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Abstract 
Following the economic rationale of the British options, we present a new 
class of binary options where the holder enjoys the early exercise feature of 
the American binary options with his payoff is the “best prediction” of the 
European binary payoff under the hypothesis that the true drift equals a con-
tract drift. Based on the observed price movements, the option holder finds 
that the true drift of the stock price is unfavourable then he can substitute it 
with the contract drift. The key to the British binary option is the protection 
feature and to minimize the losses. A closed form expression for the arbi-
trage-free price is derived in terms of the rational exercise boundary and the 
rational exercise boundary itself can be characterized as the unique solution 
to a nonlinear integral equation. We also analyze the financial meaning of the 
British binary options using the results above. 
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1. Introduction 

The purpose of the present paper is to introduce and examine the British payoff 
mechanism (see [1] and [2]) in the context of binary options. The main idea of 
the “British” feature provides the option holder a protection mechanism against 
unfavourable stock price movements. The contract buyer is able to substitute the 
true drift with a contract drift to make his payoff the best prediction of the Eu-
ropean binary payoff. 

Following the economic rationale of [1] and [2], we introduce a new binary op-
tion that endogenously provides its holder with a protection mechanism against 
unfavourable stock price movements. This protection feature is intrinsically built 
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into the option contract and we refer to such contracts as “British” for the rea-
sons outlined in [1] and [2]. The British binary option not only provides a 
unique protection against unfavourable stock price movements (see more details 
in Section 5) but also enables the option holder to obtain high returns when the 
stock price movements are favourable in both liquid and illiquid markets. It is 
useful to recall the notion “compound option” by Geske where an analytical so-
lution for compound options was derived (see [3] and references therein). We 
refer to a more recent paper [4] for an informative review. This notion is also 
used in [5] [6] [7] [8] and [9] for the value of British Asian, British Russian and 
British lookback options. The arbitrage-free price of the option is a solution to 
an optimal stopping problem with the gain function as the payoff of the option 
(see [10]). We use a local time-space calculus on curves (see [11]) to derive a 
closed form expression for the arbitrage-free price in terms of the optimal stop-
ping boundary and show that the free boundary itself is a unique solution to a 
nonlinear integral equation. 

The paper is organized as follows. In Section 2 we present a basic motivation 
for the British cash-or-nothing put option. In Section 3 we first formally define 
the British cash-or-nothing put option and present some of its basic properties. 
We continue in Section 4 to derive a closed form expression for the arbi-
trage-free price in terms of the rational exercise boundary and show that the ra-
tional exercise boundary can be characterized as the unique solution to a nonli-
near integral equation. In Section 5 we provide a financial analysis using the re-
sults above (making comparisons with American binary options). In the final 
section, we present other different types of binary options: 1) calls or puts; 2) 
cash-or-nothing or asset-or-nothing. 

2. Basic Motivation for the British Binary Option 

The basic economic motivation for the British binary option is parallel to that of 
British put and call options (see [1] and [2]). In this section, we briefly review 
the key elements of the motivation on the cash-or-nothing put option. 

1) Consider the stock price X and a riskless bond B evolving respectively as:  

d d dt t t tX X t X Wµ σ= +                      (1) 

d dt tB rB t=                           (2) 

with 0X x=  and 0 1B =  where Rµ ∈  is the drift, 0σ >  is the volatility 
coefficient, ( ) 0t t

W W
≥

=  denotes the standard Brownian motion on a probabili-
ty space ( ), , PΩ   and 0r >  is the interest rate. The European or American 
put option is well defined in the literature (see [12]). Based on self-financing 
portfolios it implies that the arbitrage-free price of the options is given by (see 
[13]):  

( )QE e rT
TV I X K− = <   (European cash-or-nothing put option)   (3) 

( )Q

0
sup E e r

T
V I X Kτ

τ
τ

−

≤ ≤
 = <   (American cash-or-nothing put option) (4) 
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where the expectation QE  is taken with respect to the unique equivalent mar-
tingale measure Q (see [10]) and the supremum is taken over all stopping times 
τ  of X with values in [ ]0,T . 

2) Recall that the arbitrage-free price for a European cash-or-nothing put op-
tion is given by  

( )( )QE e rT
TV I X K−= <                    (5) 

where the expectation QE  is taken with respect to the unique equivalent mar-
tingale measure Q. From the stochastic differential Equation (1), we get the 
unique strong solution  

( ) ( )( )2exp 2t tX x W tµ σ µ σ= + −                 (6) 

under P for [ ]0,t T∈ . We see that ( )tXµ µ→  is strictly increasing so that 
( )e rT

TI X Kµ −→ <  is decreasing on R . Furthermore, it is well known that 
( )( )Law | QX µ  is the same as ( )( )Law | PX r . Therefore, if rµ =  we get  

( )( )( )E e I .rT
TV X Kµ−= <                    (7) 

The left-hand side stands for the value of investment and the right-hand side 
represents the expected value of the payoff. On the other hand, the option holder 
is glad to see rµ < . It follows  

( )( )( )E e I .rT
TV X Kµ−< <                    (8) 

Then we say the return is “favourable”. On the contrary the return is 
“unfavourable” if rµ >  and  

