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Abstract 
In deduplication, index-lookup disk bottleneck is a major obstacle which lim-
its the throughput of backup processes. One way to minimize the effect of this 
issue and boost speed is to use very high course-grained chunks for dedupli-
cation at a cost of low storage saving and limited scalability. Another way is to 
distribute the deduplication process among multiple nodes but this approach 
introduces storage node island effect and also incurs high communication 
cost. In this paper, we explore dCACH, a content-aware clustered and hie-
rarchical deduplication system, which implements a hybrid of inline course 
grained and offline fine-grained distributed deduplication where routing de-
cisions are made for a set of files instead of single files. It utilizes bloom filters 
for detecting similarity between a data stream and previous data streams and 
performs stateful routing which solves the storage node island problem. 
Moreover, it exploits the negligibly small amount of content shared among 
chunks from different file types to create groups of files and deduplicate each 
group in their own fingerprint index space. It implements hierarchical de-
duplication to reduce the size of fingerprint indexes at the global level, where 
only files and big sized segments are deduplicated. Locality is created and ex-
ploited first using the big sized segments deduplicated at the global level and 
second by routing a set of consecutive files together to one storage node. 
Furthermore, the use of bloom filter for similarity detection between streams 
has low communication and computation cost while it enables to achieve 
duplicate elimination performance comparable to single node deduplication. 
dCACH is evaluated using a prototype deployed on a server environment 
distributed over four separate machines. It is shown to have 10× the speed of 
Extreme_Binn with a minimal communication overhead, while its duplicate 
elimination effectiveness is on a par with a single node deduplication system. 
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1. Introduction 

By minimizing the amount of data stored on disks and transferred over net-
works, data deduplication makes it possible to backup huge sets of data with a 
minimal cost of storage and network bandwidth. It is a technique which keeps 
one copy of two or more identical data by substituting duplicates with links 
pointing to a stored copy [1] [2]. Deduplication works by representing files and 
their parts (chunks) with hash values and comparing these values against hashes 
of previously processed files and chunks. If a matching hash entry exists then 
the data the hash represents is a duplicate, otherwise, it is considered unique. 
Duplicates are replaced with links to old data while data belonging to unique 
hashes are stored. Fingerprint-based data deduplication involves two major ac-
tivities. First the file to be deduplicated needs to be chunked and fingerprints 
representing these chunks need to be generated. And then these fingerprints are 
compared with other previously stored fingerprints in order to discard dupli-
cates and replace them with links to just one copy. As explained in [1] [3] there 
are four methods in performing chunking, namely; Static Chunking (SC), Con-
tent Defined Chunking (CDC), Whole-File Chunking (WFC) and Applica-
tion-specific Chunking. While SC is used in [4] and Aplication-specific chunk-
ing is used in [5] [6] in some form, most works use CDC for the deduplicaiton 
task. 

Often the index structure used to store hashes is too big to be stored in RAM. 
Hence, it is stored in an on-disk structure leading to a popular problem known 
as disk index-lookup bottleneck [2]. This issue exasperates furthermore when 
fine-grained chunking is utilized [7]. For example, for a 1 PB data set, consider-
ing an average chunk size of 4 KB and an SHA-1 hashing, there will be around 
2.5 × 1011 (250 billion) chunk fingerprints which require 5 TB of storage space. 
5 TB is too big to keep in the RAM whereas storing this fingerprint index on 
disk and accessing it in the deduplication process will introduce the disk in-
dex-lookup bottleneck problem. This problem is alleviated using sampling tech-
niques in [8] [9] at a cost of low duplicate elimination performance. While the 
work in [9] is a D2D scheme and hence is not much scalable, the design in [8] is 
a distributed deduplication scheme where similarity between files is exploited. In 
[7] [10] DHT based distributed deduplication is used to reduce the effect of this 
bottleneck and parallelize as well as scale up deduplication. The level of scalabil-
ity in both [7] [10] is rigid because they do not offer a mechanism to grow 
beyond the initial system size as a result of the prefix based mapping being done 
at the time of system initialization. The work in [8]also faces the same issue be-
cause the bin-to-node mapping is done at system initialization and is not flexi-
ble. 
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In addition to the disk index-lookup bottleneck problem mentioned above, 
deduplication systems might lose their duplicate elimination performance as a 
result of storage node island effect [7] [11] [12]. This issue is peculiar to distri-
buted deduplication systems where multiple nodes perform deduplication but 
each node is oblivious to data found in other nodes in the system and hence 
copies of the same data can be found in multiple nodes. The magnitude of sto-
rage node island effect on duplicate detection efficiency is minimized using 
careful allocation of data stream to nodes. In recent distributed deduplication 
systems stateful routing is used to route data stream to nodes which previously 
had been assigned data with a similar content [11] [13]. 

The chance of two files from two different types of applications having similar 
content or sharing identical parts is shown to be very slim in [5]. This implies 
that a text file does not share much content with an audio file, or an executable 
file has a very limited probability of sharing content with an image file. As a re-
sult, the duplicate identification and removal effectiveness will not decrease if 
independent index structures are utilized for each of the file types in a system or 
if some file types are grouped into distinct groups and the index structure is di-
vided into these groups. 

In works like [5] [13] [14] [15] [16] [17], it is observed that much of the sto-
rage space in a system is occupied by a very small number of files. This creates 
an opportunity for deduplication throughput improvement where-by multiple 
small files are packed into segments and deduplication is performed on these 
segments rather than the individual files. 

Deduplication works like [7] [16] [18] [19] [20] [21] use a mix of file and 
chunk level deduplication. While this approach eases the disk index-lookup bot-
tleneck problem, its advantage is still questionable if scalability is considered 
and/or if only one node performs the chunk level deduplication. 

dCACH, a content aware clustered and hierarchical deduplication system, 
creates and exploits data stream locality as well as similarity for better deduplica-
tion performance. It achieves better throughput through a combination of hie-
rarchical deduplication, grouping of small files and use of non-monolithic index 
structure. Its distributed duplicate removal effectiveness is enhanced by stateful 
routing while it exhibits unlimited scalability as a result of a novel bucket-node- 
mapped scaling approach. dCACH exploits the negligibly small amount of con-
tent shared among chunks from different file types to create groups of files and 
independent fingerprint index for these groups. The index space space is parti-
tioned into non-overlapping and independent spaces and only one group of file 
types will be deduplicated using each index space. It also utilizes hierarchical 
deduplication to ease the disk index-lookup bottleneck problem. The hierarchic-
al deduplication approach first deduplicates files, then segments belonging to 
unique files are deduplicated. Finally chunks belonging to unique segments are 
deduplicated. The first two levels of deduplication are distributed exact dedupli-
cations while chunk level deduplication is local to each storage node. 
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dCACH is evaluated in a networked environment where storage nodes are 
deployed on virtual machines distributed over four separate servers. The dupli-
cate elimination effectiveness of dCACH’s stateful routing is compared against 
three approaches namely; a single node deduplication system, a prototype of 
stateless distributed deduplication scheme and extreme-binning. For one of the 
datasets the single node deduplication scheme has a deduplication ratio of 
100:5.3 while Extreme_binn and dCACH have 100:7.8 and 100:8.2 deduplication 
ratios respectively. Throughput wise, dCACH outperforms Extreme_binn by 
more than 10 times. For one of the datasets, Extreme_binn exhibits a little over 
30,000 chunk fingerprints per second while dCACH managed to process over 
312,000 chunk fingerprints per second. Considering an average chunk size of 
4kb dCACH’s throughput translates to ≈ 1.2 GB/s while Extreme_binn’s through-
put translates to ≈ 118.4 MB/s. We chose to compare our design against the per-
formance of Extreme_binn for two reasons. First, Extreme_binn is a distributed 
system where a bin-to-node mapping dictates its stateless routing decision. 
dCACH, on the other hand, utilizes stateful content-based routing. While state-
less routing approaches fare well in terms of throughput they are prone to sto-
rage node island effect. We wanted to see how well our statefull routing design 
performs against a stateless routing design. Second, Extreme_binn utilizes sam-
pling to choose a representative chunk ID from chunks of a file for its routing 
and hence is a similarity based deduplication system. Likewise dCACH exploits 
similarity using chunk IDs to construct similarity bloom filter for routing deci-
sion. While Extreme_binn chooses one chunk ID for each file as a representative, 
dCACH selects a set of chunk IDs from chunk IDs of multiple files and com-
putes the similarity bloom filter. We want to see how well our design identifies 
similarities between data streams and removes duplicates compared to Extreme_ 
binns similarity detection and duplicate removal. 

