
Journal of Software Engineering and Applications, 2019, 12, 460-490
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2019.1211029 Nov. 27, 2019 460 Journal of Software Engineering and Applications

dCACH: Content Aware Clustered and
Hierarchical Distributed Deduplication

Girum Dagnaw, Ke Zhou , Hua Wang

Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Wuhan, China

Abstract
In deduplication, index-lookup disk bottleneck is a major obstacle which lim-
its the throughput of backup processes. One way to minimize the effect of this
issue and boost speed is to use very high course-grained chunks for dedupli-
cation at a cost of low storage saving and limited scalability. Another way is to
distribute the deduplication process among multiple nodes but this approach
introduces storage node island effect and also incurs high communication
cost. In this paper, we explore dCACH, a content-aware clustered and hie-
rarchical deduplication system, which implements a hybrid of inline course
grained and offline fine-grained distributed deduplication where routing de-
cisions are made for a set of files instead of single files. It utilizes bloom filters
for detecting similarity between a data stream and previous data streams and
performs stateful routing which solves the storage node island problem.
Moreover, it exploits the negligibly small amount of content shared among
chunks from different file types to create groups of files and deduplicate each
group in their own fingerprint index space. It implements hierarchical de-
duplication to reduce the size of fingerprint indexes at the global level, where
only files and big sized segments are deduplicated. Locality is created and ex-
ploited first using the big sized segments deduplicated at the global level and
second by routing a set of consecutive files together to one storage node.
Furthermore, the use of bloom filter for similarity detection between streams
has low communication and computation cost while it enables to achieve
duplicate elimination performance comparable to single node deduplication.
dCACH is evaluated using a prototype deployed on a server environment
distributed over four separate machines. It is shown to have 10× the speed of
Extreme_Binn with a minimal communication overhead, while its duplicate
elimination effectiveness is on a par with a single node deduplication system.

Keywords
Clustered Deduplication, Content Aware Grouping, Hierarchical

How to cite this paper: Dagnaw, G., Zhou,
K. and Wang, H. (2019) dCACH: Content
Aware Clustered and Hierarchical Distri-
buted Deduplication. Journal of Software
Engineering and Applications, 12, 460-490.
https://doi.org/10.4236/jsea.2019.1211029

Received: October 17, 2019
Accepted: November 24, 2019
Published: November 27, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2019.1211029
https://www.scirp.org/
https://orcid.org/0000-0002-2161-8796
https://orcid.org/0000-0002-2798-7322
https://doi.org/10.4236/jsea.2019.1211029
http://creativecommons.org/licenses/by/4.0/

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 461 Journal of Software Engineering and Applications

Deduplication, Stateful Routing, Similarity Bloom Filters

1. Introduction

By minimizing the amount of data stored on disks and transferred over net-
works, data deduplication makes it possible to backup huge sets of data with a
minimal cost of storage and network bandwidth. It is a technique which keeps
one copy of two or more identical data by substituting duplicates with links
pointing to a stored copy [1] [2]. Deduplication works by representing files and
their parts (chunks) with hash values and comparing these values against hashes
of previously processed files and chunks. If a matching hash entry exists then
the data the hash represents is a duplicate, otherwise, it is considered unique.
Duplicates are replaced with links to old data while data belonging to unique
hashes are stored. Fingerprint-based data deduplication involves two major ac-
tivities. First the file to be deduplicated needs to be chunked and fingerprints
representing these chunks need to be generated. And then these fingerprints are
compared with other previously stored fingerprints in order to discard dupli-
cates and replace them with links to just one copy. As explained in [1] [3] there
are four methods in performing chunking, namely; Static Chunking (SC), Con-
tent Defined Chunking (CDC), Whole-File Chunking (WFC) and Applica-
tion-specific Chunking. While SC is used in [4] and Aplication-specific chunk-
ing is used in [5] [6] in some form, most works use CDC for the deduplicaiton
task.

Often the index structure used to store hashes is too big to be stored in RAM.
Hence, it is stored in an on-disk structure leading to a popular problem known
as disk index-lookup bottleneck [2]. This issue exasperates furthermore when
fine-grained chunking is utilized [7]. For example, for a 1 PB data set, consider-
ing an average chunk size of 4 KB and an SHA-1 hashing, there will be around
2.5 × 1011 (250 billion) chunk fingerprints which require 5 TB of storage space.
5 TB is too big to keep in the RAM whereas storing this fingerprint index on
disk and accessing it in the deduplication process will introduce the disk in-
dex-lookup bottleneck problem. This problem is alleviated using sampling tech-
niques in [8] [9] at a cost of low duplicate elimination performance. While the
work in [9] is a D2D scheme and hence is not much scalable, the design in [8] is
a distributed deduplication scheme where similarity between files is exploited. In
[7] [10] DHT based distributed deduplication is used to reduce the effect of this
bottleneck and parallelize as well as scale up deduplication. The level of scalabil-
ity in both [7] [10] is rigid because they do not offer a mechanism to grow
beyond the initial system size as a result of the prefix based mapping being done
at the time of system initialization. The work in [8]also faces the same issue be-
cause the bin-to-node mapping is done at system initialization and is not flexi-
ble.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 462 Journal of Software Engineering and Applications

In addition to the disk index-lookup bottleneck problem mentioned above,
deduplication systems might lose their duplicate elimination performance as a
result of storage node island effect [7] [11] [12]. This issue is peculiar to distri-
buted deduplication systems where multiple nodes perform deduplication but
each node is oblivious to data found in other nodes in the system and hence
copies of the same data can be found in multiple nodes. The magnitude of sto-
rage node island effect on duplicate detection efficiency is minimized using
careful allocation of data stream to nodes. In recent distributed deduplication
systems stateful routing is used to route data stream to nodes which previously
had been assigned data with a similar content [11] [13].

The chance of two files from two different types of applications having similar
content or sharing identical parts is shown to be very slim in [5]. This implies
that a text file does not share much content with an audio file, or an executable
file has a very limited probability of sharing content with an image file. As a re-
sult, the duplicate identification and removal effectiveness will not decrease if
independent index structures are utilized for each of the file types in a system or
if some file types are grouped into distinct groups and the index structure is di-
vided into these groups.

In works like [5] [13] [14] [15] [16] [17], it is observed that much of the sto-
rage space in a system is occupied by a very small number of files. This creates
an opportunity for deduplication throughput improvement where-by multiple
small files are packed into segments and deduplication is performed on these
segments rather than the individual files.

Deduplication works like [7] [16] [18] [19] [20] [21] use a mix of file and
chunk level deduplication. While this approach eases the disk index-lookup bot-
tleneck problem, its advantage is still questionable if scalability is considered
and/or if only one node performs the chunk level deduplication.

dCACH, a content aware clustered and hierarchical deduplication system,
creates and exploits data stream locality as well as similarity for better deduplica-
tion performance. It achieves better throughput through a combination of hie-
rarchical deduplication, grouping of small files and use of non-monolithic index
structure. Its distributed duplicate removal effectiveness is enhanced by stateful
routing while it exhibits unlimited scalability as a result of a novel bucket-node-
mapped scaling approach. dCACH exploits the negligibly small amount of con-
tent shared among chunks from different file types to create groups of files and
independent fingerprint index for these groups. The index space space is parti-
tioned into non-overlapping and independent spaces and only one group of file
types will be deduplicated using each index space. It also utilizes hierarchical
deduplication to ease the disk index-lookup bottleneck problem. The hierarchic-
al deduplication approach first deduplicates files, then segments belonging to
unique files are deduplicated. Finally chunks belonging to unique segments are
deduplicated. The first two levels of deduplication are distributed exact dedupli-
cations while chunk level deduplication is local to each storage node.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 463 Journal of Software Engineering and Applications

dCACH is evaluated in a networked environment where storage nodes are
deployed on virtual machines distributed over four separate servers. The dupli-
cate elimination effectiveness of dCACH’s stateful routing is compared against
three approaches namely; a single node deduplication system, a prototype of
stateless distributed deduplication scheme and extreme-binning. For one of the
datasets the single node deduplication scheme has a deduplication ratio of
100:5.3 while Extreme_binn and dCACH have 100:7.8 and 100:8.2 deduplication
ratios respectively. Throughput wise, dCACH outperforms Extreme_binn by
more than 10 times. For one of the datasets, Extreme_binn exhibits a little over
30,000 chunk fingerprints per second while dCACH managed to process over
312,000 chunk fingerprints per second. Considering an average chunk size of
4kb dCACH’s throughput translates to ≈ 1.2 GB/s while Extreme_binn’s through-
put translates to ≈ 118.4 MB/s. We chose to compare our design against the per-
formance of Extreme_binn for two reasons. First, Extreme_binn is a distributed
system where a bin-to-node mapping dictates its stateless routing decision.
dCACH, on the other hand, utilizes stateful content-based routing. While state-
less routing approaches fare well in terms of throughput they are prone to sto-
rage node island effect. We wanted to see how well our statefull routing design
performs against a stateless routing design. Second, Extreme_binn utilizes sam-
pling to choose a representative chunk ID from chunks of a file for its routing
and hence is a similarity based deduplication system. Likewise dCACH exploits
similarity using chunk IDs to construct similarity bloom filter for routing deci-
sion. While Extreme_binn chooses one chunk ID for each file as a representative,
dCACH selects a set of chunk IDs from chunk IDs of multiple files and com-
putes the similarity bloom filter. We want to see how well our design identifies
similarities between data streams and removes duplicates compared to Extreme_
binns similarity detection and duplicate removal.