( )( )( )E e I .rT
TV X Kµ−> <                    (9) 

3) In the real financial market, the actual drift µ  is unknown at time 0t =  
and is not easy to estimate at later times ( ]0,t T∈  in finite horizon. One will 
buy the option if he believes that rµ <  and surely he is pleased to see what 
reaffirm his belief. The British cash-or-nothing put option aims to address the 
opposite situation. If the put holder observes stock price movements not satisfy-
ing his belief i.e. the actual drift in his observation tends to be larger than the in-
terest rate r, the option holder therefore enables to substitute this unfavourable 
drift with a contract drift which represents the buyer’s tolerance for the actual 
drift (see [1]). Then there is an endogenous protection from any true drift larger 
than the interest rate and the contract drift represents the buyer’s expected level 
of tolerance. Moreover, the real drift µ  is difficult and nearly impossible for 
the option buyer and seller to agree on. But the contract drift cµ  is not im-
possible for both parties to agree on because it is just a parameter given exogen-
ously. The practical implications of this protection feature are most remarkable 
since even when the stock price is above the strike price the option holder can 
exercise with a substantial reimbursement of the original option price compared 
with the ability to sell in a liquid option market completely endogenously (more 
details in Section 5). 
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4) In a real financial market, true buyer’s ability to sell will be determined by 
the market and this may also involve additional transaction costs and/or taxes. 
By “true buyer” we mean a buyer who has no ability or desire to sell the option 
at T in the European case or at the optimal stopping time τ  in the American 
case. Furthermore, in most practical situations of over-the-counter trading it 
may be increasingly difficult to sell the option when out-of-money and makes 
the option expire worthless. Also in the real world the liquidity of the option 
market varies with the term of the contract, for example some extreme news 
event may lead to the option contract to become worthless once the news is re-
leased. On the other hand, the protection feature endogenously built into the 
British option protect the option holder regardless of whether the option market 
is liquid or not. 

3. The British Cash-or-Nothing Put Option: Definition and  
Basic Properties 

We start this section from a definition of the British cash-or-nothing put option 
and then give a brief analysis of its properties and rational exercise strategy.  

Definition 1 The British cash-or-nothing put option is a financial contract 
between a seller/hedger and a buyer/holder entitling the latter to exercise at any 
(stopping) time τ  prior to T whereupon his payoff is the “best prediction” of 
the European cash-or-nothing payoff ( )TI X K<  given all the information up 
to time τ  under the hypothesis that the true drift of the stock price equals cµ .  

We refer cµ  as “contract drift” and it is natural that cµ  satisfies  

.c rµ >                             (10) 

if c rµ ≤  the put option holder will beat the interest rate r by exercising imme-
diately. Furthermore, cµ  can be as large as ∞ , which means the option hold-
er’s infinite tolerance for the true drift. Meanwhile the British cash-or-nothing 
put option would become a European cash-or-nothing put option. 

1) We define the payoff function cGµ  as  

( ) ( ), E I |c c
t T tG t X X Kµ µ= <                    (11) 

where the conditional expectation is taken with respect to a new probability 
measure P cµ  under which the stock price X expressed as  

d d d .t c t t tX X t X Wµ σ= +                       (12) 

We see from (1) and (12) that if we exercise the British option, the true (un-
known) drift is substituted by the contract drift. Such a contract is referred as 
“British” since in terms of payoff the British option takes a position in between 
the European and American options. The British payoff mechanism is also ap-
plied in [1] [2] [5] [6] [7] [8] and [9]. 

It is followed that ( ),cG t xµ  can be written as  

( ) ( ), E Ic c
T tG t x xZ Kµ µ
−

 = <                    (13) 

and c
T tZ µ
−  is given by  
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( )( )( )2exp 2c
T t T t cZ W T tµ σ µ σ− −= + − −             (14) 

for [ ]0,t T∈  and ( )0,x∈ ∞ . Then we find (13) equals to  

( ) ( )
( )( )( )( )

( )

2

2

, EI

P exp 2

1 1ln
2

c c
T t

T t c

c

G t x xZ K

x W T t K

K T t
xT t

µ µ

σ µ σ

µ σ
σ

−

−

= <

= + − − <

   = Φ − − −   −    

        (15) 

where Φ  is the standard normal distribution function given by  

( ) 2 21 e d
2

x yx y−

−∞π
Φ = ∫  for Rx∈ . Note that the expression for ( ),cG t xµ   

coincides with the Black-Scholes formula for the arbitrage-free price of the Eu-
ropean cash-or-nothing put option with the interest rate substituted with con-
tract drift cµ . It shows that the payoff of the British option could be inferred 
from the price of the relevant European option that is useful for understanding 
the nature of the British payoff. Also, the stock price x can follow any process. In 
this paper we make the assumption that the stock price follows geometric Brow-
nian motion and get the explicit expression of the payoff function ( ),cG t xµ  
but it is not limited to certain process. 