Our Contribution 
dCACH is in-part inspired by the insignificance of data content shared be-

tween files of different application types [5]. We exploit this characteristic to 
partition flat index structures into independent smaller structures which im-
proves disk index-lookup. We also use bloom filter based stateful routing for our 
distributed deduplication which yields better deduplication efficiency. Our con-
tributions are: 

1) Content aware grouping—Sets of groups are created using file’s extension 
when the system is started. Once a file type is assigned to a group it will always 
be deduplicated in that set of group. 

2) SBFs for stateful data routing—The use of SBFs (Similarity Bloom Filters) 
which are constructed from representative chunk fingerprints which themselves 
are selected from a few number of segments in a data stream. 

3) Seamlessly expandable decentralized storage node management— 
Cluster Controller Nodes (CCNs) are introduced into the system anytime the 
need arises, taking over management of half of storage nodes from an over-
loaded CCN. 
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4) Scalable distributed file and segment global exact deduplication—File 
and segment level global exact deduplication is performed at CCNs. Addition of 
a new CCN does not alter the exact deduplication scheme. 

Moreover, we implement the following additional techniques to achieve our 
goal of high deduplication performance: 

1) Fine grained chunk level deduplication—Fine grained chunk level de-
duplication is performed at storage nodes in an inline or offline manner de-
pending on backup window requirement. 

2) Small File Segmenting—Consecutively appearing small files are packed 
into segments so that the number of indexes at CCNs is reduced significantly. 

The rest of this paper is organized as follows. In the next section, background 
of deduplication aspects which motivated our work is discussed. dCACH’s ar-
chitecture and design are discussed in Section 3 and Section 4 discusses its im-
plementation. Section 5 presents the result of experiments and analysis as well as 
comparison of these results. Section 6 assesses researches that are of interest to 
dCACH. Section 7 concludes the paper. 

2. Background and Motivation 

In this section, we discuss deduplication approaches with respect to number of 
nodes involved, method of chunking utilized and techniques used to assign de-
duplication loads to nodes. We also discuss how each of these issues motivated 
the design components of dCACH. 

2.1. Distributed Deduplication 

Data deduplication is performed in distributed setting in [7] [8] [10] [12] [19] 
while it is implemented on a single node in works like [2] [5] [6] [15] [18]. In 
distributed deduplication load balance, duplicate elimination effectiveness and 
network overhead are influenced by routing decisions. In stateless routing, a 
feature value representing the data to be routed is extracted and the application 
of a simple function (like mod) on this value is used to determine the destination 
node. This approach is oblivious to the history of previous workloads. In con-
trast stateful routing uses information about the location of previously dedupli-
cated data (chunks) to decide where to put the new data (chunks) but with a 
higher cost of computation as well as memory and/or communication. In [7] [8] 
[10] [12] stateless routing is used while [11] [17] [22] [23] implement stateful 
routing. 

Single node deduplication guarantees the removal of all duplicate data. But it 
suffers from limited scalability and very low throughput as a result of disk in-
dex-lookup bottleneck problem [2] [7]. Distributed deduplication, on the other 
hand, solves these drawbacks while it is susceptible to low duplicate elimination 
performance as a result of deduplication node information island [11] [12] and 
also incurs high communication overhead [11] [12] [17]. Moreover, it is sus-
ceptible to load imbalance among storage nodes [5] [11] [12]. 
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2.2. Hierarchical Deduplication 

In chunk level deduplication, the use of smaller chunk sizes has been proven to 
produce better storage efficiency but it has high memory cost [2] [24] [25] [26]. 
This problem exasperates as the size of data being deduplicated grows because 
the fingerprint index representing this data also grows. 

There are many approaches utilized to minimize the size of the fingerprint 
index while maintaining an acceptable deduplication performance. Some im-
plementations use sampling methods where just a fraction of chunk fingerprints 
are carefully selected as representatives and are kept in memory [8] [9] [11] [17]. 
Most systems use two-level deduplication where the first level is file level (course 
grained) and the second is chunk level (fine-grained) [7] [18] [19] [20] [21]. In 
the second approach, memory is used to store the entirety of the first level index 
and just a part of the chunk level index. The second level index as a whole is 
stored in HDD. 

The process of fingerprint lookup is speedup using bloom filters in [2] [7] [27] 
while [28] [29] use solid state drives to cache and/or store fingerprint indexes. 

Two-level hierarchical deduplication where files are first deduplicated and 
then chunks of only unique files are deduplicated significantly reduces the on-disk 
index-lookup frequency as it avoids the need for deduplication of chunks be-
longing to duplicate files. However, it does not tackle the issue where there are 
files which are considered unique only because a very small fraction of them is 
modified. In such cases, most part of the file is unchanged from the previous 
version, yet all of the chunks will be deduplicated wasting precious CPU time 
and also disk I/O. dCACH solves this problem by using three-level fingerprint-
ing and consequentially, three-level deduplication. First files are deduplicated 
which is followed by deduplication of segments (highly course grained chunks) 
belonging to unique files. Finally, fine grained deduplication will be performed 
only on unique segments. 

2.3. Segmenting Small Files 

In [5] [14] [15] [16] [17], it is stated that a disproportionately small number of 
files occupies much of the storage space. This fact is strengthened by our obser-
vation in our previous work in [13]. In our work in [13], in one of the data sets, 
of the 77.3 million files just a little over 15 million of them(20%) occupies 98% of 
the storage space while 61.8 million files(80%) occupies a mere 2% of the storage 
space. The 2% logical storage space in that dataset amounts to ≈ 150 GB. This 
led us to adopt a mechanism where we can reduce the number of file finger-
prints sent to the master node by representing n consecutive small file finger-
prints with one MD5 value. This is done by inserting the n consecutive small file 
fingerprints into a character array and then computing the MD5 value of this 
array. This approach reduces the file fingerprint index at the nodes performing 
file level deduplication by a significant amount while it adds a little load on the 
client for computing the representative MD5. If there are a total of t files of 
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which p% of them are small files then the size of file fingerprint index processed 
at these nodes will be sum of the number of big files and an n fold fraction of the 
total number of small files (see Equation (1) below). The drawback of this ap-
proach is it results in the transfer of a lot more number of duplicate small files to 
storage nodes because the representative MD5 will be different even when just 
one of the n consecutive fingerprints is different or is out of order in its appear-
ance. But, the cumulative effect of this issue will be minor on both throughput as 
well as efficiency, because the total transferred size of these files is negligibly 
small and the storage nodes will eliminate these duplicate files. 