Our Contribution
dCACH is in-part inspired by the insignificance of data content shared be-

tween files of different application types [5]. We exploit this characteristic to
partition flat index structures into independent smaller structures which im-
proves disk index-lookup. We also use bloom filter based stateful routing for our
distributed deduplication which yields better deduplication efficiency. Our con-
tributions are:

1) Content aware grouping—Sets of groups are created using file’s extension
when the system is started. Once a file type is assigned to a group it will always
be deduplicated in that set of group.

2) SBFs for stateful data routing—The use of SBFs (Similarity Bloom Filters)
which are constructed from representative chunk fingerprints which themselves
are selected from a few number of segments in a data stream.

3) Seamlessly expandable decentralized storage node management—
Cluster Controller Nodes (CCNs) are introduced into the system anytime the
need arises, taking over management of half of storage nodes from an over-
loaded CCN.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 464 Journal of Software Engineering and Applications

4) Scalable distributed file and segment global exact deduplication—File
and segment level global exact deduplication is performed at CCNs. Addition of
a new CCN does not alter the exact deduplication scheme.

Moreover, we implement the following additional techniques to achieve our
goal of high deduplication performance:

1) Fine grained chunk level deduplication—Fine grained chunk level de-
duplication is performed at storage nodes in an inline or offline manner de-
pending on backup window requirement.

2) Small File Segmenting—Consecutively appearing small files are packed
into segments so that the number of indexes at CCNs is reduced significantly.

The rest of this paper is organized as follows. In the next section, background
of deduplication aspects which motivated our work is discussed. dCACH’s ar-
chitecture and design are discussed in Section 3 and Section 4 discusses its im-
plementation. Section 5 presents the result of experiments and analysis as well as
comparison of these results. Section 6 assesses researches that are of interest to
dCACH. Section 7 concludes the paper.

2. Background and Motivation

In this section, we discuss deduplication approaches with respect to number of
nodes involved, method of chunking utilized and techniques used to assign de-
duplication loads to nodes. We also discuss how each of these issues motivated
the design components of dCACH.

2.1. Distributed Deduplication

Data deduplication is performed in distributed setting in [7] [8] [10] [12] [19]
while it is implemented on a single node in works like [2] [5] [6] [15] [18]. In
distributed deduplication load balance, duplicate elimination effectiveness and
network overhead are influenced by routing decisions. In stateless routing, a
feature value representing the data to be routed is extracted and the application
of a simple function (like mod) on this value is used to determine the destination
node. This approach is oblivious to the history of previous workloads. In con-
trast stateful routing uses information about the location of previously dedupli-
cated data (chunks) to decide where to put the new data (chunks) but with a
higher cost of computation as well as memory and/or communication. In [7] [8]
[10] [12] stateless routing is used while [11] [17] [22] [23] implement stateful
routing.

Single node deduplication guarantees the removal of all duplicate data. But it
suffers from limited scalability and very low throughput as a result of disk in-
dex-lookup bottleneck problem [2] [7]. Distributed deduplication, on the other
hand, solves these drawbacks while it is susceptible to low duplicate elimination
performance as a result of deduplication node information island [11] [12] and
also incurs high communication overhead [11] [12] [17]. Moreover, it is sus-
ceptible to load imbalance among storage nodes [5] [11] [12].

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 465 Journal of Software Engineering and Applications

2.2. Hierarchical Deduplication

In chunk level deduplication, the use of smaller chunk sizes has been proven to
produce better storage efficiency but it has high memory cost [2] [24] [25] [26].
This problem exasperates as the size of data being deduplicated grows because
the fingerprint index representing this data also grows.

There are many approaches utilized to minimize the size of the fingerprint
index while maintaining an acceptable deduplication performance. Some im-
plementations use sampling methods where just a fraction of chunk fingerprints
are carefully selected as representatives and are kept in memory [8] [9] [11] [17].
Most systems use two-level deduplication where the first level is file level (course
grained) and the second is chunk level (fine-grained) [7] [18] [19] [20] [21]. In
the second approach, memory is used to store the entirety of the first level index
and just a part of the chunk level index. The second level index as a whole is
stored in HDD.

The process of fingerprint lookup is speedup using bloom filters in [2] [7] [27]
while [28] [29] use solid state drives to cache and/or store fingerprint indexes.

Two-level hierarchical deduplication where files are first deduplicated and
then chunks of only unique files are deduplicated significantly reduces the on-disk
index-lookup frequency as it avoids the need for deduplication of chunks be-
longing to duplicate files. However, it does not tackle the issue where there are
files which are considered unique only because a very small fraction of them is
modified. In such cases, most part of the file is unchanged from the previous
version, yet all of the chunks will be deduplicated wasting precious CPU time
and also disk I/O. dCACH solves this problem by using three-level fingerprint-
ing and consequentially, three-level deduplication. First files are deduplicated
which is followed by deduplication of segments (highly course grained chunks)
belonging to unique files. Finally, fine grained deduplication will be performed
only on unique segments.

2.3. Segmenting Small Files

In [5] [14] [15] [16] [17], it is stated that a disproportionately small number of
files occupies much of the storage space. This fact is strengthened by our obser-
vation in our previous work in [13]. In our work in [13], in one of the data sets,
of the 77.3 million files just a little over 15 million of them(20%) occupies 98% of
the storage space while 61.8 million files(80%) occupies a mere 2% of the storage
space. The 2% logical storage space in that dataset amounts to ≈ 150 GB. This
led us to adopt a mechanism where we can reduce the number of file finger-
prints sent to the master node by representing n consecutive small file finger-
prints with one MD5 value. This is done by inserting the n consecutive small file
fingerprints into a character array and then computing the MD5 value of this
array. This approach reduces the file fingerprint index at the nodes performing
file level deduplication by a significant amount while it adds a little load on the
client for computing the representative MD5. If there are a total of t files of

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 466 Journal of Software Engineering and Applications

which p% of them are small files then the size of file fingerprint index processed
at these nodes will be sum of the number of big files and an n fold fraction of the
total number of small files (see Equation (1) below). The drawback of this ap-
proach is it results in the transfer of a lot more number of duplicate small files to
storage nodes because the representative MD5 will be different even when just
one of the n consecutive fingerprints is different or is out of order in its appear-
ance. But, the cumulative effect of this issue will be minor on both throughput as
well as efficiency, because the total transferred size of these files is negligibly
small and the storage nodes will eliminate these duplicate files.

()_ _ 1 t ptotal fp count t p
n
×

= × − + (1)

where, total_fp_count is total file fingerprints processed at nodes, t is total num-
ber of fingerprints before small file fingerprints are segmented, p is the percen-
tage of count of small files against all files and n is the number of small files
grouped into one segment.

2.4. Content Aware Grouping

Works like [5] [6] [15] [22] [30] perform deduplication using the content of the
data (or the type of data) as a means to decide on what type of chunking to apply
and where to store chunks. All except [22] and [30] of these works are single
node deduplication systems and none of them except [30] utilize grouping to
enhance deduplication speed.

3. dCACH Design

In dCACH, deduplication is performed in three stages. The first stage is the de-
duplication at the Backup Agent (BA) where filtering is performed to make sure
that no two identical files or segments are candidates for the deduplication in the
second stage. The second stage is a distributed and parallel deduplication scheme
which involves multiple Cluster Controller Nodes (CCNs). In this stage, a global
exact deduplication is performed on files and segments. The third stage is a fine
grained chunk level deduplication which occurs at Storage Nodes (SNs). This
stage of deduplication is local to SNs meaning the copy of a chunk might appear
in multiple nodes because each node is unaware of the chunks found in other
nodes. Hence in our system, we have three-level hierarchical deduplication (File,
segment and chunk level) which involves three types of nodes (BAs, CCNs and
SNs). Since the global deduplication is performed against all previously seen files
and segments, it is considered exact deduplication.

Our system implements inline deduplication at the global level and offline
deduplication in storage nodes. Because the global level deduplication removes
all duplicate files and segments, the amount of data which are transferred to sto-
rage nodes is minimal. As a result, the storage space at storage nodes which is
required to buffer incoming data stream prior to its deduplication is very small.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 467 Journal of Software Engineering and Applications

3.1. System Architecture

dCACH is designed in such a way that the nodes performing fingerprint dedup-
lication are not on the path of actual data transfer from backup agents to storage
nodes. Figure 1 shows the system layout of dCACH while Figure 2 shows con-
trol and data flow. As shown in these two figures it has four major components.
It should be noted that the Master Node(MN) and CCNs reside on nodes host-
ing SNs and hence does not require their own physical nodes even though they
can be run on their own if the resource is available.

3.1.1. Backup Agent (BA)
BA is a lightweight application which performs three separate operations. Figure
2 shows the steps followed and the communication procedure between the BA
and other types of nodes. BA first performs file, segment and chunk fingerprint
generation on the input directory or file using content defined chunking and
Rabin fingerprinting algorithm. Second, it uses file extensions to identify the
group a file belongs to and inserts its fingerprint into a bucket using the finger-
prints prefix. Note that the set of file fingerprints in all of these buckets creates a
tanker which represents a batch of data stream whose data content will be routed
to storage nodes as a unit. When any of the buckets are full, BA stops inserting
into all of them and sorts each bucket independently. It then removes duplicate
entries from each bucket and sends the file fingerprints in each bucket to a CCN
according to the buckets mapping. Upon receiving the unique files fingerprint
list from all CCNs, the agent now inserts segment fingerprints of these unique
files into segment buckets which have similar characteristics as that of file buck-
ets and sends them to their respective CCNs. The procedure of deduplicating
segment fingerprints is identical to that of file fingerprints both at the backup
agent and all CCNs. Once BA receives the list of unique segment fingerprints
from all CCNs, it generates SBF from chunks of segments and broadcasts the

Figure 1. Detailed structure and data flow between backup agent, a single cluster con-
troller and a single storage node under the controller.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 468 Journal of Software Engineering and Applications

Figure 2. dCACH workflow.

