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Abstract 
The interfacial crack problem of a class of spliced materials is discussed. Us-
ing plane elastic complex variable method and integral equation theory, one 
method of solving the complex stress functions is given. 
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1. Introduction 

Composite materials are widely used in engineering practice. During the long-term 
use of composite materials, phenomena such as holes and cracks will occur, caus-
ing damage to composite materials. Cracking problem of composite materials, 
especially the problem of interfacial crack has been the topic of considerable re-
search during the past decades, for instance [1] [2] [3] [4]. 

However, to the best of our knowledge, various types of interfacial crack 
problems have not been fully studied. The aim of this paper is to study the stress 
state of one splicing problem of a strip and a half-plane of isotropic materials 
with interfacial cracks. By employing plane elastic complex variable method and 
theory of boundary value problems for analytic functions, using proper decom-
position of the functions and integral transformation, the problem is reduced to 
a singular integral equation of normal type. The existence and uniqueness of so-
lution were proved. Further, using the integral equation theory, the closed form 
solution of stress function was given. 

For definiteness and simplicity, we will only discuss the first fundamental 
problem and the case of a single crack. 
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2. Formulation of Problems and Stress Function  

Let the elastic body occupy the lower half-plane Z − . The elastic body spliced by 
two dissimilar isotropic materials, one is a strip S +  ( 0, , 0h y x h≤ ≤ < +∞ > ), 
the other is a semi-infinity plane S −  ( S Z S− − += − ), corresponding elastic con-
stants are ,κ µ+ +  and ,κ µ− − , respectively. There is a crack r ab=  locate on 
the splicing line L ( ,y hi x= − < +∞ ). We will discuss the first fundamental 
problem, that is finding the elastic equilibrium, under known the external stress 

( ) ( )n nX t iY t H± ±+ ∈  (one class of Hölder continuous functions) on both sides of 
r and ( ) ( )0 0

ˆX t iY t H± ±+ ∈  (one class of Hölder continuous functions on infini-
ty line) on X-axis. Besides, the stresses and the angle of rotation at infinity is also 
given. Obviously, the principal vectors of the external stresses on r±  and on X is 

( ) ( ) dn nr
X iY X t iY t t± ± ± ± + = + ∫  and ( ) ( )0 0 0 0 d

X
X iY X x iY x x+ = +  ∫  respec-

tively.  
Our problem is how to determine the complex potentials describing the stress 

state of elastic body. 
Let ( )zϕ  and ( )zΩ  is the complex stress functions for the elastic body. 

Because the elastic body is in balance state, without loss of generality, we can as-
sume the principle vectors of stress on both X and r is zero, and no stresses or 
rotation at infinity. Thus, the stress functions ( )zϕ  and ( )zΩ  is sectionally 
holomorphic in S S+ −+  with ( ) ( ) 0ϕ ∞ = Ω ∞ = .  

According to the conditions known above and the theory of elastic complex 
variable [5], our problem boils down to the following boundary value problem 
with functions ( )zϕ  and ( )zΩ : 

( ) ( ) ( )1 , .x x f x x Xϕ +Ω = ∈                   (2.1) 

( ) ( ) ( ) ( )22 , .t hi t t f t C t rϕ ϕ± ± ± ±′− +Ω = + ∈             (2.2) 

( ) ( ) ( ) ( ) ( ) ( )2 2 , .t hi t t t hi t t t l L rϕ ϕ ϕ ϕ+ + + − − −′ ′− +Ω = − +Ω ∈ = −  (2.3) 

( ) ( ) ( )

( ) ( ) ( )

2

2 , .

t hi t t

t hi t t t l L r

α ϕ β ϕ

α ϕ β ϕ

+ + + + +

− − − − −

 ′− − +Ω 
 ′= − − +Ω ∈ = − 

         (2.4) 

where  

( ) ( ) ( ) ( ) ( ) ( )1 0 0 2

, 1 ,

d , d ,
x t

n na
f x i X x iY x x f t i X t iY t t

α κ µ β µ± ± ± ± ±

± ± ±

−∞

= =

 = + = +    ∫ ∫
 

C is undetermined constant. 