2) The arbitrage-free price of the British cash-or-nothing put option can be 
expressed as  

( )Q

0
sup E e E |cr

T
T

V I X Kµτ
τ

τ

−

≤ ≤
 = <                   (16) 

where the supremum is taken over all stopping times τ  of X with values in 
[ ]0,T . For the process X started at any point x in ( )0,∞  at any time [ ]0,t T∈ , 
the expression (16) extends to  

( ) ( )Q
,

0
, sup E e ,cr

t x t
T t

V t x G t Xµτ
τ

τ
τ−

+
≤ ≤ −

 = +                 (17) 

where the supremum is taken over all stopping times τ  of X with values in 
[ ]0,T t−  and Q

,Et x  is taken with respect to the (unique) equivalent martingale 
measure Q under which tX x= . Since ( )( )Law | QX µ  is the same as 

( )( )Law | PX r , it follows that  

( ) ( ),
0

, sup E e ,cr
t x

T t
V t x G t xXµτ

τ
τ

τ−

≤ ≤ −
 = +                 (18) 

where the supremum is taken over all stopping times τ  of X with values in 
[ ]0,T  and the process ( )X X r=  under P solves  

d d dt t t tX rX t X Wσ= +                      (19) 

with 0 1X = . 
3) To get the solution to the optimal stopping problem (18), apply Ito’s for-

mula and get  

( ) ( ) ( )
0

e , , e , dc c c
srs ru

t s t u sG t s X G t x H t u X u Mµ µ µ− −
+ ++ = + + +∫       (20) 

where the function ( ),cH t xµ  is defined by  
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2
2

2
c c c c c

t x xxH G rxG x G rGµ µ µ µ µσ
= + + −                (21) 

and ( )
0

e , dc
s ru

s u x t u uM X G t u X Wµσ −
+= +∫  is defined as a continuous martingale 

for [ ]0,s T t∈ −  with [ )0,t T∈ . From the optional sampling theorem we get  

( ) ( ) ( )
0

E e , , E e , dc c cr ru
t uG t X G t x H t u xX u

τµ µ µτ
ττ− −
+

  + = + +    ∫     (22) 

for all stopping times τ  of X with values in [ ]0,T t− . Moreover, the payoff 
function obviously satisfies the Kolmogorov backward equation  

2
2 0

2
c c c

t c x xxG xG x Gµ µ µσµ+ + =                    (23) 

thus we get  

( ) .c c c
c xH r xG rGµ µ µµ= − −                     (24) 

It is easy to verify that 0c
xGµ <  and we see that if c rµ ≤  then 0cH µ <  it 

is always optimal to exercise immediately from (22) since the option value is 
smaller than the payoff P-a.s. Then we calculate c

xGµ  and substituting c
xGµ  

and cGµ  then get  

( ) ( ) ( )

( )

2

2

1 1 1, ln
2

1 1ln
2

c
c c

c

KH t x r T t
xT t T t

Kr T t
xT t

µ µ ϕ µ σ
σ σ

µ σ
σ

   = − − − −   − −    
   − Φ − − −   −    

(25) 

where ( ) 2 21 e
2

yyϕ −

π
=  for Ry∈ . 

A direct examination of the function cH µ  in (25) shows that there exists a 
continuous (smooth) function [ ]: 0, Rh T →  such that  

( )( ), 0cH t h tµ =                        (26) 

for all [ )0,t T∈  with ( ), 0cH t xµ >  for ( )x h t>  and ( ), 0cH t xµ <  for 
( )x h t<  when [ )0,t T∈  is given and fixed. The relationship (22) implies that 

no points ( ),t x  in [ ) ( )0, 0,T × ∞  with ( )x h t>  is a stopping point. On the 
other hand, it is easy to verify that if ( )x h t<  and t T<  is sufficiently close to 
T then it is optimal to stop immediately since the gain obtained from being be-
low h cannot offset the cost of getting there due to the lack of time. This implies 
that the optimal stopping boundary b separating the continuation set from the 
stopping set satisfies ( ) ( )b T h T=  and this value equals K as is easily seen from 
(25). 

4) Standard Markovian arguments lead to the following free-boundary prob-
lem  

( ) [ )
2

2 0 for and 0,
2t x xxV rxV x V rV x b t t Tσ

+ + − = > ∈          (27) 

( ) ( ) ( ) [ ), , for and 0,cV t x G t x x b t t Tµ= = ∈               (28) 

https://doi.org/10.4236/jmf.2019.94038


M. Gao 
 

 

DOI: 10.4236/jmf.2019.94038 753 Journal of Mathematical Finance 
 

( ) ( ) ( ) [ ), , for and 0,c
x xV t x G t x x b t t Tµ= = ∈              (29) 

( ) ( ) ( ), forV T x I x K x b T K= < ≥ =                 (30) 

( ) [ ), 0 for 0, .V t t T∞ = ∈                       (31) 

We will show in the following sections that this free-boundary problem has a 
unique solution V and b which coincide with the value function (18) and the op-
timal stopping boundary respectively (cf. [14]). It follows that the continuation 
set can be expressed as { } ( ) [ ) ( ) ( ){ }, 0, 0, |cC V G t x T x b tµ= > = ∈ × ∞ >  and 
the stopping set is given by  