SBF to all CCNs. Next, global adjusted similarity (GAS) is calculated using the
response from CCNs. Finally, the agent sends the SBF to the CCN controlling
the storage node with the highest GAS for future reference, sends the unique
segments data stream to the chosen node and metadata to the MN. Section 4.3
and 4.4 present detailed discussion of how SBF is generated and GAS is calcu-
lated respectively.

3.1.2. Cluster Controller Node (CCN)
dCACH contains one or more CCNs which perform global exact file and seg-
ment deduplication, SBF comparison and control storage nodes. They can run
on a dedicated physical node or on any of the nodes hosting a storage node. The
file, segment and chunk level deduplication performed throughout the system is
sped up using bloom filters (designated as boxes labeled BF1, BF2 and so on in
Figure 1 which supports fast lookup for fingerprints. BF queries which resulted
in positive are further checked to rule out false positives by reading buckets of
respective tankers from on-disk tankers (file fingerprint tankers, segment fin-
gerprint tankers or chunk fingerprint tankers) into the set-associative buckets
designated as BUCKET CACH in the figure. Furthermore, content based dedup-
lication is achieved by allocating independent bloom filter as well as bucket
cache for each group. Further readings into how bloom filter array and the
bucket cache are designed and implemented can be found in [2] [7]. CCNs
compare an incoming SBF against previously recorded SBFs under each node
they are managing. The result of this comparison and the load of the nodes is
used to compute Adjusted Similarity (AS) and choose the candidate for stream
routing. Once a stream is routed to an SN the CCN managing this particular SN
will store the streams SBF for future similarity detection and routing. Each SNs
load status record is updated occasionally and is used in computing adjusted si-
milarity. The CCN is also responsible to decide if a CCN node split needs to
happen based on the availability of computational resources. The number of

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 469 Journal of Software Engineering and Applications

CCNs in dCACH can grow as high as the number of file buckets in the backup
agent. It is worth noting that the number of storage nodes a CCN controls is in-
dependent of the bucket mapping used in the system. Hence, a CCN can control
a cluster constituted of any number of storage nodes as long as it has the re-
quired RAM and computational resources.

3.1.3. Storage Node (SN)
One or more of SNs form a cluster and are managed by a CCN. Storage nodes
perform fine grained chunk level exact deduplication on data stream they receive
from the backup agent. Similar to the file and segment level deduplication at
CCNs, the chunk level deduplication uses bloom filters to speed up index look
up while also utilizing set-associative cache (BUCKET CACH in Figure 1) for
buckets read from on-disk tankers. Full chunk fingerprint tankers and contain-
ers used to store unique chunks data are stored on disk. Moreover, SNs inform
their cluster controller of their load status when certain conditions are met.
These conditions can be requests from other nodes or every time the size of
unique data stored in the node reaches some level. The CCN managing an SN
might change when a CCN becomes a bottleneck and triggers a CCN split.

The chunk level deduplication performed at storage nodes uses the same
grouping used in the backup agent and CCNs. Hence, each group of data has
separate fingerprint index and its associated bloom filter in RAM. The tankers
and containers on disk used to store the full fingerprint index and the actual
content of data respectively are independent for each group.

3.1.4. Master Node (MN)
MN is a lightweight application responsible for maintaining metadata of files as
well as creating and maintaining bucket-CCN mapping.

3.1.5. Workflow
As shown in Figure 2, the communication between components of the system
starts with the BA requesting for the list of CCNs and the bucket-CCN mapping
from the master node (MN). Once the BA receives this list it uses the mapping
information to distribute the file fingerprint buckets to their mapped CCNs. It
then receives the unique files fingerprint lists and sends segment fingerprint
buckets to CCNs using the same mapping as the file fingerprints. After receiving
the unique segments fingerprint list it generates SBF and broadcasts it to all
CCNs which in turn will respond with adjusted similarity. The BA now com-
putes Global Adjusted Similarity (GAS) and routes the unique data stream to the
node with the highest GAS. It also sends metadata to MN. The storage nodes
send updates of their load status to their CCNs occasionally which will be used
to compute adjusted similarity.

4. System Implementation
4.1. File Grouping

Grouping of file types is implemented in the backup agent to create a batch of

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 470 Journal of Software Engineering and Applications

files whose file and segment fingerprints will be queried at CCNs together and
content of their unique segments is routed to a single storage node for further
chunk level deduplication and storage. This approach has two benefits. First, the
batch of file fingerprints and batch of segment fingerprints from unique files are
formed from files which are close to each other on the physical storage. Fur-
thermore, each batch constitutes fingerprints from files which are in the same
group. This improves the speed of fingerprint lookup because the membership
query on the bloom filters is done only on one of the group of bloom filters, the
positive bloom filter query results are further checked only on that specific
groups’ fingerprint index which narrows down the look up from one gigantic
index space to just a portion of it. Second, it helps maintain and exploit locality
where catching yields better hit rate. It should be noted that the grouping of file
types is performed by inspecting all of the files application types and each file
types aggregate data sizes from the first full backup request and then using these
two parameters to establish a balanced group of file types.

4.2. Data Chunking

dCACH uses content defined chunking and Rabin fingerprinting algorithm [31]
to chunk files into course-grained segments with 1 MB, 2 MB and 4 MB as
minimum, average and maximum chunk lengths respectively. The segments are
further chunked into fine-grained chunks using 2 KB, 4 KB and 8 KB as mini-
mum, average and maximum chunk lengths respectively. MD5 is proven to pro-
vide highly collision resistance hashes [32] and is utilized to generate crypto-
graphic hash values of the chunks, segments and files. Throughout this paper we
refer to these hash values as fingerprints. It should be noted that other hashing
techniques like SHA-1 and SHA-2 can also be utilized.

4.3. SBF Generation and Comparison

As has been stated in previous sections, two prominent challenges in deduplica-
tion are that of disk index-lookup bottleneck and communication overhead.
Many indigenous methods have been utilized to overcome these challenges.
Some used techniques choose a minimal hash from all chunks of a file and use
this hash to represent all chunks of the file. This is based on what is commonly
known as the Broder’s Theorem, which states that if two minimal hashes are
identical then the files these two hashes belong to are similar [33]. Others used
sampling techniques which exploit locality which is the likelihood that if an in-
coming chunk C1 is the same as an existing chunk E1 from previous backups
then the next incoming chunks C2, C3, ∙∙∙ Cn are highly probably the same as
chunks neighbouring E1. The first approach is utilized in [8] while the second
method is used in [7] [11]. Works like [17]exploit the benefits of both locality
based and similarity based solutions.

Broder’s Theorem—Consider two sets S1 and S2, with () (){ }1H S h xi xi Si= ∈ ,
where h is chosen uniformly and at random from a min-wise independent fami-

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 471 Journal of Software Engineering and Applications

ly of permutations.
Let min(H(Si)) denote the smallest element of H(Si), then

()() ()() 1 2
Pr min 1 min 2

1 2
S S

H S H S
S S
∩

 = =  ∪
 (2)

This theory implies that if two representative chunk fingerprints from two
different files or sets are identical, then there is a very high probability that the
two sets share a lot more fingerprints. As shown in [22] it is possible to have a
better estimate of similarity between sets if we increase the number of represent-
ative fingerprints from sets but at a cost of more memory and communication
overhead. It is with this concept and challenge in mind that dCACH introduces
SBF.

In Section 3.1.1 it is described that dCACH uses a batch composed of buckets
as a basis for routing. Hence, a batch, depending on the number of buckets and
the depth of these buckets, could hold from hundreds to thousands of finger-
prints. This poses two big challenges in selecting destination nodes when the
conventional use of representative fingerprints are used for stateful routing.
Challenge one is the space required to store these representative fingerprints at
CCNs. If there are a million batches of streams to be deduplicated and each
stream contains a thousand file fingerprints, then assuming an MD5 hash value
of 128 bits length (16 bytes), this approach will need 16 × 1000 × 1,000,000 bytes
(14.9 GB) of space at these nodes. This requirement grows significantly if repre-
sentative fingerprints are selected for super-chunks instead of files because a file
could contain two or more super-chunks. The second challenge is the commu-
nication overhead incurred for transferring the representative fingerprints to the
CCNs. Our approach solves these two issues using SBFs. The SBF we generate
for routing purpose has similar characteristics as bloom filters used in [2] [7] [20]
and it is based on the original idea by [27]. In addition to their use for dedupli-
cation, they are also utilized in networking as discussed in [34].

In broad terms bloom filters are probabilistic data structures which provide a
fast way to determine if an item is present in a set or not. An important charac-
teristic of bloom filters is that they might falsely say an item is present. The
chance of this occurrence is defined as false positive probability.