( )_ _ 1 t ptotal fp count t p
n
×

= × − +                   (1) 

where, total_fp_count is total file fingerprints processed at nodes, t is total num-
ber of fingerprints before small file fingerprints are segmented, p is the percen-
tage of count of small files against all files and n is the number of small files 
grouped into one segment. 

2.4. Content Aware Grouping 

Works like [5] [6] [15] [22] [30] perform deduplication using the content of the 
data (or the type of data) as a means to decide on what type of chunking to apply 
and where to store chunks. All except [22] and [30] of these works are single 
node deduplication systems and none of them except [30] utilize grouping to 
enhance deduplication speed. 

3. dCACH Design 

In dCACH, deduplication is performed in three stages. The first stage is the de-
duplication at the Backup Agent (BA) where filtering is performed to make sure 
that no two identical files or segments are candidates for the deduplication in the 
second stage. The second stage is a distributed and parallel deduplication scheme 
which involves multiple Cluster Controller Nodes (CCNs). In this stage, a global 
exact deduplication is performed on files and segments. The third stage is a fine 
grained chunk level deduplication which occurs at Storage Nodes (SNs). This 
stage of deduplication is local to SNs meaning the copy of a chunk might appear 
in multiple nodes because each node is unaware of the chunks found in other 
nodes. Hence in our system, we have three-level hierarchical deduplication (File, 
segment and chunk level) which involves three types of nodes (BAs, CCNs and 
SNs). Since the global deduplication is performed against all previously seen files 
and segments, it is considered exact deduplication. 

Our system implements inline deduplication at the global level and offline 
deduplication in storage nodes. Because the global level deduplication removes 
all duplicate files and segments, the amount of data which are transferred to sto-
rage nodes is minimal. As a result, the storage space at storage nodes which is 
required to buffer incoming data stream prior to its deduplication is very small. 

https://doi.org/10.4236/jsea.2019.1211029


G. Dagnaw et al. 
 

 

DOI: 10.4236/jsea.2019.1211029 467 Journal of Software Engineering and Applications 
 

3.1. System Architecture 

dCACH is designed in such a way that the nodes performing fingerprint dedup-
lication are not on the path of actual data transfer from backup agents to storage 
nodes. Figure 1 shows the system layout of dCACH while Figure 2 shows con-
trol and data flow. As shown in these two figures it has four major components. 
It should be noted that the Master Node(MN) and CCNs reside on nodes host-
ing SNs and hence does not require their own physical nodes even though they 
can be run on their own if the resource is available. 

3.1.1. Backup Agent (BA) 
BA is a lightweight application which performs three separate operations. Figure 
2 shows the steps followed and the communication procedure between the BA 
and other types of nodes. BA first performs file, segment and chunk fingerprint 
generation on the input directory or file using content defined chunking and 
Rabin fingerprinting algorithm. Second, it uses file extensions to identify the 
group a file belongs to and inserts its fingerprint into a bucket using the finger-
prints prefix. Note that the set of file fingerprints in all of these buckets creates a 
tanker which represents a batch of data stream whose data content will be routed 
to storage nodes as a unit. When any of the buckets are full, BA stops inserting 
into all of them and sorts each bucket independently. It then removes duplicate 
entries from each bucket and sends the file fingerprints in each bucket to a CCN 
according to the buckets mapping. Upon receiving the unique files fingerprint 
list from all CCNs, the agent now inserts segment fingerprints of these unique 
files into segment buckets which have similar characteristics as that of file buck-
ets and sends them to their respective CCNs. The procedure of deduplicating 
segment fingerprints is identical to that of file fingerprints both at the backup 
agent and all CCNs. Once BA receives the list of unique segment fingerprints 
from all CCNs, it generates SBF from chunks of segments and broadcasts the 
 

 
Figure 1. Detailed structure and data flow between backup agent, a single cluster con-
troller and a single storage node under the controller. 
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Figure 2. dCACH workflow. 
 
SBF to all CCNs. Next, global adjusted similarity (GAS) is calculated using the 
response from CCNs. Finally, the agent sends the SBF to the CCN controlling 
the storage node with the highest GAS for future reference, sends the unique 
segments data stream to the chosen node and metadata to the MN. Section 4.3 
and 4.4 present detailed discussion of how SBF is generated and GAS is calcu-
lated respectively. 

3.1.2. Cluster Controller Node (CCN) 
dCACH contains one or more CCNs which perform global exact file and seg-
ment deduplication, SBF comparison and control storage nodes. They can run 
on a dedicated physical node or on any of the nodes hosting a storage node. The 
file, segment and chunk level deduplication performed throughout the system is 
sped up using bloom filters (designated as boxes labeled BF1, BF2 and so on in 
Figure 1 which supports fast lookup for fingerprints. BF queries which resulted 
in positive are further checked to rule out false positives by reading buckets of 
respective tankers from on-disk tankers (file fingerprint tankers, segment fin-
gerprint tankers or chunk fingerprint tankers) into the set-associative buckets 
designated as BUCKET CACH in the figure. Furthermore, content based dedup-
lication is achieved by allocating independent bloom filter as well as bucket 
cache for each group. Further readings into how bloom filter array and the 
bucket cache are designed and implemented can be found in [2] [7]. CCNs 
compare an incoming SBF against previously recorded SBFs under each node 
they are managing. The result of this comparison and the load of the nodes is 
used to compute Adjusted Similarity (AS) and choose the candidate for stream 
routing. Once a stream is routed to an SN the CCN managing this particular SN 
will store the streams SBF for future similarity detection and routing. Each SNs 
load status record is updated occasionally and is used in computing adjusted si-
milarity. The CCN is also responsible to decide if a CCN node split needs to 
happen based on the availability of computational resources. The number of 
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CCNs in dCACH can grow as high as the number of file buckets in the backup 
agent. It is worth noting that the number of storage nodes a CCN controls is in-
dependent of the bucket mapping used in the system. Hence, a CCN can control 
a cluster constituted of any number of storage nodes as long as it has the re-
quired RAM and computational resources. 

3.1.3. Storage Node (SN) 
One or more of SNs form a cluster and are managed by a CCN. Storage nodes 
perform fine grained chunk level exact deduplication on data stream they receive 
from the backup agent. Similar to the file and segment level deduplication at 
CCNs, the chunk level deduplication uses bloom filters to speed up index look 
up while also utilizing set-associative cache (BUCKET CACH in Figure 1) for 
buckets read from on-disk tankers. Full chunk fingerprint tankers and contain-
ers used to store unique chunks data are stored on disk. Moreover, SNs inform 
their cluster controller of their load status when certain conditions are met. 
These conditions can be requests from other nodes or every time the size of 
unique data stored in the node reaches some level. The CCN managing an SN 
might change when a CCN becomes a bottleneck and triggers a CCN split. 

The chunk level deduplication performed at storage nodes uses the same 
grouping used in the backup agent and CCNs. Hence, each group of data has 
separate fingerprint index and its associated bloom filter in RAM. The tankers 
and containers on disk used to store the full fingerprint index and the actual 
content of data respectively are independent for each group. 

3.1.4. Master Node (MN) 
MN is a lightweight application responsible for maintaining metadata of files as 
well as creating and maintaining bucket-CCN mapping. 

3.1.5. Workflow 
As shown in Figure 2, the communication between components of the system 
starts with the BA requesting for the list of CCNs and the bucket-CCN mapping 
from the master node (MN). Once the BA receives this list it uses the mapping 
information to distribute the file fingerprint buckets to their mapped CCNs. It 
then receives the unique files fingerprint lists and sends segment fingerprint 
buckets to CCNs using the same mapping as the file fingerprints. After receiving 
the unique segments fingerprint list it generates SBF and broadcasts it to all 
CCNs which in turn will respond with adjusted similarity. The BA now com-
putes Global Adjusted Similarity (GAS) and routes the unique data stream to the 
node with the highest GAS. It also sends metadata to MN. The storage nodes 
send updates of their load status to their CCNs occasionally which will be used 
to compute adjusted similarity. 

