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ABSTRACT 
The goal of this work is to identify human brain waves in different states non-invasively, 
and to distinguish them into different levels of mental states in order to provide immediate 
mental state feedback to a classroom instructor and maximize learning outcomes. In order 
to apply such knowledge, this project utilizes a commercial NeuroSky Mindwave Mobile 
EEG to collect brain signals, MATLAB to filter data, voltage thresholds to detect blinks, 
which are used in tandem with power spectral density (PSD) analysis in order to classify 
mental states. This knowledge can then be provided to a class instructor who can use it to 
maximize the learning experience for students. 

 

1. INTRODUCTION 
Electroencephalography (EEG) is a method of recording brain activity from electrophysiological in-

dicators. These indicators are evident from the measurable postsynaptic potentials generated by neurons 
firing. An EEG device will then record these changes in the electrical waves generated by brain activity at 
the cerebral cortex or scalp surface. Through observation, it quickly becomes evident that different physi-
ological states and facial movements will generate signals with distinct electrical attributes. 

Owing to its non-invasive nature, EEG detection has been widely used in many fields, such as neuro-
physiology, psychology, pathophysiology, cognitive neuroscience, neuroengineering, and even social psy-
chology, etc. [1]. A further logical application of this technology is in identifying the mental state of its us-
ers, which has significant potential to guide interactions through a variety of applications, whether it is 
from consultation, the classroom, or for monitoring worker productivity [1]. With these potential applica-
tions, it naturally follows that there have been numerous previous attempts to apply observed electrophy-
siological phenomena readable by the brain. For example, an early attempt in early 2010 with researchers 
affiliated with the National Chiao Tung University in Taiwan, which monitored a test subject’s physiolog-
ical state by EEG. [2] In response to drowsiness or alertness, the temperature of a miniature room’s air 
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conditioning and the light intensity would automatically adjust. A further application that was explored in 
2016 was in the use of an EEG to assess stress levels in an individual, funded by the Ministry of Education 
in Malaysia [3]. By synthesizing the readout information from EEG and functional near-infrared spec-
troscopy (fNIRS), the researchers classified brain activities with a support vector machine (SVM) in order 
to attempt to improve upon previous methods of stress detection through non-invasive brain machine in-
terfaces. In addition, multiple studies have investigated the relationship between certain mental states and 
what is interpretable from an EEG. One example includes an IEEE published paper for a 2017 conference 
in Tiruneveli, India, that not only reports on existing databases on emotional detection and EEGs, but also 
on methods of processing signals, and analyzing them. 

Therefore, it follows that a classroom environment is a use case for applying mental state detection as 
a supplementary aid to enhance the learning experience. As EEG technology has advanced, there now exist 
EEGs that do not require a conductive gel to function, and unit cost continues to drop [4]. For example, a 
class of students equipped with EEG headsets could be monitored by detecting, processing, and interpret-
ing a postsynaptic potentials and frequencies to inform the instructor of the mental state of each individual 
student. This immediate feedback will also allow the instructor to understand the level of engagement stu-
dents having with the lecture, and respond with a suitable course of action up to his or her discretion to 
improve student engagement. 

2. MATERIALS 
The tools utilized in this work include a NeuroSky Mindwave Mobile (Figure 1), a commercial EEG 

headset, and MATLAB (Matrix Laboratory) for reading and processing postsynaptic potential. The head-
set features a single electrode sensor contacting the forehead, and does not require conduction gel or paste 
to function [4]. In addition, the headset includes a clip-on sensor to attach onto the earlobe. It represents 
an example of a reasonably accessible product that is comparatively less complex to configure for a test 
subject than earlier EEG designs. These are desirable traits for a device that is intended to be worn in the 
classroom for the sake of convenience, and hence, it is preferable for data recorded in experiments to re-
flect the capabilities of technology accessible to an educational institution. 

In addition, a MATLAB script, “readRAW_dft.m” was utilized for allowing a Bluetooth connected 
device with an operating system to interpret electrophysiological signals from the test subject. This was 
utilized, along with other MATLAB plotting tools in order to collect data. Some modifications and addi-
tional features were implemented due to some of the initial shortcomings of the script, which will be de-
scribed in further detail in the next section. 
 