False positive probability of bloom filters is influenced by factors like their size,
number of elements inserted into them, as well as the number of hash functions
used to insert elements. Given the size m and member element count n, optimal

number of hash functions k can be determined with ()ln 2mk
n

 = × 
 

. Given a

minimal false positive rate f and n we can calculate the required bloom filter
space m using Equation (3)

()lg lg 1m n e f≥ × × (3)

And given lowest false positive rate f, number of hash functions k and size m
the optimal number of elements that a bloom filter represents can be determined

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 472 Journal of Software Engineering and Applications

using Equation (4)

()ln 2mn
k

 ≤ × 
 

 (4)

The size of bloom filters used to determine similarity in dCACH is accurate
enough to tell similarities while it is optimal for both its memory consumption
at CCNs and its communication overhead. The SBF generated at the backup
agent is representations of chunk fingerprints rather than file or segment finger-
prints. It is generated using chunks from a few segments in a data stream batch
which is composed of segments of unique files. These segments are first sorted
and then chunks belonging to the segments are put into a chunk tanker. Once
any one bucket of this chunk tanker is full or chunks of all segments have been
put into the chunk tanker, representative chunk fingerprints are chosen and
hashed into the SBF. Here, the number of representative chunk fingerprints is
set according to Equation (4). If the number of buckets of the chunk tanker is b

then each bucket is first sorted and the first r
b

 chunks are inserted into the

SBF. The sorting of both the segment fingerprint list as well as chunk tanker
buckets ensures that the generated SBF will capture similarity of two data
streams if they contain data streams from similar files. Algorithm 1 and Algo-
rithm 2 show the steps followed to select representative chunk fingerprints and
SBF generation respectively. At each CCN an incoming SBF is compared with
existing SBFs for similarity using jaccard similarity coefficient which measures
the distance between them. For two equal sized SBFs SBF1 and SBF2
representing two data streams, their similarity is measured using the number of
bit positions which are set to 1 using Equation (5). Since bloom filters are always
set to 0 at the time of initialization our SBF comparison approach discards bit
positions which are not set to 1. Hence what our comparison does is count the
number of bit positions in both SBFs which are set to 1 and divide it by the size
of the SBF. The greater the number of common bit positions set to 1 is, the
higher their similarity is. This method is also used in [35].

()
()()

1, 2

1, 2
1SBF SBF

SBF SBF
Sim

SBF
=

SetBitsCount AND
 (5)

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 473 Journal of Software Engineering and Applications

where ()1, 2SBF SBFAND applies a logical AND on SBF1 and SBF2 and Set-
BitsCount() counts the number of set bits in the result of the AND operation.

4.4. Stateful Routing Using SBF

A backup stream is composed of unique segments from parts of a single large file
or segments from multiple files which belong to the same group but appear close
to each other on the physical disk at the source. The backup agent will select
chunks from the segments sequentially after the segment list of the stream is
sorted. Then the chunks are themselves sorted and the first r of them is inserted
into the streams SBF. The value of r is decided when the system is started and is
according to Equation (4). Once the SBF is generated it is broadcast to all the
CCNs which in turn will compute its similarity with previous SBFs which were
used to route streams to the storage nodes. The comparison of SBFs is per-
formed using Equation (5).

SBF similarities above a certain value are considered as actual similarity de-
grees because even very dissimilar bloom filters can share similar bit positions.
In our case we considered SBF similarities above 0.5 (50%) to represent poten-
tially similar streams. In addition to the similarity of the SBFs the CCNs also
take the load of nodes into consideration for choosing the candidate storage
node. The reason to use the load of nodes for routing decision is because of what
we call node popularity issue where a node which has a high number of data
streams will be assigned more number of streams because the chance of stream
similarity increases with the number of previously assigned streams. Node pop-
ularity is also observed and discussed in [11]. Ignoring this issue obviously will
lead to better duplicate elimination performance but the system will suffer from
great load imbalance. So, in order to create a compromise between SBF match-
ing and load balance, similarity degrees above 0.8 (80%) will be taken as they are
while those above 0.5 but below 0.8 will be used to calculate an adjusted similar-
ity (AS) at CCNs using Equation (6). The reason why we use 0.5 and 0.8 as cut
off points for degree of similarity can be found in section 1. If no storage node in
the CCNs record contains an SBF similar to the current SBF (all similarity levels
are below 0.5) a storage node will be chosen randomly and its similarity level is
adjusted using its load in a similar fashion as above. Once the CCNs calculate the
adjusted similarity, they all send it to the BA accompanying it with the load of

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 474 Journal of Software Engineering and Applications

the matching node as well as the average load of all the storage nodes which they
are responsible for managing. The BA then uses these values to compute a global
adjusted similarity (GAS) using Equation (8) for the candidate storage nodes
from each CCN and chooses the one with the highest GAS. If all of them have
the same value of GAS, one of the nodes will be chosen randomly.

1 i
S i L

L
AS W S W

CML
 = × + × − 
 

 (6)

1

1 n

ML k
k

G CML
n =

= ∑ (7)

1 i
S i L

ML

L
GAS W S W

G
 

= × + × − 
 

 (8)

where: = 1S LW W+ and 0 1SW≤ ≤ and 0 1LW≤ ≤ . SW represents Similar-
ity Weight, LW represents Load Weight, iS represents degree of similarity
from node i, CML represents Mean Load of nodes in cluster and iL is the
Load of node i, k is number of CCNs, kCML is Mean load of cluster k, MLG is
global mean load,

4.5. Expandable Cluster Controllers

Segment level deduplication (can be considered an equivalent to super-chunk
deduplication) and file level deduplication are distributed over a number of
CCNs. These two levels of deduplications are performed across all the CCNs and
exhibit a couple of major and unique characteristics. First, they are performed in
parallel across all the CCNs which can significantly boost throughput. Second,
prefix based indexing makes it possible to make all the CCNs independent from
each other while not suffering from deduplication node island effect because
they are mapped to non-overlapping buckets in the BA. Third, when a new CCN
is introduced into the system it only affects one CCN whose indexes and other
deduplication data structures as well as records are split with the new CCN. The
introduction of a new CCN also does not introduce dependency between the
new CCN and the currently split CCN. This ensures that we can make the sys-
tem grow seamlessly from a mere one CCN to up to K number of CCNs (where
K remains constant and is the number of buckets in the BA). Figure 3 shows the
mapping between buckets in BA and CCNs at different stages of CCN splits.
Algorithm 3 describes the steps used to split a CCN when it becomes the bot-
tleneck.

Deciding which half of a full CCN’s data to keep in the parent (full) CCN and
which one to assign to the new CCN is straight-forward (Algorithm 4). The full
CCN always takes the first half of all file buckets and segments of all the cur-
rently updateable open tankers in RAM and the full tankers which reside on disk
while the second half is assigned to the new CCN. At MN this node split is han-
dled by easily keeping the first half of the original buckets mapped to the cur-
rently split CCN while the second half of it is mapped to the new CCN. This

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 475 Journal of Software Engineering and Applications

Figure 3. Bucket mapping and CCN expansion.

guarantees that no matter how many CCN node splits happen, the bucket to
CCN mapping will always be correct. At the two CCNs involved in the split the
fingerprint entries from half of the old buckets of both of the nodes are redistri-
buted to their respective new buckets by taking n left most bits from fingerprints
starting from position 1n − where 2n is the number of CCNs. To demonstrate
how this approach works, let’s assume that the maximum expected number of
CCNs is 8 (23) and see in detail what happens in each of the participating nodes.
Note that we use 8 buckets in all type of nodes except Storage Nodes1 and that a
CCN identifier after a full split might change in subsequent full splits.

Backup Agent: Since there are 8 buckets and maximum possible number of 23
CCNs we always use the first 3 bits of file and segment fingerprints to put them

1Backup Agent (BA), Master Node (MN) as well as Cluster Controller Nodes (CCNs) need to have
the same number of buckets for files and segments while storage nodes can have a different number
of buckets. This is because the bucket-CCN mapping is used only for mapping between buckets in
the Backup Agent and CCNs.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 476 Journal of Software Engineering and Applications

in a bucket. Then bucket to CCN mapping is performed depending on the cur-
rently active number of CCNs. If there is only one CCN, all buckets will be
mapped to it. If there are two CCNs, first half of buckets will be mapped to the
first CCN and second half will be mapped to the second. But when there are
three CCNs, more needs to be done for mapping because when there are three
CCNs (or for that matter when number of CCNs is not in power of 2 (like 3, 5, 6
and 7) it means that one or more of the old CCNs have split but not all have split.
In such cases the mapping is simplified by communicating the master node
which keeps the record of whether a CCN has split or not. MN maintains which
buckets are mapped to which CCN and updates this record every time a CCN
node splits. Since we consistently use the left most 3 bits of fingerprints to place
them in buckets, we can be assured that a duplicate fingerprint will be found and
eliminated by CCNs even after a fingerprint index entry have moved from one
CCN to another.