4. System Implementation 
4.1. File Grouping 

Grouping of file types is implemented in the backup agent to create a batch of 
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files whose file and segment fingerprints will be queried at CCNs together and 
content of their unique segments is routed to a single storage node for further 
chunk level deduplication and storage. This approach has two benefits. First, the 
batch of file fingerprints and batch of segment fingerprints from unique files are 
formed from files which are close to each other on the physical storage. Fur-
thermore, each batch constitutes fingerprints from files which are in the same 
group. This improves the speed of fingerprint lookup because the membership 
query on the bloom filters is done only on one of the group of bloom filters, the 
positive bloom filter query results are further checked only on that specific 
groups’ fingerprint index which narrows down the look up from one gigantic 
index space to just a portion of it. Second, it helps maintain and exploit locality 
where catching yields better hit rate. It should be noted that the grouping of file 
types is performed by inspecting all of the files application types and each file 
types aggregate data sizes from the first full backup request and then using these 
two parameters to establish a balanced group of file types. 

4.2. Data Chunking 

dCACH uses content defined chunking and Rabin fingerprinting algorithm [31] 
to chunk files into course-grained segments with 1 MB, 2 MB and 4 MB as 
minimum, average and maximum chunk lengths respectively. The segments are 
further chunked into fine-grained chunks using 2 KB, 4 KB and 8 KB as mini-
mum, average and maximum chunk lengths respectively. MD5 is proven to pro-
vide highly collision resistance hashes [32] and is utilized to generate crypto-
graphic hash values of the chunks, segments and files. Throughout this paper we 
refer to these hash values as fingerprints. It should be noted that other hashing 
techniques like SHA-1 and SHA-2 can also be utilized. 

4.3. SBF Generation and Comparison 

As has been stated in previous sections, two prominent challenges in deduplica-
tion are that of disk index-lookup bottleneck and communication overhead. 
Many indigenous methods have been utilized to overcome these challenges. 
Some used techniques choose a minimal hash from all chunks of a file and use 
this hash to represent all chunks of the file. This is based on what is commonly 
known as the Broder’s Theorem, which states that if two minimal hashes are 
identical then the files these two hashes belong to are similar [33]. Others used 
sampling techniques which exploit locality which is the likelihood that if an in-
coming chunk C1 is the same as an existing chunk E1 from previous backups 
then the next incoming chunks C2, C3, ∙∙∙ Cn are highly probably the same as 
chunks neighbouring E1. The first approach is utilized in [8] while the second 
method is used in [7] [11]. Works like [17]exploit the benefits of both locality 
based and similarity based solutions. 

Broder’s Theorem—Consider two sets S1 and S2, with ( ) ( ){ }1H S h xi xi Si= ∈ , 
where h is chosen uniformly and at random from a min-wise independent fami-
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ly of permutations. 
Let min(H(Si)) denote the smallest element of H(Si), then 

( )( ) ( )( ) 1 2
Pr min 1 min 2

1 2
S S

H S H S
S S
∩

 = =  ∪
                (2) 

This theory implies that if two representative chunk fingerprints from two 
different files or sets are identical, then there is a very high probability that the 
two sets share a lot more fingerprints. As shown in [22] it is possible to have a 
better estimate of similarity between sets if we increase the number of represent-
ative fingerprints from sets but at a cost of more memory and communication 
overhead. It is with this concept and challenge in mind that dCACH introduces 
SBF. 

In Section 3.1.1 it is described that dCACH uses a batch composed of buckets 
as a basis for routing. Hence, a batch, depending on the number of buckets and 
the depth of these buckets, could hold from hundreds to thousands of finger-
prints. This poses two big challenges in selecting destination nodes when the 
conventional use of representative fingerprints are used for stateful routing. 
Challenge one is the space required to store these representative fingerprints at 
CCNs. If there are a million batches of streams to be deduplicated and each 
stream contains a thousand file fingerprints, then assuming an MD5 hash value 
of 128 bits length (16 bytes), this approach will need 16 × 1000 × 1,000,000 bytes 
(14.9 GB) of space at these nodes. This requirement grows significantly if repre-
sentative fingerprints are selected for super-chunks instead of files because a file 
could contain two or more super-chunks. The second challenge is the commu-
nication overhead incurred for transferring the representative fingerprints to the 
CCNs. Our approach solves these two issues using SBFs. The SBF we generate 
for routing purpose has similar characteristics as bloom filters used in [2] [7] [20] 
and it is based on the original idea by [27]. In addition to their use for dedupli-
cation, they are also utilized in networking as discussed in [34]. 

In broad terms bloom filters are probabilistic data structures which provide a 
fast way to determine if an item is present in a set or not. An important charac-
teristic of bloom filters is that they might falsely say an item is present. The 
chance of this occurrence is defined as false positive probability. 

False positive probability of bloom filters is influenced by factors like their size, 
number of elements inserted into them, as well as the number of hash functions 
used to insert elements. Given the size m and member element count n, optimal  

number of hash functions k can be determined with ( )ln 2mk
n

 = × 
 

. Given a  

minimal false positive rate f and n we can calculate the required bloom filter 
space m using Equation (3) 

( )lg lg 1m n e f≥ × ×                         (3) 

And given lowest false positive rate f, number of hash functions k and size m 
the optimal number of elements that a bloom filter represents can be determined 

https://doi.org/10.4236/jsea.2019.1211029


G. Dagnaw et al. 
 

 

DOI: 10.4236/jsea.2019.1211029 472 Journal of Software Engineering and Applications 
 

using Equation (4) 

( )ln 2mn
k

 ≤ × 
 

                         (4) 

The size of bloom filters used to determine similarity in dCACH is accurate 
enough to tell similarities while it is optimal for both its memory consumption 
at CCNs and its communication overhead. The SBF generated at the backup 
agent is representations of chunk fingerprints rather than file or segment finger-
prints. It is generated using chunks from a few segments in a data stream batch 
which is composed of segments of unique files. These segments are first sorted 
and then chunks belonging to the segments are put into a chunk tanker. Once 
any one bucket of this chunk tanker is full or chunks of all segments have been 
put into the chunk tanker, representative chunk fingerprints are chosen and 
hashed into the SBF. Here, the number of representative chunk fingerprints is 
set according to Equation (4). If the number of buckets of the chunk tanker is b  

then each bucket is first sorted and the first r
b

 chunks are inserted into the  

SBF. The sorting of both the segment fingerprint list as well as chunk tanker 
buckets ensures that the generated SBF will capture similarity of two data 
streams if they contain data streams from similar files. Algorithm 1 and Algo-
rithm 2 show the steps followed to select representative chunk fingerprints and 
SBF generation respectively. At each CCN an incoming SBF is compared with 
existing SBFs for similarity using jaccard similarity coefficient which measures 
the distance between them. For two equal sized SBFs SBF1 and SBF2 
representing two data streams, their similarity is measured using the number of 
bit positions which are set to 1 using Equation (5). Since bloom filters are always 
set to 0 at the time of initialization our SBF comparison approach discards bit 
positions which are not set to 1. Hence what our comparison does is count the 
number of bit positions in both SBFs which are set to 1 and divide it by the size 
of the SBF. The greater the number of common bit positions set to 1 is, the 
higher their similarity is. This method is also used in [35]. 