{ } ( ) [ ) ( ) ( ){ } ( ) ( ){ }, 0, 0, | , |cD V G t x T x b t T x x b Tµ= = = ∈ × ∞ ≤ >  and the 
optimal stopping time in (18) is given by  

[ ] ( ){ }inf 0, | .b tt T X b tτ = ∈ ≤                  (32) 

5) The relationship (10) leads to different position and shape of the optimal 
stopping boundaries b (see Figure 1). We divide it into three different regimes 
with cµ  is large, cµ  close to r and an intermediate case. We see when c rµ >  
is relatively large, the boundary b is an increasing function of t and when cµ  
close to r, the boundary b is a U-skewed shape. If we make cµ  move from ∞  
to r, the optimal stopping boundary b will go up from 0 function gradually 
passing through the three shapes above with ( )b T K= . 

4. The Arbitrage-Free Price and the Rational Exercise  
Boundary 

In this section we will derive a closed form expression for the arbitrage-free price 
V in terms of the rational exercise boundary b (the early-exercise premium re-
presentation). 

We will make use of the following functions in Theorem 2 below:  

( ) ( ) ( ) ( ), , e ,c r T t rF t x G t x G t xµ − −= −                  (33) 

( ) ( ) ( ) ( )
0

, , , e , , , dc
zr v tJ t x v z H v y f v t x y yµ− −= − −∫            (34) 

 

 

Figure 1. A computer drawing showing how the rational exercise boundary of 
the British cash-or-nothing put option changes as one varies the contract drift. 
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for [ ) ( )0, , 0, ,t T x v t T∈ > ∈  and 0y > , where functions rG  and cGµ  are 
given in (15) above, the function cH µ  is given in (21) and (25) above, and 

( ), ,y f v t x y−  is the probability density function of r
v txZ −  from (14) above 

with cµ  replaced by r and T t−  replaced by v t−   

( ) ( ) ( )( )21 1, , log 2f v t x y y x r v t
y v t v t

ϕ σ
σ σ

  − = − − −  − − 
   (35) 

for 0y >  where ϕ  is defined as in (25) above. Note that since ( ), 0cH v yµ <  
for all ( )( )0,y b v∈  as b lies below h, then it is easy to verify that  

( )( ), , , 0J t x v b v >  for all [ ) ( )0, , 0, ,t T x v t T∈ > ∈ . It is easy to see that  

( ) ( ) ( )
21, , , e log

2
r T t z KJ t x T z r r T t

xT t
σ

σ
− −    ∧

− = Φ − − −    −     
   (36) 

which is positive almost surely. It means that no matter what value z is, the buy-
er should exercise the option at the very closing time t T= . It follows what we 
get in (26) that ( )b T  tends to be K.  

Theorem 2 The arbitrage-free price of the British cash-or-nothing put option 
follows the early-exercise premium representation  

( ) ( ) ( ) ( )( ), e , , , , d
Tr T t r
t

V t x G t x J t x v b v v− −= + ∫            (37) 

for all ( ) [ ] ( ), 0, 0,t x T∈ × ∞ , where the first term is the arbitrage-free price of 
the European put option and the second term is the early-exercise premium. 

The rational exercise boundary of the British put option can be characterised 
as the unique continuous solution [ ]: 0, Rb T +→  to the nonlinear integral eq-
uation  

( )( ) ( ) ( )( ), , , , d
T

t
F t b t J t b t v b v v= ∫                (38) 

satisfying ( ) ( )0 b t h t≤ ≤  for all [ ]0,t T∈  where h is defined by (26) above.  
Proof. We will first derive (37) and (38). Then we will show the uniqueness of 

(38). 
1) Let [ ] ( ): 0, 0, RV T × ∞ →  and [ ]: 0, Rb T +→  denote the unique solu-

tion to the free-boundary problem (27)-(31), set  

( ) [ ) ( ) ( ){ }, 0, 0, |bC t x T x b t= ∈ × ∞ >  and  

( ) [ ) ( ) ( ){ }, 0, 0, |bD t x T x b t= ∈ × ∞ < , and let  

( ) ( ) ( )
2

2, , ,
2X x xxV t x rxV t x x V t xσ

= +  for ( ), b bt x C D∈  . 

We summarize that V and b are continuous functions satisfying the following 
conditions:  
• V is 1,2C  on b bC D ;  
• b is of bounded variation;  
• ( )P 0tX c= =  for all [ ]0,t T∈  and 0c > ;  
• t XV V rV+ −  is locally bounded on b bC D ;  
• ( )( ) ( )( ), ,c

x xt V t b t G t b tµ→ ± =  is continuous on [ ]0,T .  
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From these conditions we see that the local time-space formula is applicable to 
( ) ( ), e ,rss y V t s xy−→ +  with [ )0,t T∈  and 0x >  given and fixed (see [11]). 
This leads to  