Cluster Controller Node: Deciding which half of a full CCN’s data to keep in
the parent (full) CCN and which one to assign to the new CCN is straight for-
ward. The full CCN always takes the first half of all file buckets and segments of
all the currently update-able open tankers in RAM and the full tankers which re-
side on disk, while the second half is assigned to the new CCN. The full CCN
then transfers a copy of all of its records to the new CCN. This is followed by
launching a background task which will reconstruct a new index and bloom fil-
ter from first half of its data in the old index. Here, depending on the number of
active CCNs (it requests the MN for the number of CCNs after the next full split
and uses this data as number of active CCNs), it redistributes its indexes and re-
creates the associated bloom filter. So, if this CCN is the only CCN in the system
the next full split results in two CCNs. The indexes from the first half (the first 4
buckets) of the old buckets will be redistributed using 3 left most bits starting at
position 0 (i.e. 20−1). The new CCN will do the same except that it will redistri-
bute the second half (the last 4 buckets) of the bucket copy it received from the
full CCN. On the other hand if the full CCN is one of two CCNs, the next full
split will result in 4 CCNs. This means, when redistributing their respective
bucket entries both the full and the new CCN will use 3 bits of fingerprints
starting from position 1 (i.e. 21−1). In other words the first bit is ignored because
it is the same for all fingerprints in both halves (all 4 buckets) of the old bucket.
Node split can continue until maximum possible number of CCNs is arrived at
(in this case 8 CCNs). It should be noted that the full CCN initiates background
task to handle its node split because the normal deduplication task is not inter-
rupted during node splits and the MN is notified of node split only after both the
background task of the full CCN and the construction of indexes at the new
CCN are complete. Algorithm 5 presents steps of splitting a full CCN while al-
gorithm 6 shows the steps a new CCN follows after it is initiated.

Master Node: AT MN, node split is handled by easily keeping the first half of
the buckets mapped to the currently split CCN while the second half of it is
mapped to the new CCN. This guarantees that no matter how many CCN node

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 477 Journal of Software Engineering and Applications

splits happen, the bucket to CCN mapping will always be correct. So, when the
first CCN splits, the first 4 buckets (buckets 0, 1, 2, 3) are mapped to the full
CCN and the last 4 (buckets 4, 5, 6, 7) are mapped to the new CCN. If one of
these two nodes splits later, let’s say only the second CCN is split, again the first
half is kept in the full CCN and the last half mapped to the new one. But if we go
one step back and see where the buckets in the original mapping are, we can see
that buckets 4, 5, 6 and 7 are split where buckets 4 and 5 are still mapped to the
original second CCN while buckets 6 and 7 are mapped to and moved to a new
CCN. Note that buckets 0 through 3 are still mapped to original first bucket.
Algorithm 7 explains the procedure of creating a new mapping when a node
split happens.

5. Evaluation

dCACH is evaluated using a prototype developed for a distributed storage envi-
ronment. The prototype consists of three components, namely; clients, storage
nodes and a master node. The following sections describe the physical experi-
ment environment, the datasets used and the evaluation criteria as well as evalu-
ation result.

5.1. Evaluation Environment

Four separate servers were used to host 17 virtual machines where 16 of these
VMs were used to create two clusters of storage nodes with each cluster consti-
tuting eight storage nodes. Three of these four servers feature 32 GB RAM, 4
core 2.13 GHz Intel Xeon and 8 disk drives in a RAID-5 setup, while one server
features 24 GB RAM, 2 × 8 core 2.40 GHz Intel Xeon and 5 disk drives in a
RAID-5 setup. The master node and backup agent were deployed on one ma-
chine, while the storage nodes were deployed as guest OSs. Two cluster control-
ler nodes were deployed on two of the 16 virtual machines. The VMs for the
storage nodes were configured to have 4 cores of processors with 4 GB of RAM
and 600 GB of hard disk.

5.2. Experiment Dataset and Setup

Two data sets are used to evaluate dCACH which are collected from [36]. The

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 478 Journal of Software Engineering and Applications

first data set is snapshots of students’ home directories (homedir set) from a
shared network file system. They consist of 102 snapshots taken from five users
over a period of six months from January 22, 2013 to June 04, 2013. The other
data set is collection of snapshots taken from a Mac OS X Snow Leopard server
running in an academic computer lab. It consists of traces from 44 weekly snap-
shots spanning 12 months from January 6, 2013 to December 31, 2013. Since
these data sets provided pre-processed fingerprints, we were not able to use our
CDC approach as described in Section 1 and hence we created segments using
consecutively appearing chunk fingerprints by taking into consideration of the
chunks length and count to make super-chunks. Table 1 shows the properties of
the datasets.

dCACH is evaluated for throughput, duplicate removal performance, load ba-
lancing and network overload. We used a single node deduplication scheme to
identify the exact amount of duplicate content on our input data sets. A proto-
type of Extreme_Binn [8] and a stateless distributed deduplication scheme are
used to compare performance against our approach. The stateless deduplication
scheme performs inline file level global exact deduplication in a similar fashion
as dCACH and offline chunk level deduplication at the storage nodes. The
routing method used for this approach is stateless and does not consider storage
node load for routing streams. Moreover, no grouping of files is utilized.

5.3. Optimal SBF Parameters

Accuracy of bloom filters is determined by the number of hash functions, num-
ber of elements, its size and bound of false positive probability. We tested the
accuracy of SBFs representation of data streams by varying the lower bound of
the false positive probability. We also checked if SBF representation is affected
by the use of multiple buckets for the representative chunks. We set the size m of
SBF at 5 KB, the number of hash functions k at 12 and tested the optimal num-
ber of representatives to be inserted into the SBF using Equations (3) and (4) by
first setting the false positive bound f to 1106 and then to 1108. We compared the
similarity degree of the bloom filters against the similarity degree of the actual
representative fingerprints used to generate the SBFs. That is, if SBF of data
stream 107 is 80% similar to SBF of stream 19, we check the number of common
representative fingerprints for data streams 107 and 19 as a percentage and
compute the gap between the two percentage results. We selected 50 data
streams from the homedir data set which showed similarities with previous data
streams. As shown in Figure 4 the gap between actual similarity and SBF simi-
larity goes as high as 39 when the false positive probability bound is set at 1106
and only 1 bucket is used. The gap becomes as big as 59 when 4 buckets are used.
When f is set to 1108 the gap becomes very small showing better representative
count r for the SBF. In this setting the maximum gap observed between the ac-
tual similarity degree and the SBF similarity degree is 10 when 1 bucket is used
and 9.5 when 4 buckets are used. Thus the number of buckets we used does not

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 479 Journal of Software Engineering and Applications

affect the effectiveness of the SBF when f is set to an appropriate value. We chose
to use one bucket for representative chunks in order to avoid the computational
cost of sorting multiple buckets. We have also observed that the gap between the
similarity degrees is bigger for similarities below 0.5 while it becomes narrower
as similarity degrees increase. Hence, SBFs with similarity degrees below 0.5 are
considered not similar while those above 0.8 are very similar. Accordingly,
streams with an SBF matching above 0.8 are routed to the storage node which
has the stream of the matching SBF, whereas streams with SBFs with a similarity
degree below 0.8 are routed to nodes with consideration of the load of nodes us-
ing adjusted similarity as in Equation (6).

5.4. Evaluation Result
5.4.1. Deduplication Throughput (DT)
In Figure 5, dCACH deduplication throughput is the number of chunk finger-
prints processed per second. It is calculated using an estimation which considers

Table 1. Property of used datasets.

Data Set Size (TB)
Num of Files

(mlns)
Average Chunk

Size (KB)
Average File Size

(KB)
homedir 1.73 15.90 4 116.8

macOS 9.80 87.70 4 120

Figure 4. Absolute dierence between SBF Similarity and
Representatives Similarity for selected data streams.

Figure 5. Deduplication Throughput.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 480 Journal of Software Engineering and Applications

the logical data size and Average Chunk Size (ACS) of each data set. Given the
logical data size (LDS), deduplication duration time in seconds (secD) and ACS
of a dataset, we use Equation (9) to calculate it.

sec

1LDSDT
ACS D

= × (9)

The highest deduplication throughput is observed for the stateless deduplica-
tion approach with 2.12 × 105 and 3.12 × 105 for the homedir and macOS data-
sets respectively. In dCACH, 2.3 × 105 and 2.62 × 105 were processed per second
for homedir and macOS datasets respectively. Extreme_binn has the lowest de-
duplication throughput at 6.89 × 104 and 3.03 × 104 for homedir and macOS da-
tasets respectively. Both dCAH and the stateless approach exhibited more than
10 times the throughput of Extreme_binn.

5.4.2. Load Balancing
In dCACH routing decision for a data stream is performed using similarity of
the stream with previously routed streams and the load of nodes holding similar
streams. For Extreme_binn routing decision is performed for each file using the
file’s representative chunk id. In the stateless scheme routing is performed in
random fashion.

We measured the load balancing effectiveness of these three approaches using
Mean Absolute Deviation (MAD), where the distance of the load of nodes in the
system is measured against the average load of nodes and the difference of load
between the highest loaded node and the least loaded node. Equation (10) is
used to calculate MAD where ix is load of node i and ()m X is the average
load of all n nodes in the system.

()
1

1 n

i
i

x m X
n =

−∑ (10)

Among the three distributed deduplication schemes dCACH has the best load
distribution while Extreme_binn has the worst. This is evidenced by the gap be-
tween the node with the lowest load and the node with highest load. The mean
absolute deviation of all nodes against average load also reveals their load distri-
bution performance. For dCACH, the difference of load between the least loaded
and highest loaded nodes for the homedir data set is 2.24 GB while its MAD is
0.36. For the same data set the stateless scheme exhibits max-min gap of 6.09 GB
and MAD of 1.31 while Extreme_binn’s max-min gap is 34.33 GB and its MAD
is 4.51. For the macOS data set dCACH has 2.07 GB and 0.42 for max-min gap
and MAD respectively while the stateless scheme showed gap of 10.30 GB and
MAD of 2.10. Extreme_binn exhibited max-min difference of 9.38 GB and 1.63
MAD. Figure 6 shows the mean absolute deviation of nodes for the three de-
duplication approaches.