( )
( )( )

1, 2

1, 2
1SBF SBF

SBF SBF
Sim

SBF
=

SetBitsCount AND
           (5) 
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where ( )1, 2SBF SBFAND  applies a logical AND on SBF1 and SBF2 and Set-
BitsCount( ) counts the number of set bits in the result of the AND operation. 

4.4. Stateful Routing Using SBF 

A backup stream is composed of unique segments from parts of a single large file 
or segments from multiple files which belong to the same group but appear close 
to each other on the physical disk at the source. The backup agent will select 
chunks from the segments sequentially after the segment list of the stream is 
sorted. Then the chunks are themselves sorted and the first r of them is inserted 
into the streams SBF. The value of r is decided when the system is started and is 
according to Equation (4). Once the SBF is generated it is broadcast to all the 
CCNs which in turn will compute its similarity with previous SBFs which were 
used to route streams to the storage nodes. The comparison of SBFs is per-
formed using Equation (5). 

SBF similarities above a certain value are considered as actual similarity de-
grees because even very dissimilar bloom filters can share similar bit positions. 
In our case we considered SBF similarities above 0.5 (50%) to represent poten-
tially similar streams. In addition to the similarity of the SBFs the CCNs also 
take the load of nodes into consideration for choosing the candidate storage 
node. The reason to use the load of nodes for routing decision is because of what 
we call node popularity issue where a node which has a high number of data 
streams will be assigned more number of streams because the chance of stream 
similarity increases with the number of previously assigned streams. Node pop-
ularity is also observed and discussed in [11]. Ignoring this issue obviously will 
lead to better duplicate elimination performance but the system will suffer from 
great load imbalance. So, in order to create a compromise between SBF match-
ing and load balance, similarity degrees above 0.8 (80%) will be taken as they are 
while those above 0.5 but below 0.8 will be used to calculate an adjusted similar-
ity (AS) at CCNs using Equation (6). The reason why we use 0.5 and 0.8 as cut 
off points for degree of similarity can be found in section 1. If no storage node in 
the CCNs record contains an SBF similar to the current SBF (all similarity levels 
are below 0.5) a storage node will be chosen randomly and its similarity level is 
adjusted using its load in a similar fashion as above. Once the CCNs calculate the 
adjusted similarity, they all send it to the BA accompanying it with the load of 
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the matching node as well as the average load of all the storage nodes which they 
are responsible for managing. The BA then uses these values to compute a global 
adjusted similarity (GAS) using Equation (8) for the candidate storage nodes 
from each CCN and chooses the one with the highest GAS. If all of them have 
the same value of GAS, one of the nodes will be chosen randomly. 

1 i
S i L

L
AS W S W

CML
 = × + × − 
 

                    (6) 

1

1 n

ML k
k

G CML
n =

= ∑                            (7) 

1 i
S i L

ML

L
GAS W S W

G
 

= × + × − 
 

                    (8) 

where: = 1S LW W+  and 0 1SW≤ ≤  and 0 1LW≤ ≤ . SW  represents Similar-
ity Weight, LW  represents Load Weight, iS  represents degree of similarity 
from node i, CML  represents Mean Load of nodes in cluster and iL  is the 
Load of node i, k is number of CCNs, kCML  is Mean load of cluster k, MLG  is 
global mean load, 

4.5. Expandable Cluster Controllers 

Segment level deduplication (can be considered an equivalent to super-chunk 
deduplication) and file level deduplication are distributed over a number of 
CCNs. These two levels of deduplications are performed across all the CCNs and 
exhibit a couple of major and unique characteristics. First, they are performed in 
parallel across all the CCNs which can significantly boost throughput. Second, 
prefix based indexing makes it possible to make all the CCNs independent from 
each other while not suffering from deduplication node island effect because 
they are mapped to non-overlapping buckets in the BA. Third, when a new CCN 
is introduced into the system it only affects one CCN whose indexes and other 
deduplication data structures as well as records are split with the new CCN. The 
introduction of a new CCN also does not introduce dependency between the 
new CCN and the currently split CCN. This ensures that we can make the sys-
tem grow seamlessly from a mere one CCN to up to K number of CCNs (where 
K remains constant and is the number of buckets in the BA). Figure 3 shows the 
mapping between buckets in BA and CCNs at different stages of CCN splits. 
Algorithm 3 describes the steps used to split a CCN when it becomes the bot-
tleneck. 

Deciding which half of a full CCN’s data to keep in the parent (full) CCN and 
which one to assign to the new CCN is straight-forward (Algorithm 4). The full 
CCN always takes the first half of all file buckets and segments of all the cur-
rently updateable open tankers in RAM and the full tankers which reside on disk 
while the second half is assigned to the new CCN. At MN this node split is han-
dled by easily keeping the first half of the original buckets mapped to the cur-
rently split CCN while the second half of it is mapped to the new CCN. This  

https://doi.org/10.4236/jsea.2019.1211029


G. Dagnaw et al. 
 

 

DOI: 10.4236/jsea.2019.1211029 475 Journal of Software Engineering and Applications 
 

 
Figure 3. Bucket mapping and CCN expansion. 

 

 
 

 
 
guarantees that no matter how many CCN node splits happen, the bucket to 
CCN mapping will always be correct. At the two CCNs involved in the split the 
fingerprint entries from half of the old buckets of both of the nodes are redistri-
buted to their respective new buckets by taking n left most bits from fingerprints 
starting from position 1n −  where 2n  is the number of CCNs. To demonstrate 
how this approach works, let’s assume that the maximum expected number of 
CCNs is 8 (23) and see in detail what happens in each of the participating nodes. 
Note that we use 8 buckets in all type of nodes except Storage Nodes1 and that a 
CCN identifier after a full split might change in subsequent full splits. 

Backup Agent: Since there are 8 buckets and maximum possible number of 23 
CCNs we always use the first 3 bits of file and segment fingerprints to put them 

 

 

1Backup Agent (BA), Master Node (MN) as well as Cluster Controller Nodes (CCNs) need to have 
the same number of buckets for files and segments while storage nodes can have a different number 
of buckets. This is because the bucket-CCN mapping is used only for mapping between buckets in 
the Backup Agent and CCNs. 
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in a bucket. Then bucket to CCN mapping is performed depending on the cur-
rently active number of CCNs. If there is only one CCN, all buckets will be 
mapped to it. If there are two CCNs, first half of buckets will be mapped to the 
first CCN and second half will be mapped to the second. But when there are 
three CCNs, more needs to be done for mapping because when there are three 
CCNs (or for that matter when number of CCNs is not in power of 2 (like 3, 5, 6 
and 7) it means that one or more of the old CCNs have split but not all have split. 
In such cases the mapping is simplified by communicating the master node 
which keeps the record of whether a CCN has split or not. MN maintains which 
buckets are mapped to which CCN and updates this record every time a CCN 
node splits. Since we consistently use the left most 3 bits of fingerprints to place 
them in buckets, we can be assured that a duplicate fingerprint will be found and 
eliminated by CCNs even after a fingerprint index entry have moved from one 
CCN to another. 