 
Figure 1. The NeuroSky Mindwave Mobile 
2 EEG unit utilized for this project. 
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3. METHODS 
In order to optimize the data gathered from the output of the NeuroSky EEG headset, several processing 

steps were necessary (see Figure 2 for steps necessary for blink-detection) Though blinks and the level of 
concentration of a test subject produce distinct electrophysiological signals, the testing environment could 
not have been perfectly controlled for signal noise. For example, the lights in the experimental area were 
powered by 220 V AC at 50 Hz, which overlaps with the upper range of the human brain’s frequency range 
when the test subject is concentrating [1]. This source and similar sources of noise needed to be eliminated 
from the raw signal read by the EEG. 

To this end, filtering was done on the signal for the method of eyeblink detection in this project. Each 
trial lasted for 20 seconds, with a sampling rate of 512 per second, during which the EEG headset measures 
the postsynaptic potentials at its sensor region as a function of time. The units are microvolts and seconds 
respectively, though a raw signal waveform contains numerous artifacts of external noise (see Figure 3). 

This signal is first post-processed with a band-pass filter function built into MATLAB [5]. The 
band-pass frequencies have been set between 4 Hz and 30 Hz. The range below 4 Hz was excluded as it 
denotes an already unconscious individual [1], and the upper range was made large enough to include 
some states of mental concentration [1] while excluding noise from the surrounding environments, such 
as the 50 Hz AC lighting. It is additionally filtered through a convolution process: ideal for retaining the 
higher-level features of the signal while eliminating remaining irregularities in the data (see Figure 4). The 
combination of these functions is also overall quicker to process than MATLAB’s built-in “filter” func-
tion. 

This signal is then interpreted by a blink-detection mechanism, which functions based on voltage 
thresholds. The set value for the threshold is 250 microvolts, which was qualitatively chosen from initial 
trials to avoid false positives while still detecting most blinks. This blink recognition method is also used 
for detecting two mental states out of the four tested for: a distracted and tired state. By detecting the 
number of times the test subject has blinked within 20 seconds, a total of seven blinks or greater will regis-
ter as “tired”, and a total of two or fewer blinks will register as “distracted”. 

The timespan measured in each trial is 20 seconds, and the sampling rate is set to 512 times/second. 
As a result, each data sample will have 20 × 512 = 10,240 sample points, corresponding to each different 
time. This will generate a row vector of a magnitude up to 10,240, which results in a data matrix for analy-
sis. 

The method of analyzing the voltage amplitude in the time domain relies on an inequality function 
for detecting a voltage spike in excess of the voltage threshold. First, upon inspecting the matrix generated 
by the filtered signal, and finding the corresponding value for a blink of an eye, it is marked (Figure 5). 
This detection mechanism identifies a blink by finding an individual voltage peak each time the threshold 
is crossed: a data point which is greater in voltage than the previous point and the following point. 

In order to be able to utilize an EEG to determine the mental state of an individual, experimentation 
was conducted to identify electrophysiological indicators. The majority of the trials conducted follow a  
 

 
Figure 2. Eyeblink detection mechanism flowchart. 
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Figure 3. A raw EEG signal from a test subject: note the high frequencies. The 
larger pulses indicate eyeblinks. 

 

 
Figure 4. Filtered signal, note the absence of relatively higher frequencies. 

 

 
Figure 5. Eyeblink detection mechanism at work (red triangle marks). 

 
structure of analyzing frequency in relation to some other variable. For example, an analysis of power 
spectral density (PSD) in relation to the frequency of postsynaptic potential oscillations. It is not a new 
concept to analyze PSD in the context of analyzing mental states with an EEG [4], and the insights gleaned 
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can often differentiate between the types of waves in ascending order of frequency: delta, theta, alpha, and 
beta waves (Table 1). Delta waves are most prominent when the brain is unconscious, theta waves are 
generally associated with a drowsy state, alpha waves with a relaxed but wakeful state, and beta waves with 
a normal state up to being relatively alert. In general, the lower ranges of these frequencies are associated 
with a higher PSD [6]. 

As the default graphical output of the NeuroSky EEG headset related voltage over time, a process had 
to be implemented for converting such a graph to power spectral density over frequency. In order to per-
form this function, the mathematical mechanism utilizes a fast Fourier transformation (FFT) to convert 
the domain of the initial graph from time in seconds to frequency in hertz, the reciprocal unit (4 to 25 Hz, 
with 3 to 25 μV/sqrt (Hz) as the new y-axis). The FFT was favored over a discrete Fourier transformation 
for processing speed, which is highly relevant to this classroom application [7]. 

( ) ( ) 21limT TP f S f
T→∞=  

The FFT decomposes the original N-point sequence into a series of short sequences and makes full 
use of the symmetry and periodicity of the exponential factors in the FFT formula. The corresponding 
FFTs of these short sequences are then appropriately combined with the corresponding FFTs of these 
short sequences to achieve the purpose of deduplication calculations, reducing the number of multiplica-
tion operations and thereby simplifying the structure. 