5.4.3. Duplicate Detection Efficiency (DDE)
DDE is the ratio of size of the original logical data size LDS to the size of the
physical data size after deduplication PDS. It is expressed in 11.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 481 Journal of Software Engineering and Applications

Figure 6. Mean Absolute Deviation of load among
all nodes.

LDSDDE
PDS

= (11)

The duplicate removal performance of the various deduplication approaches
is shown in Table 2 as it lists the physical data after deduplication is performed
using each approach on the same logical data for each data. Figure 7 and Figure
8 show the size of physical data after the four deduplication schemes are per-
formed on homedir and macOS datasets respectively. As expected, the single
node deduplication scheme exhibits the highest duplicate elimination perfor-
mance. The least duplicate elimination performance is observed for the stateless
deduplication scheme. From the 1713.8 logical data size of the homedir dataset,
dCACH stored 141.1 GB of data as physical data while the single node, Ex-
treme_binn and stateless schemes stored 91.02 GB, 133.83 GB and 159.33 GB
respectively. From the 9821.6 GB logical data size of the macOS dataset, dCACH
stored only 317 GB while the single node, Extreme_binn and the stateless ap-
proaches stored 209.2 GB, 239.66 GB and 373.47GB respectively. Figure 9 and
Figure 10 show the duplicate removal efficiency in GB and in percent respec-
tively for the homedir dataset while Figure 11 and Figure 12 show the duplicate
removal efficiency in GB and in percent respectively for the macOS dataset.

5.4.4. Communication Overhead
One big challenge of deduplication over a distributed environment is communi-
cation overhead. When fingerprint lookup is performed in a distributed manner
over many storage servers the communication cost of the lookup will increase
linearly with number of storage servers and exponentially with the number of
fingerprints queried. This affects the scalability of deduplication systems.
Another form of communication cost is incurred when stateful routing is uti-
lized. In [22] [23], similarity of a new super-chunk is checked with previously
routed super-chunks by probing all nodes before it is routed to the node holding
the most similar super-chunk. A file could own one to thousands of su-
per-chunks making the communication cost even higher for bigger files. In [8] a
single representative chunk fingerprint of a file is used to decide where to route
the file for deduplication. This approach does not have cost of communication

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 482 Journal of Software Engineering and Applications

Table 2. Deduplication Efficiency of dCACH and three other deduplication approaches.

Deduplication
Scheme

Routing
Scheme

Data Size in GB

Homedir Set macOS Set

Logical Physical Logical Physical

Single Node None

1713.79

91.02

9821.6

209.2

Extreme Binn Stateful 133.83 239.66

Stateless Stateless 159.73 373.47

dCACH Stateful 144.1 317.01

Figure 7. Physical Data Size After Deduplication for homedir dataset.

Figure 8. Physical Data Size After Deduplication for macOS dataset.

Figure 9. Detected Duplicates at storage nodes in GB
for homedir dataset.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 483 Journal of Software Engineering and Applications

Figure 10. Detected Duplicates at storage nodes in
percent for homedir dataset.

Figure 11. Detected Duplicates at storage nodes in GB
for macOS dataset.

Figure 12. Detected Duplicates at storage nodes in
percent for macOS dataset.

for deciding where to route a file but every file will be routed to a deduplicating
node whether it is fully duplicate, slightly modified or new file. dCACH imple-
ments stateful routing for assigning unique data streams to storage nodes using
similarity bloom filters. The SBF is broadcast to all cluster controller nodes and
the unique data stream is routed to the storage node with the highest matching
SBF. Communication overhead of dCACH’s stateful routing is significantly low
compared to other approaches because first it happens only between the backup
agent and CCNs. Second, an SBF represents tens of thousands to hundreds of
thousands of chunk fingerprints depending on the size and number of files and
segments belonging to the batch of a data stream.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 484 Journal of Software Engineering and Applications

Because dCACH makes routing decisions on a batch of segments from a sin-
gle large file or multiple files, the number of lookup is a multiple of these batches.
These lookups involve three stages. First is the lookup for duplicate files where a
set of file fingerprints are sent to CCNs, then segment lookup for segments be-
longing to unique files is performed in a similar fashion. Third, lookup for nodes
holding a similar batch of data is performed by broadcasting the SBF to all CCNs.
For [22] (AppDedupe) the number of lookup is a multiple of super-chunks and
number of nodes since each lookup is broadcast to all nodes.

The communication cost of different approaches can be compared using a
simple scenario where there are 10,000 files with an average file size of 100 KB
and 16 KB average chunk size with 1MB super-chunk size. dCACH with two
CCNs needs (10,000/T) × 3 × 2 lookups, where T is number of files in a batch at
the backup agent. If T is set to 100, it requires 600 lookups for the deduplication
of all the files. It should be noted that the actual number of lookup will be much
fewer than this estimate because if all files in a batch are duplicate then there will
be no subsequent lookup for segments and similarity comparison for that par-
ticular batch of files. For the same scenario [8] needs to communicate the server
for each file which is 10,000 whereas in [22] the number of lookups is extremely
high at 11,700 × n because all n nodes are involved in routing decision for every
10000*100 KB/1 MB ≈ 11700 super-chunks.

6. Related Works

In our previous work [13], we have used application type of files to create set of
file groups and assign each set to specific cluster of nodes with each cluster ex-
clusively deduplicating data streams only from its assigned file group. In single
node deduplication schemes like ALG-Dedupe [15] and ADMAD [6], different
types of chunking methods were utilized for files of different application types.
In HPDV [30], global shared fingerprint index is divided into sub-indexes ac-
cording to the type of operating systems a virtual machine is hosting. This ap-
proach is intended to reduce the scope of fingerprint index search. In AppDe-
dupe [22], the type of files is used to decide where to route its chunks. dCACH
creates groups of files based on their application type. Independent index space
and its bloom filters are then used for each group throughout all nodes in the
system. Moreover, dCACH uses file size to filter small sized files and create
file-segments from these small files. The file-segments are used for deduplication
instead of the small files. A similar technique of filtering files using their size is
utilized in [22] but their intention is only to increase data transfer rate over the
network and they completely ignore these small files from the deduplication
process. In [9] [11] [12] [22] [37] [38] super-chunks are created from chunks to
minimize disk index-lookup bottleneck and exploit data locality. dCACH also
exploits locality and improves disk index-lookup performance by first chunking
files into segments using CDC and then further chunking these segments into
fine grained chunks. Our approach is different from the rest in that it uses CDC
to create segments while the other approaches use chunks to create segments

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 485 Journal of Software Engineering and Applications

(super-chunks) which does not use CDC.
DHT based distribution of fingerprints and load for deduplication has been

implemented in works like [7] [10]. Even though these works have shown that
such an approach guarantees exact deduplication and fair amount of work and
storage load among nodes, it assumes that the number of storage nodes remain
constant. For example in [7], each storage component deduplicates fingerprints
with the same specific fingerprint prefix. This enables it to achieve parallel exact
deduplication without the storage node island effect. But the number of storage
components cannot change or grow because doing so will disrupt the prefix
mapping and the system will not be able to identify duplicates against previously
deduplicated data. Backup agent of dCACH also uses prefixes to put file and
segment fingerprints into non overlapping buckets and these buckets are
mapped to currently available cluster controller nodes. This makes it possible to
achieve parallel deduplication while avoiding the storage node island effect. But
unlike other systems, in dCACH the number of nodes involved in the distri-
buted exact deduplication (CCNs to be explicit) can grow (and also shrink if a
special need arrives to downsize). Extreme binning [8] supports the addition of
nodes to its system but it results in indexes being reshuffled, and moved around
between all the nodes. In this system, in some cases data might be moved around
so much that, it might come back to its original host. On the other hand in
dCACH, the addition of CCNs results in the movement of indexes and asso-
ciated records between only two nodes. Our approach also makes it possible to
add as any number of storage nodes as required into the system because node
management is split between CCNs and will not be a bottleneck.

In [11] [12] [22], a stateful routing is utilized for routing data to minimize the
effect of deduplication node information island. In [12] a set of representative
handprints are selected from each super-chunk and the similrity of su-
per-chunks is decided by comparing representative handprint chunks. In [11]
super-chunks are routed as a unit. Counting bloom filters are used in every node
to trace the number of times a fingerprint is stored in the nodes. This approach
can achieve a considerable duplicate removal performance, but it is susceptible
to high communication cost, high memory consumption and computational
overhead. In [22], a two-tired inter-node routing and an application-aware in-
tra-node deduplication are performed to tackle the issue of deduplication node
information island effect. In this system, the director-node first selects a group
of storage nodes for each file using file type as criteria, the client node then
chooses a representative chunk for each super-chunk and broadcasts it to all the
selected nodes with the node containing a matching chunk chosen as the desti-
nation. The communication cost of this system is high because it floods the net-
work with representative chunk fingerprints for every super-chunk. dCACH in-
troduces a drastic reduction of communication overhead because SBF is utilized.
The SBF represents a whole data stream and is sent only to CCNs for similarity
computation.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 486 Journal of Software Engineering and Applications

7. Conclusion and Future Work

In this paper, we presented dCACH, a content-aware clustered and hierarchical
deduplication system. It employs non-monolithic fingerprint index structures
where each partition is used exclusively for a set of file types. This approach
boosts fingerprint lookups without loosing duplicate elimination performance
because files from different applications share insignificant amount of content.
Moreover, it employs decentralized and scalable global exact deduplication for
files and segments. The number of nodes responsible for file and segment level
deduplication and storage node management can grow without affecting dupli-
cate removal ability. The batch based routing mechanism and use of big sized
segments captures and exploits locality. In fact, the probability that the whole
content of a file is assigned to different backup nodes is minimal. All parts
(chunks) of a file are guaranteed to be assigned to only one node except when
the file is very big and is segmented into super chunks where chunks of these
super chunks are used for routing decision instead of chunks of the file as a
whole. This results in better data management outcomes because a file whose
chunks are distributed over multiple nodes is prone to less reliability because
failure of any of the nodes hosting its parts will result in loss of the data. Moreo-
ver, similarity bloom filters are utilized for stateful routing which results in dup-
licate elimination rate on a par with single node deduplication with a minimal
cost of computation and communication.

