiment. This is valid for general probabilities 
q within each cluster and r among clusters. Furthermore it is obvious that the 
function (67) on q and r, both of which are defined on [ ]0,1 , is monotonically 
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increasing as q or r increases. Incidentally, we remark that, if every cluster is 
completely isolated, equivalently 0r = , then the “hit rate” takes values in  
[ ]0.00000000,0.41274800 . On the other hand, the “hit rate” is bounded above 
and below for a fixed [ ]0,1r∈ . For example, if 1 19000r = , then the “hit rate” 
takes values in [ ]0.001021923,0.413378042 ; these bounds are almost same as 
those in the case where 0r = , respectively, thus we may say every cluster is al-
most isolated even if 1 19000 0r = ≠ . Similarly, for a fixed [ ]0,1q∈ , the “hit 
rate” is also bounded; if 8 49q = , then the “hit rate” takes values in  
[ ]0.3425407,1.0000000 . 

Now, in order to compare with the results of simulations in (Meara, 2007), let 
us put 49q k=  and 1 1900r =  and observe every output value of (67) for 

3, 4, , 20k = � . We immediately find our Table A2 almost recovers the results of 
simulations in Figure 7 in Meara (2007). 

We may recover other results in simulation by similar discussion.  
 

Table A2. Outputs of (67) for 49q k=  ( 3,4, 20k = � ) and 1 1900r = . 

Number of 
links per word  
within cluster 

3 4 5 6 7 8 9 10 11 

hit rate 0.1233 0.1767 0.2279 0.2737 0.3123 0.3432 0.3666 0.3836 0.3952 

Number of 
links per word  
within cluster 

12 13 14 15 16 17 18 19 20 

hit rate 0.4028 0.4075 0.4102 0.4118 0.4126 0.4130 0.4132 0.4133 0.4133 
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