Cluster Controller Node: Deciding which half of a full CCN’s data to keep in 
the parent (full) CCN and which one to assign to the new CCN is straight for-
ward. The full CCN always takes the first half of all file buckets and segments of 
all the currently update-able open tankers in RAM and the full tankers which re-
side on disk, while the second half is assigned to the new CCN. The full CCN 
then transfers a copy of all of its records to the new CCN. This is followed by 
launching a background task which will reconstruct a new index and bloom fil-
ter from first half of its data in the old index. Here, depending on the number of 
active CCNs (it requests the MN for the number of CCNs after the next full split 
and uses this data as number of active CCNs), it redistributes its indexes and re-
creates the associated bloom filter. So, if this CCN is the only CCN in the system 
the next full split results in two CCNs. The indexes from the first half (the first 4 
buckets) of the old buckets will be redistributed using 3 left most bits starting at 
position 0 (i.e. 20−1). The new CCN will do the same except that it will redistri-
bute the second half (the last 4 buckets) of the bucket copy it received from the 
full CCN. On the other hand if the full CCN is one of two CCNs, the next full 
split will result in 4 CCNs. This means, when redistributing their respective 
bucket entries both the full and the new CCN will use 3 bits of fingerprints 
starting from position 1 (i.e. 21−1). In other words the first bit is ignored because 
it is the same for all fingerprints in both halves (all 4 buckets) of the old bucket. 
Node split can continue until maximum possible number of CCNs is arrived at 
(in this case 8 CCNs). It should be noted that the full CCN initiates background 
task to handle its node split because the normal deduplication task is not inter-
rupted during node splits and the MN is notified of node split only after both the 
background task of the full CCN and the construction of indexes at the new 
CCN are complete. Algorithm 5 presents steps of splitting a full CCN while al-
gorithm 6 shows the steps a new CCN follows after it is initiated. 

Master Node: AT MN, node split is handled by easily keeping the first half of 
the buckets mapped to the currently split CCN while the second half of it is 
mapped to the new CCN. This guarantees that no matter how many CCN node 
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splits happen, the bucket to CCN mapping will always be correct. So, when the 
first CCN splits, the first 4 buckets (buckets 0, 1, 2, 3) are mapped to the full 
CCN and the last 4 (buckets 4, 5, 6, 7) are mapped to the new CCN. If one of 
these two nodes splits later, let’s say only the second CCN is split, again the first 
half is kept in the full CCN and the last half mapped to the new one. But if we go 
one step back and see where the buckets in the original mapping are, we can see 
that buckets 4, 5, 6 and 7 are split where buckets 4 and 5 are still mapped to the 
original second CCN while buckets 6 and 7 are mapped to and moved to a new 
CCN. Note that buckets 0 through 3 are still mapped to original first bucket. 
Algorithm 7 explains the procedure of creating a new mapping when a node 
split happens. 
 

 

5. Evaluation 

dCACH is evaluated using a prototype developed for a distributed storage envi-
ronment. The prototype consists of three components, namely; clients, storage 
nodes and a master node. The following sections describe the physical experi-
ment environment, the datasets used and the evaluation criteria as well as evalu-
ation result. 

5.1. Evaluation Environment 

Four separate servers were used to host 17 virtual machines where 16 of these 
VMs were used to create two clusters of storage nodes with each cluster consti-
tuting eight storage nodes. Three of these four servers feature 32 GB RAM, 4 
core 2.13 GHz Intel Xeon and 8 disk drives in a RAID-5 setup, while one server 
features 24 GB RAM, 2 × 8 core 2.40 GHz Intel Xeon and 5 disk drives in a 
RAID-5 setup. The master node and backup agent were deployed on one ma-
chine, while the storage nodes were deployed as guest OSs. Two cluster control-
ler nodes were deployed on two of the 16 virtual machines. The VMs for the 
storage nodes were configured to have 4 cores of processors with 4 GB of RAM 
and 600 GB of hard disk. 

5.2. Experiment Dataset and Setup 

Two data sets are used to evaluate dCACH which are collected from [36]. The 
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first data set is snapshots of students’ home directories (homedir set) from a 
shared network file system. They consist of 102 snapshots taken from five users 
over a period of six months from January 22, 2013 to June 04, 2013. The other 
data set is collection of snapshots taken from a Mac OS X Snow Leopard server 
running in an academic computer lab. It consists of traces from 44 weekly snap-
shots spanning 12 months from January 6, 2013 to December 31, 2013. Since 
these data sets provided pre-processed fingerprints, we were not able to use our 
CDC approach as described in Section 1 and hence we created segments using 
consecutively appearing chunk fingerprints by taking into consideration of the 
chunks length and count to make super-chunks. Table 1 shows the properties of 
the datasets. 

dCACH is evaluated for throughput, duplicate removal performance, load ba-
lancing and network overload. We used a single node deduplication scheme to 
identify the exact amount of duplicate content on our input data sets. A proto-
type of Extreme_Binn [8] and a stateless distributed deduplication scheme are 
used to compare performance against our approach. The stateless deduplication 
scheme performs inline file level global exact deduplication in a similar fashion 
as dCACH and offline chunk level deduplication at the storage nodes. The 
routing method used for this approach is stateless and does not consider storage 
node load for routing streams. Moreover, no grouping of files is utilized. 

5.3. Optimal SBF Parameters 

Accuracy of bloom filters is determined by the number of hash functions, num-
ber of elements, its size and bound of false positive probability. We tested the 
accuracy of SBFs representation of data streams by varying the lower bound of 
the false positive probability. We also checked if SBF representation is affected 
by the use of multiple buckets for the representative chunks. We set the size m of 
SBF at 5 KB, the number of hash functions k at 12 and tested the optimal num-
ber of representatives to be inserted into the SBF using Equations (3) and (4) by 
first setting the false positive bound f to 1106 and then to 1108. We compared the 
similarity degree of the bloom filters against the similarity degree of the actual 
representative fingerprints used to generate the SBFs. That is, if SBF of data 
stream 107 is 80% similar to SBF of stream 19, we check the number of common 
representative fingerprints for data streams 107 and 19 as a percentage and 
compute the gap between the two percentage results. We selected 50 data 
streams from the homedir data set which showed similarities with previous data 
streams. As shown in Figure 4 the gap between actual similarity and SBF simi-
larity goes as high as 39 when the false positive probability bound is set at 1106 
and only 1 bucket is used. The gap becomes as big as 59 when 4 buckets are used. 
When f is set to 1108 the gap becomes very small showing better representative 
count r for the SBF. In this setting the maximum gap observed between the ac-
tual similarity degree and the SBF similarity degree is 10 when 1 bucket is used 
and 9.5 when 4 buckets are used. Thus the number of buckets we used does not 
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affect the effectiveness of the SBF when f is set to an appropriate value. We chose 
to use one bucket for representative chunks in order to avoid the computational 
cost of sorting multiple buckets. We have also observed that the gap between the 
similarity degrees is bigger for similarities below 0.5 while it becomes narrower 
as similarity degrees increase. Hence, SBFs with similarity degrees below 0.5 are 
considered not similar while those above 0.8 are very similar. Accordingly, 
streams with an SBF matching above 0.8 are routed to the storage node which 
has the stream of the matching SBF, whereas streams with SBFs with a similarity 
degree below 0.8 are routed to nodes with consideration of the load of nodes us-
ing adjusted similarity as in Equation (6). 

5.4. Evaluation Result 
5.4.1. Deduplication Throughput (DT) 
In Figure 5, dCACH deduplication throughput is the number of chunk finger-
prints processed per second. It is calculated using an estimation which considers 

 
Table 1. Property of used datasets. 

Data Set Size (TB) 
Num of Files 

(mlns) 
Average Chunk 

Size (KB) 
Average File Size 

(KB) 
homedir 1.73 15.90 4 116.8 

macOS 9.80 87.70 4 120 

 

 
Figure 4. Absolute dierence between SBF Similarity and 
Representatives Similarity for selected data streams. 