3. Solving Boundary Value Problem  

For solving the above boundary value problem (2.1)-(2.4), we introduce a new 
function:  

( ) ( ) ( ) , .t t t t Lω ϕ ϕ+ −= − ∈                   (3.1) 

Hence ( ) ( ),t t Hω ω′ ∈  and ( ) ( ) 0a bω ω= = .  
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From Equations (2.2) and (2.3), we have  

( ) ( )
( ) ( ) ( )
( ) ( )

2 ,

2 , .

F t t hi t t r
t t

t hi t t l

ω ω

ω ω
+ −

 ′− − ∈Ω −Ω = 
′− ∈

          (3.2) 

Hence ( ) ( ) ( )F t f t f t+ −= − .  
Defination:  

( ) ( )
1

1 d , .
2 L

t
z t z L

i t z
ω

ϕ = ∉
π −∫                   (3.3) 

( ) ( ) ( ) ( )
1

21 1d d , .
2 2L r

t hi t F t
z t t z L

i t z i t z
ω ω′+

Ω = − + ∉
π − π −∫ ∫        (3.4) 

Obviously, ( )1 zϕ  and ( )1 zΩ  is sectionally holomorpic functions defined 
in a full plane, with line of jump L and ( ) ( )1 0ϕ ∞ = Ω ∞ = . 

Using Plemelj’s integral formula, from Equations (3.2) and (3.3), we get  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, , .t t t t t t t t t Lϕ ϕ ϕ ϕ+ + − − + + − −− = − Ω −Ω = Ω −Ω ∈   (3.5) 

According to Equation (3.5), we can define two holomorpic functions of the 
entire lower half plane ( 0Imz < ), which continuous to X-axis as following: 

( ) ( ) ( ) ( ) ( ) ( )2 1 2 1, ; , .z z z z Z z z z z Zϕ ϕ ϕ − −= − ∈ Ω = Ω −Ω ∈      (3.6) 

Substituting Equation (3.6) into Equation (2.1), we have  

( ) ( ) ( ) ( ) ( )1 2 1 2 1 , .x x x x f x x Xϕ ϕ− +Ω −Ω = ∈            (3.7) 

Multiplying both sides of Equation (3.7) and its conjugating equation by 

( )1 d 0
2

x Imz
i x z
⋅ <

π −
 respectively, and then integrating along the X-axis. Consi-

dering the previously given conditions and Cauchy’s integral theorem, we get 

( ) ( ) ( ) ( ) ( ) ( )1 1
2 1 2 1

1 1d , d .
2 2X X

f x f x
z z x z z x

i x z i x z
ϕ ϕ= Ω + Ω = +

π − π −∫ ∫    (3.8) 

From Equations (3.6), (3.8), (3.3), (3.4), we have  

( ) ( ) ( ) ( )

( ) ( )1

21 1d d
2 2

1 1d d , .
2 2

L L

r X

t t hi t
z t t

i t z i t z
F t f x

t x z L
i i x zt z

ω ω ω
ϕ

′−
= −

π − π −

+ − ∉
π π −−

∫ ∫

∫ ∫
          (3.9) 

( ) ( ) ( ) ( )

( ) ( )1

21 1d d
2 2

1 1d d , .
2 2

L L

r X

t t hi t
z t t

i t z i t z
F t f x

t x z L
i t z i x z

ω ω ω′+
Ω = −

π − π −

+ − ∉
π − π −

∫ ∫

∫ ∫
         (3.10) 

Substituting Equations (3.9) and (3.10) into Equation (2.2), either for positive 
or negative boundary value, we obtain the same equation as following:  

( ) ( ) ( )( ) ( )( )
( )2

1 1d d ln
2L L

t t
t t

i t i t

ω τ τ τ
τ ω τ τ τ

τ τ

 − −
− − − − 

π − π −  
∫ ∫  

( ) ( )1
1 d , .

2 L

t t g t C t r
i t t

τ τω τ
τ τ
− − − + = + ∈ π − − ∫          (3.11) 
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where  

( ) ( ) ( ) ( )
( )( )

( )
( )

( ) ( )
( )

1 1
1 2

2

1 d
2

1 d
2

X

r

f x f xhg t f t f t x
x t x t x t

F F
i t x t

τ τ
τ

τ

+ −
 

 = + − +   π − − −  
 

− − 
π − −  

∫

∫

 

Substituting Equations (3.9), (3.10) into Equations (2.3), the equation satisfies 
automatically. Substituting them into Equation (2.4), we get  

( ) ( ) ( ) ( )
( )

( )( )
( )

( ) ( ) ( ) ( )

2

2

1d d ln

1 d , .