Deduplication is shown to cause chunk fragmentation which results in very
low read throughput when data restoration is performed. Furthermore, most re-
cent backup versions are more likely to be restored than older versions but their
content is the most fragmented. There are two design strategies used so far to
deal with fragmentation. The first one is re-writing, where duplicate chunks
which are evaluated to cause fragmentation are written again along with unique
data [30] [40] [41]. Another approach is the use of optimized caching mechan-
isms which utilize backup recipes. Since backup’s read sequence is available from
their backup recipe, works like [42] [43] utilize it to design algorithms which can
minimize the number of disk accesses during restoration. Because the recipe of a
backup cannot be read into RAM in its entirety, most approaches use a sliding
window approach where just a fraction of the recipe is read and its correspond-
ing data is restored and the next part is read and restored and so on. This restore
window size influences the caching performance because it determines to what
extent the caching algorithm can see the future access pattern. dCACH first di-
vides data into groups according to its content and then routes data according to
bucket-node mapping. As a result, a backup version will be split into multiple
parts where each part is routed independently. Hence, at storage nodes we have
backup recipes of parts which can well fit into RAM. In our future work we plan
to design a restore scheme which exploits the small-sized recipes at storage
nodes to improve caching mechanisms. We also would like to examine the effect
of our similarity-based routing on fragmentation.

https://doi.org/10.4236/jsea.2019.1211029

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 487 Journal of Software Engineering and Applications

Acknowledgments

This work is supported in part by the National Key Research and Development
Program of China under Grant No.2016YFB0800402 and the Innovation Group
Project of the National Natural Science Foundation of China, No.61821003.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Xia, W., Jiang, H., Feng, D., Douglis, F., Shilane, P., Hua, Y., Fu, M., Zhang, Y. and

Zhou, Y. (2016) A Comprehensive Study of the Past, Present, and Future of Data
Deduplication. Proceedings of the IEEE, 104, 1681-1710.
https://doi.org/10.1109/JPROC.2016.2571298

[2] Zhu, B., Li, K. and Patterson, H. (2008) Avoiding the Disk Bottleneck in the Data
Domain Deduplication File System. In: Proceedings of the 6th USENIX Conference
on File and Storage Technologies, USENIX Association, Berkeley, 18:1-18:14.

[3] Meister, D. and Brinkmann, A. (2009) Multi-Level Comparison of Data Deduplica-
tion in a Backup Scenario. Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference, Haifa, Article No. 8. https://doi.org/10.1145/1534530.1534541

[4] Quinlan, S. and Dorward, S. (2002) Venti: A New Approach to Archival Data Sto-
rage. Proceedings of the 1st USENIX Conference on File and Storage Technologies,
USENIX Association, Berkeley, 89-101.

[5] Fu, Y., Jiang, H., Xiao, N., Tian, L. and Liu, F. (2011) AA-Dedupe: An Application-
Aware Source Deduplication Approach for Cloud Backup Services in the Personal
Computing Environment. IEEE International Conference on Cluster Computing,
Austin, 26-30 September 2011, 112-120.
https://doi.org/10.1109/CLUSTER.2011.20

[6] Liu, C., Lu, Y., Shi, C., Lu, G., Du, D.H.C. and Wang, D.-S. (2008) ADMAD: Appli-
cation-Driven Metadata Aware De-Duplication Archival Storage System. 5th IEEE
International Workshop on Storage Network Architecture and Parallel I/Os, Com-
puter Society Press, Baltimore, 29-35. https://doi.org/10.1109/SNAPI.2008.11

[7] Wei, J., Jiang, H., Zhou, K. and Feng, D. (2010) MAD2: A Scalable High-Throughput
Exact Deduplication Approach for Network Backup Services. IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies, Lake Tahoe, 6-7 May 2010, 1-14.
https://doi.org/10.1109/MSST.2010.5496987

[8] Bhagwat, D., Eshghi, K., Long, D. and Lillibridge, M. (2009) Extreme Binning:
Scalable, Parallel Deduplication for Chunk-Based File Backup. IEEE International
Symposium on Modeling, Analysis & Simulation of Computer and Telecommuni-
cation Systems, London, 21-23 September 2009, 1-9.
https://doi.org/10.1109/MASCOT.2009.5366623

[9] Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezise, G. and Camble, P.
(2009) Sparse Indexing: Large Scale, Inline Deduplication Using Sampling and Lo-
cality. Proceedings of the 7th Conference on File and Storage Technologies,
USENIX Association, Berkeley, 111-123.

[10] Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzelczak, P., Szczep-
kowski, J., Un-gureanu, C. and Welnicki, M. (2009) HYDRAstor: A Scalable Sec-

https://doi.org/10.4236/jsea.2019.1211029
https://doi.org/10.1109/JPROC.2016.2571298
https://doi.org/10.1145/1534530.1534541
https://doi.org/10.1109/CLUSTER.2011.20
https://doi.org/10.1109/SNAPI.2008.11
https://doi.org/10.1109/MSST.2010.5496987
https://doi.org/10.1109/MASCOT.2009.5366623

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 488 Journal of Software Engineering and Applications

ondary Storage. Proceedings of the 7th Conference on File and Storage Technolo-
gies, USENIX Association, Berkeley, 197-210.

[11] Dong, W., Douglis, F., Li, K., Patterson, H., Reddy, S. and Shilane, P. (2011) Tra-
deoffs in Scalable Data Routing for Deduplication Clusters. Proceedings of the 9th
USENIX Conference on File and Storage Technologies, USENIX Association,
Berkeley, 15-29.

[12] Fu, Y., Jiang, H. and Xiao, N. (2012) A Scalable Inline Cluster Deduplication
Framework for Big Data Protection. ACM/IFIP/USENIX International Conference
on Distributed Systems Platforms and Open Distributed Processing, Montreal, 3-7
December 2012, 354-373. https://doi.org/10.1007/978-3-642-35170-9_18

[13] Dagnaw, G., Hua, W. and Zhou, K. (2018) CACH-Dedup: Content Aware Clustered
and Hierarchical Deduplication. 24th IEEE International Conference on Parallel
and Distributed Systems, Singapore, 11-13 December 2018, 399-407.
https://doi.org/10.1109/PADSW.2018.8644884

[14] Agrawal, N., Bolosky, W.J., Douceur, J.R. and Lorch, J.R. (2007) A Five-Year Study
of File-System Metadata. ACM Transactions on Storage, 3, 9.
https://doi.org/10.1145/1288783.1288788

[15] Fu, Y., Jiang, H., Xiao, N., Tian, L., Liu, F. and Xu, L. (2014) Application-Aware
Local-Global Source Deduplication for Cloud Backup Services of Personal Storage.
IEEE Transactions on Parallel and Distributed Systems, 25, 1155-1165.
https://doi.org/10.1109/TPDS.2013.167

[16] Tan, Y., Jiang, H., Feng, D., Tian, L., Yan, Z. and Zhou, G. (2010) Sam: A Seman-
tic-Aware Multi-Tiered Source De-Duplication Framework for Cloud Backup. 39th
International Conference on Parallel Processing, San Diego, 13-16 September 2010,
614-623. https://doi.org/10.1109/ICPP.2010.69

[17] Xia, W., Jiang, H., Feng, D. and Hua, Y. (2011) Silo: A Similarity-Locality Based
Near-Exact Deduplication Scheme with Low Ram Overhead and High Throughput.
Proceedings of USENIX ATC, Portland, 15 June 2011, 26-28.