 

 
Figure 5. Deduplication Throughput. 
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the logical data size and Average Chunk Size (ACS) of each data set. Given the 
logical data size (LDS), deduplication duration time in seconds ( secD ) and ACS 
of a dataset, we use Equation (9) to calculate it. 

sec

1LDSDT
ACS D

= ×                          (9) 

The highest deduplication throughput is observed for the stateless deduplica-
tion approach with 2.12 × 105 and 3.12 × 105 for the homedir and macOS data-
sets respectively. In dCACH, 2.3 × 105 and 2.62 × 105 were processed per second 
for homedir and macOS datasets respectively. Extreme_binn has the lowest de-
duplication throughput at 6.89 × 104 and 3.03 × 104 for homedir and macOS da-
tasets respectively. Both dCAH and the stateless approach exhibited more than 
10 times the throughput of Extreme_binn. 

5.4.2. Load Balancing 
In dCACH routing decision for a data stream is performed using similarity of 
the stream with previously routed streams and the load of nodes holding similar 
streams. For Extreme_binn routing decision is performed for each file using the 
file’s representative chunk id. In the stateless scheme routing is performed in 
random fashion. 

We measured the load balancing effectiveness of these three approaches using 
Mean Absolute Deviation (MAD), where the distance of the load of nodes in the 
system is measured against the average load of nodes and the difference of load 
between the highest loaded node and the least loaded node. Equation (10) is 
used to calculate MAD where ix  is load of node i and ( )m X  is the average 
load of all n nodes in the system. 

( )
1

1 n

i
i

x m X
n =

−∑                         (10) 

Among the three distributed deduplication schemes dCACH has the best load 
distribution while Extreme_binn has the worst. This is evidenced by the gap be-
tween the node with the lowest load and the node with highest load. The mean 
absolute deviation of all nodes against average load also reveals their load distri-
bution performance. For dCACH, the difference of load between the least loaded 
and highest loaded nodes for the homedir data set is 2.24 GB while its MAD is 
0.36. For the same data set the stateless scheme exhibits max-min gap of 6.09 GB 
and MAD of 1.31 while Extreme_binn’s max-min gap is 34.33 GB and its MAD 
is 4.51. For the macOS data set dCACH has 2.07 GB and 0.42 for max-min gap 
and MAD respectively while the stateless scheme showed gap of 10.30 GB and 
MAD of 2.10. Extreme_binn exhibited max-min difference of 9.38 GB and 1.63 
MAD. Figure 6 shows the mean absolute deviation of nodes for the three de-
duplication approaches. 

5.4.3. Duplicate Detection Efficiency (DDE) 
DDE is the ratio of size of the original logical data size LDS to the size of the 
physical data size after deduplication PDS. It is expressed in 11. 
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Figure 6. Mean Absolute Deviation of load among 
all nodes. 

 
LDSDDE
PDS

=                           (11) 

The duplicate removal performance of the various deduplication approaches 
is shown in Table 2 as it lists the physical data after deduplication is performed 
using each approach on the same logical data for each data. Figure 7 and Figure 
8 show the size of physical data after the four deduplication schemes are per-
formed on homedir and macOS datasets respectively. As expected, the single 
node deduplication scheme exhibits the highest duplicate elimination perfor-
mance. The least duplicate elimination performance is observed for the stateless 
deduplication scheme. From the 1713.8 logical data size of the homedir dataset, 
dCACH stored 141.1 GB of data as physical data while the single node, Ex-
treme_binn and stateless schemes stored 91.02 GB, 133.83 GB and 159.33 GB 
respectively. From the 9821.6 GB logical data size of the macOS dataset, dCACH 
stored only 317 GB while the single node, Extreme_binn and the stateless ap-
proaches stored 209.2 GB, 239.66 GB and 373.47GB respectively. Figure 9 and 
Figure 10 show the duplicate removal efficiency in GB and in percent respec-
tively for the homedir dataset while Figure 11 and Figure 12 show the duplicate 
removal efficiency in GB and in percent respectively for the macOS dataset. 

5.4.4. Communication Overhead 
One big challenge of deduplication over a distributed environment is communi-
cation overhead. When fingerprint lookup is performed in a distributed manner 
over many storage servers the communication cost of the lookup will increase 
linearly with number of storage servers and exponentially with the number of 
fingerprints queried. This affects the scalability of deduplication systems. 
Another form of communication cost is incurred when stateful routing is uti-
lized. In [22] [23], similarity of a new super-chunk is checked with previously 
routed super-chunks by probing all nodes before it is routed to the node holding 
the most similar super-chunk. A file could own one to thousands of su-
per-chunks making the communication cost even higher for bigger files. In [8] a 
single representative chunk fingerprint of a file is used to decide where to route 
the file for deduplication. This approach does not have cost of communication  
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Table 2. Deduplication Efficiency of dCACH and three other deduplication approaches. 

Deduplication 
Scheme 

Routing 
Scheme 

Data Size in GB 

Homedir Set macOS Set 

Logical Physical Logical Physical 

Single Node None 

1713.79 

91.02 

9821.6 

209.2 

Extreme Binn Stateful 133.83 239.66 

Stateless Stateless 159.73 373.47 

dCACH Stateful 144.1 317.01 

 

 
Figure 7. Physical Data Size After Deduplication for homedir dataset. 

 

 
Figure 8. Physical Data Size After Deduplication for macOS dataset. 

 

 
Figure 9. Detected Duplicates at storage nodes in GB 
for homedir dataset. 
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Figure 10. Detected Duplicates at storage nodes in 
percent for homedir dataset. 

 

 
Figure 11. Detected Duplicates at storage nodes in GB 
for macOS dataset. 

 

 
Figure 12. Detected Duplicates at storage nodes in 
percent for macOS dataset. 

 
for deciding where to route a file but every file will be routed to a deduplicating 
node whether it is fully duplicate, slightly modified or new file. dCACH imple-
ments stateful routing for assigning unique data streams to storage nodes using 
similarity bloom filters. The SBF is broadcast to all cluster controller nodes and 
the unique data stream is routed to the storage node with the highest matching 
SBF. Communication overhead of dCACH’s stateful routing is significantly low 
compared to other approaches because first it happens only between the backup 
agent and CCNs. Second, an SBF represents tens of thousands to hundreds of 
thousands of chunk fingerprints depending on the size and number of files and 
segments belonging to the batch of a data stream. 
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Because dCACH makes routing decisions on a batch of segments from a sin-
gle large file or multiple files, the number of lookup is a multiple of these batches. 
These lookups involve three stages. First is the lookup for duplicate files where a 
set of file fingerprints are sent to CCNs, then segment lookup for segments be-
longing to unique files is performed in a similar fashion. Third, lookup for nodes 
holding a similar batch of data is performed by broadcasting the SBF to all CCNs. 
For [22] (AppDedupe) the number of lookup is a multiple of super-chunks and 
number of nodes since each lookup is broadcast to all nodes. 

The communication cost of different approaches can be compared using a 
simple scenario where there are 10,000 files with an average file size of 100 KB 
and 16 KB average chunk size with 1MB super-chunk size. dCACH with two 
CCNs needs (10,000/T) × 3 × 2 lookups, where T is number of files in a batch at 
the backup agent. If T is set to 100, it requires 600 lookups for the deduplication 
of all the files. It should be noted that the actual number of lookup will be much 
fewer than this estimate because if all files in a batch are duplicate then there will 
be no subsequent lookup for segments and similarity comparison for that par-
ticular batch of files. For the same scenario [8] needs to communicate the server 
for each file which is 10,000 whereas in [22] the number of lookups is extremely 
high at 11,700 × n because all n nodes are involved in routing decision for every 
10000*100 KB/1 MB ≈ 11700 super-chunks. 