( )
( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )
0

0

e ,

, e , d

1 e , , d
2

rs
s

s rv b
t X v v s

s rv b x
x x v vv v

V t s xX

V t x V V rV t v xX I xX b t v v M

V t v xX V t v xX I xX b t v X+ −

−

−

−

+

= + + − + ≠ + +

+ + − + = +

∫

∫ 

  (39) 

where ( )
0

e , d
sb rv

s v x v vM xX V t v xX Bσ −= +∫  is a continuous local martingale for 

[ ]0,s T t∈ −  and ( ) ( )( )
0

b x b x
v v s

X X
≤ ≤

=   is the local time of ( )0
x

v v s
X xX

≤ ≤
=  

on the curve b for [ ]0,s T t∈ − . Furthermore, since V satisfies (27) on bC  and 

equals cGµ  on bD , and the smooth-fit condition holds at b, we see that (39) 
implies   

( )
( ) ( )( ) ( )( )

0

e ,

, e , d

rs
s

s rv b
t X v v s

V t s xX

V t x V V rV t v xX I xX b t v v M

−

−

+

= + + − + < + +∫ 
  (40) 

for [ ]0,s T t∈ −  and ( ) [ ) ( ), 0, 0,t x T∈ × ∞ . 
2) Since b

sM  is a continuous local martingale, there exists a sequence of 
stopping times nτ  such that nτ ↑ ∞  as n ↑ ∞  and the stopped process 

nsM τ∧  is a martingale. Replacing s by ns τ∧  in (40), we get  
( ) ( )
( ) ( )( ) ( )( )

0

e ,

, e , d .

n
n

n

n

r s
n s

s rv b
t X v v s

V t s xX

V t x V V rV t v xX I xX b t v v M

τ
τ

τ
τ

τ− ∧
∧

∧ −
∧

+ ∧

= + + − + < + +∫ 
(41) 

The martingale term vanishes when taking E on both sides. It follows  
( ) ( )

( ) ( ) ( )( )
0

E e ,

, E e , d

n
n

n c

r s
n s

s rv
v v

V t s xX

V t x H t v xX I xX b t v v

τ
τ

τ µ

τ− ∧
∧

∧ −

 + ∧ 
 = + + < +  ∫

      (42) 

where ( ),cH t xµ  is well defined in (25). When taking limn↑∞ , it reduces to  

( )

( ) ( ) ( )( )
0

E e ,

, E e , dc

rs
s

s rv
v v

V t s xX

V t x H t v xX I xX b t v vµ

−

−

 + 
 = + + < +  ∫

      (43) 

3) Replacing s by T t−  in (43), using that ( ) ( ) ( ), ,cV T x G T x I x Kµ= = ≤  
for 0x >  and from the optimal sampling theorem, we get  

( ) ( )( )
( ) ( ) ( )( )
( ) ( )( )

0

e E

, e E , d

, , , , d .

c

r T t
T t

T t rv
v v

T

t

I xX K

V t x H t v xX I xX b t v v

V t x J t x v b v v

µ

− −
−

− −

<

 = + + < + 

= −

∫

∫

      (44) 

Note that the left-hand side of (44) is ( ) ( )e ,r T t rG t x− −  and we will get the ex-
pression (37). It follows by (38) since ( )( ) ( )( ), ,cV t b t G t b tµ=  for all 

[ ]0,t T∈ . 
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4) We will show that the rational exercise boundary is the unique solution to 
(38) in the class of continuous functions ( )t b t→  on [ ]0,T  satisfying 

( ) ( )0 b t h t≤ ≤  for all [ ]0,t T∈ . To prove this, we assume a continuous func-
tion [ ]: 0, Rc T →  which solves (38) and satisfies ( ) ( )0 c t h t≤ ≤  for all 

[ ]0,t T∈ . From (44), the function [ ] ( ): 0, 0, RcU T × ∞ →  is defined by  

( ) ( ) ( )

( ) ( )( )
0

, e E ,

e E , d

c

c

r T tc
t t

T t rv
v v

U t x G T xX

H t v xX I xX c t v v

µ

µ

− −
−

− −

 =  

 − + < + ∫
     (45) 

for ( ) [ ] ( ), 0, 0,t x T∈ × ∞ . It is easy to know that if c solves (38) then 
( )( ) ( )( ), ,ccU t c t G t c tµ=  for all [ ]0,t T∈ . 

a) First we will show that ( ) ( ), ,ccU t x G t xµ=  for all ( ) [ ] ( ), 0, 0,t x T∈ × ∞  
such that ( )x c t≤ . Take such ( ),t x  and the Markov property of X implies  

( ) ( ) ( )( )
0

e , e , dc
srs c rv

s v vU t s xX H t v xX I xX c t v vµ− −+ − + < +∫     (46) 

is a continuous martingale under P for [ ]0,s T t∈ − . Consider the stopping time  

[ ] ( ){ }inf 0, |c xs T t xX c t sσ = ∈ − ≥ +                 (47) 

under P. We see that ( ) ( ), ,c
c c

c
c cU t xX G t xXµ

σ σσ σ+ = +  since 
( )( ) ( )( ), ,ccU t c t G t c tµ=  for all [ ]0,t T∈  and ( ) ( ), ,ccU T x G T xµ=  for all 

0x > . Now we replace s by cσ  in (46) and take E on both sides, from the op-
tional sampling theorem  

( ) ( )
( ) ( )( )

( ) ( )

( )

0

0

, E e ,

E e , d

E e , E e , d

,

c
c

c c

cc c c
c

c

rc c
c

rv
v v

r rv
c v

U t x U t xX

H t v xX I xX c t v v

G t xX H t v xX v

G t x

σ
σ

σ µ

σσ µ µ
σ

µ

σ

σ

−

−

− −

 = + 
 − + < +  

  = + − +    
=

∫

∫
   (48) 

where we use (22) in the last step. 
b) Next, we will show that ( ) ( ), ,cU t x V t x≤  for all ( ) [ ] ( ), 0, 0,t x T∈ × ∞ . 