Then, due to the conjugate law of the imaginary portion of the function, the only useful information 
for the final result is stored in the subscript “1 to 1 + N/2”. The negative phase frequency of the signal 
converted to the spectrum is eliminated and the above calculation is applied after this elimination. The 
power spectral density formula finds the normalized power for each frequency. Here, every 256 sample 
points are used for the above operation, that is, the power density spectrum is calculated every 0.5 seconds. 
After removing the sample point of the negative frequency, it is 256/2 + 1 = 129 available sample points, 
and one record will produce 10,240/256 = 40 line vectors, which will be stored in a matrix of 40 rows and 
129 columns. Next, the matrix is summed by columns and divided by 40. The result is a row vector of 
length 129. The average calculation increases the stability of the data to reduce the interference generated 
by the outside world and the device itself. 

Then, according to the actual application, the power sample points corresponding to the signal with 
the frequency of 4 - 25 Hz are extracted, and the data analysis table is imported. For classification, the 
mental states of “tired”, “normal”, and “vigorous”, are divided into detecting A (theta waves (4 - 8 Hz)), B 
(alpha waves to low beta waves (8 - 16 Hz)), and C (mid-to-high beta waves respectively (16 - 30 Hz)), in 
other words, splitting a row vector into three row vectors, the data in different frequency domain regions 
can be more conveniently compared. Then, all the power data for different frequencies in each area is su-
perimposed (because they have the same dimensions), so that the power in different mental state areas can  
 
Table 1. A table based on a study exploring the relationship between the presence of certain brain 
wave frequencies and mental states [1]. 

Wave Type Frequency Range Mental State 
Delta wave 0 - 3.5 Hz Unconscious 
Theta wave 4 - 7.5 Hz Fantasizing 
Alpha wave 8 - 12 Hz Calm, relaxed 

Low Beta wave 12 - 15 Hz Integrated 
Mid Beta Wave 16 - 20 Hz Thinking, aware 
High Beta wave 21 - 30 Hz Alert, agitated 
Gamma wave 30 - 100 Hz Motor functions and higher mental activity 
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be expressed by a number, and they are represented by the letters A, B, and C. In order to determine the 
proportion of the frequencies in these regions to each other, a simple formula is used to calculate the ratio 
of each number and the remaining number sum: RATIO A = A/(B + C). The denominator excludes the 
value of the proportion of what is being calculated in particular so that each data point will be used only 
once in this calculation. The calculation shows the contrast of power in different mental states, and the 
overall process is described in Figure 6. 

The above graphical representations (Figure 6) show the proportion of each of the three categories of 
frequencies relative to each other. Note the graph (Figure 7) with an especially high proportion of theta 
waves (type “A”), which denotes a tired state [6]. 
 

 
Figure 6. Graphical representation of the power spectral density at different mental states. 

 

 
Figure 7. Summary of the PSD graph generation process. 
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4. DISCUSSION 
In testing a commercially available EEG headset, it has become apparent that it can detect differentia-

ble signals for varying mental states and motor movements, and this can be applied to detect concentra-
tion to a usable resolution in a classroom setting. 

This is evident from corroboration with separate research efforts on electrophysiological analysis, 
which denote a range of around 8 Hz and below as an unfocused, drowsy state. Previous work has also at-
tempted to utilize power spectral density as an analysis method, and despite disruption in the data from 
noise at relatively higher frequencies (50+ Hz), there is a clear spike at the lowest range of frequencies. 
These insights are sufficient for a basic classroom implementation of EEG headsets. 

Some of the main limitations to the research conducted concern a small sample size: the number of 
trials conducted remains in the double digits. First of all, this has some errors compared to the larger data 
set nature. Furthermore, it imposed limitations on the type of analysis that could be carried out, excluding 
techniques such machine learning [8]. This limits the quality of the research conducted here, even if the 
results are usable on a basic level. 

In order to conclude, the significance of this work must be reiterated on. It does not represent any 
notably new or groundbreaking developments, but verifies previous studies and is focused on assessing the 
viability of its specific application. If a relatively simplistic analysis of the brain’s electrophysiological out-
puts is capable of generating enough useful results to be of use in a classroom environment, the technical 
challenges of implementing EEG headsets into the classroom are not particularly imposing. Though the 
cost may be prohibitive for some public institutions at the moment, advancements will likely continue to 
progress in improving accessibility.  
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