6. Related Works 

In our previous work [13], we have used application type of files to create set of 
file groups and assign each set to specific cluster of nodes with each cluster ex-
clusively deduplicating data streams only from its assigned file group. In single 
node deduplication schemes like ALG-Dedupe [15] and ADMAD [6], different 
types of chunking methods were utilized for files of different application types. 
In HPDV [30], global shared fingerprint index is divided into sub-indexes ac-
cording to the type of operating systems a virtual machine is hosting. This ap-
proach is intended to reduce the scope of fingerprint index search. In AppDe-
dupe [22], the type of files is used to decide where to route its chunks. dCACH 
creates groups of files based on their application type. Independent index space 
and its bloom filters are then used for each group throughout all nodes in the 
system. Moreover, dCACH uses file size to filter small sized files and create 
file-segments from these small files. The file-segments are used for deduplication 
instead of the small files. A similar technique of filtering files using their size is 
utilized in [22] but their intention is only to increase data transfer rate over the 
network and they completely ignore these small files from the deduplication 
process. In [9] [11] [12] [22] [37] [38] super-chunks are created from chunks to 
minimize disk index-lookup bottleneck and exploit data locality. dCACH also 
exploits locality and improves disk index-lookup performance by first chunking 
files into segments using CDC and then further chunking these segments into 
fine grained chunks. Our approach is different from the rest in that it uses CDC 
to create segments while the other approaches use chunks to create segments 
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(super-chunks) which does not use CDC. 
DHT based distribution of fingerprints and load for deduplication has been 

implemented in works like [7] [10]. Even though these works have shown that 
such an approach guarantees exact deduplication and fair amount of work and 
storage load among nodes, it assumes that the number of storage nodes remain 
constant. For example in [7], each storage component deduplicates fingerprints 
with the same specific fingerprint prefix. This enables it to achieve parallel exact 
deduplication without the storage node island effect. But the number of storage 
components cannot change or grow because doing so will disrupt the prefix 
mapping and the system will not be able to identify duplicates against previously 
deduplicated data. Backup agent of dCACH also uses prefixes to put file and 
segment fingerprints into non overlapping buckets and these buckets are 
mapped to currently available cluster controller nodes. This makes it possible to 
achieve parallel deduplication while avoiding the storage node island effect. But 
unlike other systems, in dCACH the number of nodes involved in the distri-
buted exact deduplication (CCNs to be explicit) can grow (and also shrink if a 
special need arrives to downsize). Extreme binning [8] supports the addition of 
nodes to its system but it results in indexes being reshuffled, and moved around 
between all the nodes. In this system, in some cases data might be moved around 
so much that, it might come back to its original host. On the other hand in 
dCACH, the addition of CCNs results in the movement of indexes and asso-
ciated records between only two nodes. Our approach also makes it possible to 
add as any number of storage nodes as required into the system because node 
management is split between CCNs and will not be a bottleneck. 

In [11] [12] [22], a stateful routing is utilized for routing data to minimize the 
effect of deduplication node information island. In [12] a set of representative 
handprints are selected from each super-chunk and the similrity of su-
per-chunks is decided by comparing representative handprint chunks. In [11] 
super-chunks are routed as a unit. Counting bloom filters are used in every node 
to trace the number of times a fingerprint is stored in the nodes. This approach 
can achieve a considerable duplicate removal performance, but it is susceptible 
to high communication cost, high memory consumption and computational 
overhead. In [22], a two-tired inter-node routing and an application-aware in-
tra-node deduplication are performed to tackle the issue of deduplication node 
information island effect. In this system, the director-node first selects a group 
of storage nodes for each file using file type as criteria, the client node then 
chooses a representative chunk for each super-chunk and broadcasts it to all the 
selected nodes with the node containing a matching chunk chosen as the desti-
nation. The communication cost of this system is high because it floods the net-
work with representative chunk fingerprints for every super-chunk. dCACH in-
troduces a drastic reduction of communication overhead because SBF is utilized. 
The SBF represents a whole data stream and is sent only to CCNs for similarity 
computation. 

https://doi.org/10.4236/jsea.2019.1211029


G. Dagnaw et al. 
 

 

DOI: 10.4236/jsea.2019.1211029 486 Journal of Software Engineering and Applications 
 

7. Conclusion and Future Work 

In this paper, we presented dCACH, a content-aware clustered and hierarchical 
deduplication system. It employs non-monolithic fingerprint index structures 
where each partition is used exclusively for a set of file types. This approach 
boosts fingerprint lookups without loosing duplicate elimination performance 
because files from different applications share insignificant amount of content. 
Moreover, it employs decentralized and scalable global exact deduplication for 
files and segments. The number of nodes responsible for file and segment level 
deduplication and storage node management can grow without affecting dupli-
cate removal ability. The batch based routing mechanism and use of big sized 
segments captures and exploits locality. In fact, the probability that the whole 
content of a file is assigned to different backup nodes is minimal. All parts 
(chunks) of a file are guaranteed to be assigned to only one node except when 
the file is very big and is segmented into super chunks where chunks of these 
super chunks are used for routing decision instead of chunks of the file as a 
whole. This results in better data management outcomes because a file whose 
chunks are distributed over multiple nodes is prone to less reliability because 
failure of any of the nodes hosting its parts will result in loss of the data. Moreo-
ver, similarity bloom filters are utilized for stateful routing which results in dup-
licate elimination rate on a par with single node deduplication with a minimal 
cost of computation and communication. 

Deduplication is shown to cause chunk fragmentation which results in very 
low read throughput when data restoration is performed. Furthermore, most re-
cent backup versions are more likely to be restored than older versions but their 
content is the most fragmented. There are two design strategies used so far to 
deal with fragmentation. The first one is re-writing, where duplicate chunks 
which are evaluated to cause fragmentation are written again along with unique 
data [30] [40] [41]. Another approach is the use of optimized caching mechan-
isms which utilize backup recipes. Since backup’s read sequence is available from 
their backup recipe, works like [42] [43] utilize it to design algorithms which can 
minimize the number of disk accesses during restoration. Because the recipe of a 
backup cannot be read into RAM in its entirety, most approaches use a sliding 
window approach where just a fraction of the recipe is read and its correspond-
ing data is restored and the next part is read and restored and so on. This restore 
window size influences the caching performance because it determines to what 
extent the caching algorithm can see the future access pattern. dCACH first di-
vides data into groups according to its content and then routes data according to 
bucket-node mapping. As a result, a backup version will be split into multiple 
parts where each part is routed independently. Hence, at storage nodes we have 
backup recipes of parts which can well fit into RAM. In our future work we plan 
to design a restore scheme which exploits the small-sized recipes at storage 
nodes to improve caching mechanisms. We also would like to examine the effect 
of our similarity-based routing on fragmentation. 
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Appendix A 
Table A1 presents most frequently used acronyms and terms used throughout 
the paper. 
 
Table A1. Acronyms and frequently used terms. 

Acronym (Term) Definition 

BA Backup Agent 

CCN Cluster Controller Node 

MN Master Node 

SN Storage Node 

SBF Similarity Bloom Filer 

AS Adjusted Similarity—Generated by CCNs 

GAS 
Global Adjusted Similarity— Computed at BA using ASs 
from CCNs and node loads 

GML 
Global Mean Load—Average Load of all storage nodes in the 
system 

CCN Split Migration of half of load of a CCN to another new CCN 

Data Stream 
Stream of data content belonging to unique segments of 
unique files from a batch of files 
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