D

EL L

L

t D t tBA t
i t i t t

E D t t
g t t l

i t t

ω τ τ τ τ
ω τ ω τ

τ τ τ

τ τ
ω τ

τ τ

 − − −
+ + − 
π − π − −  

− − 
+ + = ∈ π − − 

∫ ∫

∫

 (3.12) 

where we have set  

, , , ,A B D Eα α β β α α β β β β α α+ − + − + − + − + − + −= + + + = − − + = − = −  

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

2 2

1 1 1
2

1 d d

21 d .

r

X

D t t F EF DF
g t

i t tt

Ef x Df x hiD f x
x

i x t x t x t

τ τ τ
τ τ

τ ττ

  −
  = − + +

 π − − −   
 
 − − −
 π − − − 

∫

∫

 

Equations (3.11) and (3.12) constitute a singular integral equation of normal 
type along L. 

The following is to prove the existence and uniqueness of the solutions to Eq-
uations (3.11) and (3.12). The existence of the equation solution can be ex-
plained by the solution of the equation. In order to prove the equation has a 
unique solution in class 2h , that is, ( )aω  and ( )bω  are finite. We first show 
that its corresponding homogeneous equation has only the trivial solution in 2h . 
In fact, the latter corresponds to the case where there are no stress on r and X, no 
stresses or rotation at infinity and 0C = . Assume ( )tω  is a solution of this 
homogeneous equation. By the uniqueness theorem for elastic problems [5], 
Since ( ) ( ) 0ϕ ∞ = Ω ∞ = , we should have ( ) ( ) 0z zϕ = Ω = . Therefore  
( ) ( ) ( ) 0t t tω ϕ ϕ+ −= − =  for any t L∈ .  
It is easily verified that the index of the singular integral equation Equations 

(3.11) and (3.12) in class 2h  is −1. According to the Noether theorem of integral 
equations [6], it’s adjoint equation has two linearly independent solutions 

( ) ( )( )1 2,t t t Lσ σ ∈  in class 0h  (the solutions are permitted to have integrable 
singularities at the nodes), and it is (uniquely) solvable in this class if and only if 
[6] 

( ) ( ) ( ) ( )1 2d d 0, 1,2.j jr l
Re g t C t t Re g t t t jσ σ+ + = =  ∫ ∫       (3.13) 

Once the constant C is determined by equation Equation (3.13), the unique 
solution ( ) 2t hω ∈  can be deduced by Equations (3.11) and (3.12). Thus, the 

https://doi.org/10.4236/jamp.2019.711193


M. H. Huang 
 

 

DOI: 10.4236/jamp.2019.711193 2815 Journal of Applied Mathematics and Physics 
 

stress functions ( )zϕ  and ( )zΩ  is obtained, which satisfy boundary value con-
ditions (2.1)-(2.4). 

4. Discussion of Integral Equations  

In practice, it is rather difficult to determine C from Equation (3.13). In fact, we 
usually only need to know stress distribution of the elastic body. Therefore, it is 
enough to know only ( ) ( ),z zϕ′ ′Ω , that is, to find ( ) ( ) ,W t t t Lω′= ∈ . For this 
purpose, differentiating Equations (3.11) and (3.12) respectively, we obtain one 
singular integral equation as following:  

( ) ( ) ( )

( ) ( ) ( )

1

2 1

1 1d , d
2

1 , d , .
2

rL L

rL

W
W k t

i t i

W k t g t t r
i

τ
τ τ τ τ

τ

τ τ τ

+
π − π

′+ = ∈
π

∫ ∫

∫
              (4.1) 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

2 2

1d , d

1 , d , .
2

lL L

lL

WBAW t W k t
i t i

W k t g t t l
i

τ
τ τ τ τ

τ

τ τ τ

+ −
π − π

′+ = ∈
π

∫ ∫

∫
          (4.2) 

where ( ) ( )W t tω′=   

( ) ( )( ) ( )( )
( )

( )

1 2

2

, ln ,

,

r

r

t t
k t t t

t t

t tk t
t t t

τ τ
τ τ τ

τ

τ ττ
τ τ

 − −∂
= − − − 
∂ −  
∂ − − = + ∂ − − 

 

( ) ( )
( )

( )( )
( )

( ) ( ) ( )

1 2

2

, ln ,

,

D

l E

l

t D t t
k t

t t t

E D t t
k t

t t t

τ τ τ
τ

τ τ

τ τ
τ

τ τ

 − − −∂
= − 
∂ − −  

− − ∂
= + ∂ − − 

 

Equations (4.1) and (4.2) constitute a singular integral equation on L without 
constant C. 