Then we consider the stopping time  

[ ] ( ){ }inf 0, |c ss T t xX c t sτ = ∈ − ≤ +                (49) 

under P. 
If ( )x c t≤  then 0cτ =  so that ( ) ( ), ,ccU t x G t xµ=  from a) above. On the 

other hand, if ( )x c t>  then ( )( ) ( )( ), ,ccU t c t G t c tµ=  and  
( ) ( ), ,ccU T x G T xµ=  for all 0x > . From above analysis, we claim that 

( ) ( ), ,c
c c

c
c cU t xX G t xXµ

τ ττ τ+ = + . Replacing s by cτ  in (46) and taking E on 
both sides, from the optional sampling theorem we get  

( ) ( )
( ) ( )( )

( )
( )

0

, E e ,

E e , d

E e ,

,

c
c

c c

c c
c

rc c
c

rv
v v

r
c

U t x U t xX

H t v xX I xX c t v v

G t xX

V t x

τ
τ

τ µ

τ µ
τ

τ

τ

−

−

−

 = + 
 − + < +  

 = + 
≤

∫        (50) 
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where  

( ) ( ),
0

, sup E e , .cr
t x

T t
V t x G t xXµτ

τ
τ

τ−

≤ ≤ −
 = +                 (51) 

Therefore, ( ) ( ), ,cU t x V t x≤  as claimed. 
c) Next, we are going to show that ( ) ( )b t c t≤  for all [ ]0,t T∈ . We will prove 

in reverse. Suppose that there exists [ ]0,t T∈  such that ( ) ( )c t b t< . Take any 
( )x c t≤  and consider the stopping time  

[ ] ( ){ }inf 0, |b ss T t xX b t sσ = ∈ − ≥ +                    (52) 

under P. Replacing s with bσ  in (40), taking E on both sides and applying the 
optional sampling theorem we get  

( ) ( ) ( )
0

E e , , E e , d .bb c
b

r rv
b vV t xX V t x H t v xX v

σσ µ
σσ− −  + = + +    ∫      (53) 

Repeating the above process in (46), we find  

( )
( ) ( ) ( )( )

0

E e ,

, E e , d .

b
b

b c

r c
b

c rv
v v

U t xX

U t x H t v xX I xX c t v v

σ
σ

σ µ

σ−

−

 + 
 = + + < +  ∫

        (54) 

We see ( ) ( ) ( ), , ,ccU t x G t x V t xµ= =  since ( )x c t≤  and by b) we know 

( ) ( ), ,
b b

c
b bU t xX V t xXσ σσ σ+ ≤ + , then (53) and (54) imply that  

( ) ( )( )
0

E e , d 0.b crv
v vH t v xX I xX c t v v

σ µ− + ≥ + ≥  ∫             (55) 

On the other hand, the fact that b lies below h forces (55) to be strictly nega-
tive and provides a contradiction. Therefore, ( ) ( )c t b t≥  as claimed. 

d) Next, we will show that ( ) ( )b t c t=  for all [ ]0,t T∈ . We first assume that 
there exists [ ]0,t T∈  such that ( ) ( )c t b t> . Take any ( ) ( )( ),x c t b t∈  and 
consider the stopping time  

[ ] ( ){ }inf 0, |b ss T t xX b t sτ = ∈ − ≤ +                  (56) 

under P. Replacing s with bτ  in (40) and (46), taking E on both sides and ap-
plying the optional sampling theorem we get  

( ) ( )E e , ,b
b

r
bV t xX V t xτ

ττ− + =                     (57) 

( )
( ) ( )( )

0

E e ,

( , ) E e , d .

b
b

b c

r c
b

c rv
v v

U t xX

U t x H t v xX I xX c t v v

τ
τ

τ µ

τ−

−

 + 
 = + + < +  ∫

      (58) 

We see that ( ) ( ) ( ), , ,c
b b b

c
b b bU t xX G t xX V t xXµ

τ τ ττ τ τ+ = + = +  by a) and c) 
above since b c≤ . Furthermore, by b) we know cU V≤  so (57) and (58) leads 
to  

( ) ( )( )
0

E e , d 0.b crv
v vH t v xX I xX c t v v

τ µ− + < + ≥  ∫           (59) 

However, the fact that c lies below h forces (59) to be strictly negative and 
provides a contradiction. Therefore, ( ) ( )c t b t=  as claimed. 
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5. Financial Analysis of the British Cash-or-Nothing Put  
Option 

In this section, we focus on the practical features of the British cash-or-nothing 
put option. We compare it with the American put option that is universally 
traded. We address the problem as to what the return would be if the price of the 
underlying asset enters the given region at a given time. 