[18] Li, Y.-K., Xu, M., Ng, C.-H. and Lee, P.P.C. (2014) Efficient Hybrid Inline and
Out-of-Line Deduplication for Backup Storage. ACM Transactions on Storage, 11,
1-21. https://doi.org/10.1145/2641572

[19] Yang, T., Jiang, H., Feng, D., Niu, Z., Zhou, K. and Wan, Y. (2010) DEBAR: A Scal-
able High-Performance Deduplication Storage System for Backup and Archiving.
IEEE International Symposium on Parallel & Distributed Processing, Istanbul, 7-9
July 2010, 1-12. https://doi.org/10.1109/IPDPS.2010.5470468

[20] Zhang, J., Zhang, S., Lu, Y., Zhang, X. and Wu, S. (2013) Hierarchical Data Dedup-
lication Technology Based on Bloom Filter Array. Lecture Notes in Electrical Engi-
neering, Proceedings of the International Conference on Information Engineering
and Applications, 1, 725-732.
https://doi.org/10.1007/978-1-4471-4856-2_88

[21] Zhou, Y., Feng, D., Xia, W., Fu, M., Huang, F., Zhang, Y. and Li, C. (2015) SecDep:
A User-Aware Efficient Fine-Grained Secure Deduplication Scheme with Mul-
ti-Level Key Management. 31st Symposium on Mass Storage Systems and Technol-
ogies, Santa Clara, 1-5 June 2015, 1-14.
https://doi.org/10.1109/MSST.2015.7208297

[22] Fu, Y., Xiao, N., Jiang, H., Hu, G. and Chen, W. (2017) Application-Aware Big Data
Deduplication in Cloud Environment. IEEE Transactions on Cloud Computing, 1.
https://doi.org/10.1109/TCC.2017.2710043

[23] Luo, S., Zhang, G., Wu, C., Khan, S. and Li, K. (2015) Boafft: Distributed Dedupli-

https://doi.org/10.4236/jsea.2019.1211029
https://doi.org/10.1007/978-3-642-35170-9_18
https://doi.org/10.1109/PADSW.2018.8644884
https://doi.org/10.1145/1288783.1288788
https://doi.org/10.1109/TPDS.2013.167
https://doi.org/10.1109/ICPP.2010.69
https://doi.org/10.1145/2641572
https://doi.org/10.1109/IPDPS.2010.5470468
https://doi.org/10.1007/978-1-4471-4856-2_88
https://doi.org/10.1109/MSST.2015.7208297
https://doi.org/10.1109/TCC.2017.2710043

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 489 Journal of Software Engineering and Applications

cation for Big Data Storage in the Cloud. IEEE Transactions on Cloud Computing,
1. https://doi.org/10.1109/TCC.2015.2511752

[24] Kulkarni, P., Douglis, F., LaVoie, J. and Tracey, J.M. (2004) Redundancy Elimina-
tion within Large Collections of Files. Proceedings of the Annual Conference on
USENIX Annual Technical Conference, USENIX Association, Berkeley, 59-72.

[25] Muthitacharoen, A., Chen, B., et al. (2001) A Low-Bandwidth Network File System.
Proceedings of the 18th ACM Symposium on Operating Systems Principles, Banff,
21-24 October 2001, 174-187. https://doi.org/10.1145/502034.502052

[26] Policroniades, C. and Pratt, I. (2004) Alternatives for Detecting Redundancy in Sto-
rage Systems Data. In: Proceedings of the Annual Conference on USENIX Annual
Technical Conference, USENIX Association, Berkeley, 73-86.

[27] Bloom, B.H. (1970) Space/Time Trade-Offs in Hash Coding with Allowable Errors.
Communications of the ACM, 13, 422-426. https://doi.org/10.1145/362686.362692

[28] Lu, G., Debnath, B. and Du, D.H. (2011) A Forest-Structured Bloom Filter with Ash
Memory. IEEE 27th Symposium on Mass Storage Systems and Technologies, Den-
ver, 23-27 May 2011, 1-6.

[29] Wang, J., Zhao, Z., Xu, Z., Zhang, H., Li, L. and Guo, Y. (2015) I-Sieve: An Inline
High Performance Deduplication System Used in Cloud Storage. Tsinghua Science
and Technology, 20, 17-27. https://doi.org/10.1109/TST.2015.7040510

[30] Lin, C., Cao, Q., Huang, J., Yao, J., Li, X. and Xie, C. (2018) HPDV: A Highly Paral-
lel Deduplication Cluster for Virtual Machine Images. 18th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, Washington DC, 1-4
May 2018, 472-481. https://doi.org/10.1109/CCGRID.2018.00074

[31] Rabin, M.O. (1981) Fingerprinting by Random Polynomials. Tech. Rep., Center of
Research in Computer Technology, Technical Report.

[32] Rivest, R. (1992) The md5 Message-Digest Algorithm.
https://doi.org/10.17487/rfc1321

[33] Broder, A.Z., Charikar, M., Frieze, A.M. and Mitzenmacher, M. (1998) Min-Wise
Independent Permutations. Journal of Computer and System Sciences, 60, 327-336.

[34] Broder, A. and Mitzenmacher, M. (2004) Network Applications of Bloom Filters: A
Survey. Internet Mathematics, 1, 485-509.
https://doi.org/10.1080/15427951.2004.10129096

[35] Donnet, B., Gueye, B. and Kaafar, M.A. (2012) Path Similarity Evaluation Using
Bloom Filters. Computer Networks, 56, 858-869.
https://doi.org/10.1016/j.comnet.2011.11.003

[36] FSL (2014) Traces and Snapshots Public Archive. http://tracer._lesystems.org

[37] Xia, W., Jiang, H., Feng, D. and Tian, L. (2016) DARE: A Deduplication-Aware Re-
semblance Detection and Elimination Scheme for Data Reduction with Low Over-
heads. IEEE Transactions on Computers, 65, 1692-1705.
https://doi.org/10.1109/TC.2015.2456015

[38] Zhang, P., Huang, P., He, X., Wang, H., Yan, L. and Zhou, K. (2016) RMD: A Re-
semblance and Mergence Based Approach for High Performance Deduplication.
45th International Conference on Parallel Processing, Philadelphia, 16-19 August
2016, 536-541. https://doi.org/10.1109/ICPP.2016.68

[39] Fu, M., Feng, D., Hua, Y., He, X., Chen, Z., Xia, W., Huang, F. and Liu, Q. (2014)
Accelerating Restore and Garbage Collection in Deduplication-Based Backup Sys-
tems via Exploiting Historical Information. USENIX Annual Technical Conference,
Philadelphia, 19-20 June 2014, 181-192.

https://doi.org/10.4236/jsea.2019.1211029
https://doi.org/10.1109/TCC.2015.2511752
https://doi.org/10.1145/502034.502052
https://doi.org/10.1145/362686.362692
https://doi.org/10.1109/TST.2015.7040510
https://doi.org/10.1109/CCGRID.2018.00074
https://doi.org/10.17487/rfc1321
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1016/j.comnet.2011.11.003
http://tracer._lesystems.org/
https://doi.org/10.1109/TC.2015.2456015
https://doi.org/10.1109/ICPP.2016.68

G. Dagnaw et al.

DOI: 10.4236/jsea.2019.1211029 490 Journal of Software Engineering and Applications

[40] Tan, Y., Wang, B., Wen, J., Yan, Z., Jiang, H. and Srisa-an, W. (2018) Improving
Restore Performance in Deduplication-Based Backup Systems via a Fine-Grained
Defragmentation Approach. IEEE Transactions on Parallel and Distributed Sys-
tems, 29, 2254-2267. https://doi.org/10.1109/TPDS.2018.2828842

[41] Wu, J., Hua, Y., Zuo, P. and Sun, Y. (2018) Improving Restore Performance in De-
duplication Systems via a Cost-Efficient Rewriting Scheme. IEEE Transactions on
Parallel and Distributed Systems, 30, 119-132.
https://doi.org/10.1109/TPDS.2018.2852642

[42] Cao, Z., Wen, H., Wu, F. and Du, D.H. (2018) ALACC: Accelerating Restore Per-
formance of Data Deduplication Systems Using Adaptive Look-Ahead Window As-
sisted Chunk Caching. 16th fUSENIXg Conference on File and Storage Technolo-
gies, Oakland, 12-15 February 2018, 309-324.

[43] Kaczmarczyk, M. and Dubnicki, C. (2015) Reducing Fragmentation Impact with
Forward Knowledge in Backup Systems with Deduplication. In: Proceedings of the
8th ACM International Systems and Storage Conference, ACM, New York, 17.
https://doi.org/10.1145/2757667.2757678

Appendix A
Table A1 presents most frequently used acronyms and terms used throughout
the paper.

Table A1. Acronyms and frequently used terms.

Acronym (Term) Definition

BA Backup Agent

CCN Cluster Controller Node

MN Master Node

SN Storage Node

SBF Similarity Bloom Filer

AS Adjusted Similarity—Generated by CCNs

GAS
Global Adjusted Similarity— Computed at BA using ASs
from CCNs and node loads

GML
Global Mean Load—Average Load of all storage nodes in the
system

CCN Split Migration of half of load of a CCN to another new CCN

Data Stream
Stream of data content belonging to unique segments of
unique files from a batch of files

https://doi.org/10.4236/jsea.2019.1211029
https://doi.org/10.1109/TPDS.2018.2828842
https://doi.org/10.1109/TPDS.2018.2852642
https://doi.org/10.1145/2757667.2757678

	dCACH: Content Aware Clustered and Hierarchical Distributed Deduplication
	Abstract
	Keywords
	1. Introduction
	2. Background and Motivation
	2.1. Distributed Deduplication
	2.2. Hierarchical Deduplication
	2.3. Segmenting Small Files
	2.4. Content Aware Grouping

	3. dCACH Design
	3.1. System Architecture
	3.1.1. Backup Agent (BA)
	3.1.2. Cluster Controller Node (CCN)
	3.1.3. Storage Node (SN)
	3.1.4. Master Node (MN)
	3.1.5. Workflow

	4. System Implementation
	4.1. File Grouping
	4.2. Data Chunking
	4.3. SBF Generation and Comparison
	4.4. Stateful Routing Using SBF
	4.5. Expandable Cluster Controllers

	5. Evaluation
	5.1. Evaluation Environment
	5.2. Experiment Dataset and Setup
	5.3. Optimal SBF Parameters
	5.4. Evaluation Result
	5.4.1. Deduplication Throughput (DT)
	5.4.2. Load Balancing
	5.4.3. Duplicate Detection Efficiency (DDE)
	5.4.4. Communication Overhead

	6. Related Works
	7. Conclusion and Future Work
	Acknowledgments
	Conflicts of Interest
	References
	Appendix A