We will give the solution of Equations (4.1) and (4.2) below. It is notice when 
, t Lτ ∈ , we have 0,x hi t x hiτ = − = −  and d d ,d dx xτ τ= = . Therefore, (4.1) 

and (4.2) can be changed as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 1 0
0

2 0 0

d , d

, d .

x

x

x W x
x W x x W x k x x x

i x x

W x k x x x g x

β
α

+∞ +∞∗
∗ ∗−∞ −∞

+∞

∗−∞

+ +
π −

+ =

∫ ∫

∫
       (4.3) 

where ( ) ( )W x W x hi∗ = − ,  

( )

( )

( ) ( )
( )

1

2

0,
,

1,
,

,
,

x hi r
x

A x hi l
x hi r

x
B x hi l
g x hi x hi r

g x
g x hi x hi l

α

β

− ∈=  − ∈
− ∈=  − ∈

′ − − ∈=  ′ − − ∈
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( )
( )

( )

1 0

1 0

1 0

1 , ,
2,

1 , ,

r

x

l

k x hi x hi x hi r
ik x x

k x hi x hi x hi l
i

 − − − ∈ π= 
− − − − ∈
 π

 

( )
( )

( )

2 0

2 0

2 0

1 , ,
2,

1 , ,

r

x

l

k x hi x hi x hi r
ik x x

k x hi x hi x hi l
i

 − − − ∈ π= 
− − − − ∈
 π

 

By the general theory of singular integral equations [6], from Equation (4.3), 
we get  

( ) ( ) ( ) ( ) ( ) ( )* *
0 1 0 2 0 0, d , d .x xW x W x k x x x W x k x x x g x

+∞ +∞

∗ ∗ ∗ ∗−∞ −∞
+ + =∫ ∫    (4.4) 

where  

( )
( ) ( )

( ) ( ) ( ) ( )
2 2

0

1 d ,
x g x

g x x g x x
i x xx x

β
α

α β
+∞

∗ −∞

 
= − π −−  

∫  

( )

( ) ( )
( ) ( ) ( ) ( )

*
0

02 2
0

,

,1 , d , 1, 2.

jx

jx
jx

k x x

k x yx
x k x x y j

i y xx x i
β

α
α β

+∞

−∞

 
= − = 

π − − π    
∫

 

Equation (4.4) is a Fredholm’s integral equation with continuous and conju-
gate kernel. According to the theorem of integral equation [6], Equation (4.4) is 
equivalent to the following system of equations 

( ) ( ) ( ) ( )0 0 0, d .U x K x x U x x G x
+∞

−∞
+ =∫               (4.5) 

where  

( )
( )
( )

( )
( ) ( )
( ) ( )

( )
( )
( )

* *
1 0 2 0

0 * *
2 0 1 0

, ,
, , , .

, ,
x x

x x

k x x k x xW x g x
U x K x x G x

W x g xk x x k x x
∗ ∗

∗ ∗

    
 = = =           

 

From the Equations (4.5), we get  

( ) ( ) ( ) ( )0 0 0, ;1 d .U x G x x x G x x
+∞

−∞
= + Γ∫               (4.6) 

Hence, ( )0, ;1x xΓ  is the solution kernel matrix of kernel matrix ( )0,K x x .  
Replace ( )W x∗  one by one, the solution of stress functions are obtained in 

closed form. Therefore, the stress distribution in elastic body is obtained. 

5. Conclusions 

The problems discussed in this paper, as well as similar problems, are often en-
countered in engineering practice. The solution of the closed form of the prob-
lem is obtained by using the classical analysis method; it is helpful for further 
analysis and precise numerical solution. Compared with the direct use of nu-
merical methods, it has certain advantages. 

In addition, the stress intensity factor of crack tip can be further calculated by 
using the results obtained. The stress intensity factor on the crack tip is of the 
most important for study the crack propagation and fatigue life. 
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