1) As shown in Figure 1, the rational exercise strategy of the British 
cash-or-nothing put option varies with different contract drift cµ . Recall that 

c rµ >  since if the opposite condition occurs, the option holder is overprotected 
by exercising the option at once. Furthermore, he can also avoid any discounting 
of the payoff. We also noted above that ( )b T K= . In particular, if c rµ =  the 
boundary tends to be infinity backwards in time from T, which means it is op-
timal to stop immediately at the very beginning of time. The interest rate r 
stands for a infinite boundary and any c rµ >  represents a non-trivial rational 
exercise boundary. On the other hand, when cµ ↑ ∞  the boundary decreases 
sharply to 0 backwards from ( )b T K= . The option buyer should hold the op-
tion till maturity and it is not optional to exercise the option before time T. In 
this case the ∞  represents an infinite tolerance of the true drift and reduces the 
British cash-or-nothing put option to European cash-or-nothing put option. All 
above, the contract drift cµ  should not be set too close to r or too large since 
the former case leads to overprotection and the latter reduces it to a European 
style option. 

2) We have mentioned above that the “overprotection” in this paper mainly 
refers to the initial stock price is below K which leads to the option holder is 
overprotected as the highest boundary in Figure 1 shown. Although bigger than 
the interest rate r, the contract drift is favourable enough to exercise the option 
immediately. Figure 2 compares the rational boundaries with different fixed pa-
rameters. In addition to this, the values of the boundary have a strong relation-
ship with the volatility σ . With larger volatility, the option buyer has a greater 
tolerance of the drift. This is due to the “drown-out” effect of the higher volatili-
ty i.e. the option holder tends to believe that the high volatility can drown out 
the loss of the drift. In this case, the boundary b is likely to be more U-skewed 
with larger ( )0b . Therefore, the contract drift cµ  should be set further away 
from the interest rate r with larger volatility. On the other hand, Figure 2 also 
illustrates the fact that if the contract drift cµ  is set closer to the interest rate r, 
the British cash-or-nothing put option will be more expensive since the over-
protection feature is stronger. 

3) Assume that the initial stock price is 11. The price of the European 
cash-or-nothing put option is 0.3498 with 10K = , 1T = , 0.1r =  and 

0.4σ = . The price of the American cash-or-nothing put option is 0.7885 and 
the price of the British cash-or-nothing put option is 0.3597 with 0.13cµ =  and 
0.3536 with 0.2cµ = . We get that the closer the contract drift gets to r, the pro-
tection feature is stronger and the option price is more expensive. What is more, 
we notice that the price of the British option lies between the price of the 
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Figure 2. A computer drawing showing the rational exercise boundary 
of the British cash-or-nothing put option with 10K = , 1T = , 

0.1r = , 0.4σ =  when 0.13cµ =  and 0.20cµ = .  

 
European option and the American option. If the contract drift cµ  is too close 
to r, the protection feature works and makes the price of the British option ex-
tremely close to the American option. On the other hand, if cµ ↑ ∞  the British 
cash-or-nothing put option will be reduced to the European cash-or-nothing put 
option. Therefore, we conclude that the price of the British cash-or-nothing put 
option lies above the European option and below the American option. 

4) Table 1 illustrates the power of the protection feature in practice. For in-
stance, if the stock price is 11 halfway to maturity then the option holder can ex-
ercise to a payoff with a reimbursement of 66% - 74% of the initial investment. 
However, in the case of the American cash-or-nothing put option, the holder is 
out-of-the-money and would receive zero payoff. We see that the size of the 
reimbursement also varies with the contract drift as analyzed in the former pa-
ragraph. When the contract drift gets closer to r, the option holder gets more 
protection as well as greater reimbursement. 

5) In Table 2, we compare the returns of the British cash-or-nothing put op-
tion and the American style as the stock price is moving favourably. The results 
generally indicate that the British option outperforms the American option 
except a few points. In Table 3, we compare the protection feature of the British 
option with the reimbursement of American option if the holder of the latter can 
choose to sell his option freely without friction. The value of the American 
cash-or-nothing put option is always 1 below the strike price K so we make the 
region above K. Actually, above K the payoff of the American option is 0 and 
when this happens we assume that the option holder can sell his option. We see 
in Table 3 that this makes the returns very close to the British cash-or-nothing 
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put option. However, in the real market the option holder’s ability to sell the op-
tion is affected by many exogenous factors such as the friction costs, taxes the 
liquidity of the market and so on. Therefore, from this point of view it makes the 
British style option more attractive since the protection feature to the British op-
tion is intrinsic and endogenous.  

 
Table 1. Returns observed upon exercising the British cash-or-nothing put option at and 
above the strike price K. The returns are calculated by ( ) ( ) ( ), , 0,cR t x G t x V Kµ= . The 

parameter set is same as in Figure 2 i.e. 10K = , 1T = , 0.1r = , 0.4σ =  and the 
initial stock price is 10. 

Time(months) 0 2 4 6 8 10 12 

Exercise at 10 with 0.13cµ =  100% 101% 102% 103% 105% 106% 222% 

Exercise at 10 with 0.20cµ =  87% 89% 92% 94% 98% 102% 227% 

Exercise at 11 with 0.13cµ =  80% 79% 77% 74% 70% 58% 0% 

Exercise at 11 with 0.20cµ =  67% 67% 67% 66% 63% 55% 0% 

Exercise at 12 with 0.13cµ =  62% 60% 57% 51% 43% 27% 0% 

Exercise at 12 with 0.20cµ =  51% 50% 48% 44% 38% 24% 0% 

Exercise at 13 with 0.13cµ =  48% 45% 41% 34% 25% 11% 0% 

Exercise at 13 with 0.20cµ =  39% 36% 33% 29% 22% 10% 0% 

Exercise at 14 with 0.13cµ =  37% 33% 29% 22% 14% 4% 0% 

Exercise at 14 with 0.20cµ =  29% 26% 23% 18% 12% 3% 0% 

Exercise at 15 with 0.13cµ =  28% 25% 20% 14% 7% 1% 0% 

Exercise at 15 with 0.20cµ =  21% 19% 16% 11% 6% 1% 0% 

 
Table 2. Returns observed upon exercising the British cash-or-nothing put option (with 

0.13cµ = ) at and below the strike price K compared with the American cash-or-nothing 
put option in the same contingency. The returns are calculated by  
( ) ( ) ( ), , 0,11cR t x G t x Vµ=  and ( ) ( ) ( ), , 0,11A A AR t x G t x V=  respectively. The 

parameter set is same as in Figure 2 i.e. 10K = , 1T = , 0.1r = , 0.4σ =  and the 
initial stock price is 11. 

Time (months) 0 2 4 6 8 10 12 

Exercise at 10 (British) 125% 126% 128% 129% 131% 133% 278% 

Exercise at 10 (American) 127% 127% 127% 127% 127% 127% 127% 

Exercise at b (British) 137% 154% 173% 193% 217% 243% 278% 

Exercise at b (American) 127% 127% 127% 127% 127% 127% 127% 

Exercise at 8 (British) 186% 192% 200% 211% 226% 252% 278% 

Exercise at 8 (American) 127% 127% 127% 127% 127% 127% 127% 

Exercise at 6 (British) 243% 250% 258% 266% 274% 278% 278% 

Exercise at 6 (American) 127% 127% 127% 127% 127% 127% 127% 

Exercise at 4 (British) 274% 276% 277% 278% 278% 278% 278% 

Exercise at 4 (American) 127% 127% 127% 127% 127% 127% 127% 

Exercise at 2 (British) 278% 278% 278% 278% 278% 278% 278% 

Exercise at 2 (American) 127% 127% 127% 127% 127% 127% 127% 
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Table 3. Returns observed upon exercising the British cash-or-nothing put option (with 
0.13cµ = ) at and above K compared with selling the American cash-or-nothing put 

option in the same contingency. The returns are calculated by  
( ) ( ) ( ), , 0,11cR t x G t x Vµ=  and ( ) ( ) ( ), , 0,11A A AR t x V t x V=  respectively. The 

parameter set is same as in Figure 2 i.e. 10K = , 1T = , 0.1r = , 0.4σ =  and the 
initial stock price is 11. 

Time (months) 0 2 4 6 8 10 12 

Exercise at 10 (British) 125% 126% 128% 129% 131% 133% 278% 

Selling at 10 (American) 127% 127% 127% 127% 127% 127% 127% 

Exercise at 11 (British) 100% 98% 96% 93% 87% 73% 0% 

Selling at 11 (American) 100% 98% 95% 91% 84% 70% 0% 

Exercise at 12 (British) 78% 75% 71% 64% 54% 34% 0% 

Selling at 12 (American) 78% 75% 70% 63% 52% 32% 0% 

Exercise at 13 (British) 60% 56% 51% 43% 32% 14% 0% 

Selling at 13 (American) 60% 56% 50% 42% 31% 13% 0% 

Exercise at 14 (British) 46% 42% 36% 28% 18% 5% 0% 

Selling at 14 (American) 46% 42% 36% 28% 17% 5% 0% 

Exercise at 15 (British) 35% 31% 25% 18% 9% 2% 0% 

Selling at 15 (American) 36% 31% 25% 18% 9% 2% 0% 

6. Other British Binary Options 

We remarked above that the British binary option analyzed in this paper plays a 
cononical role among all other possibilities. The aim of this section is to provide 
a brief review of other British binary options as discussed in Section 1. Extending 
Definition 1 of Section 3 in an obvious manner we obtain the following classifi-
cation of British binary options (according to their payoffs):  
• The British cash-or-nothing call option:  

( )E |c
T tI X Kµ >                       (60) 

• The British asset-or-nothing call option:  

( )E |c
T T tX I X Kµ >                      (61) 

• The British asset-or-nothing put option:  

( )E |c
T T tX I X Kµ <                      (62) 

with cµ  is a contract drift. 

Acknowledgements 

The author is grateful to Professor Goran Peskir, Yerkin Kitapbayev and Shi Qiu 
for the informative discussions. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this 
paper. 

https://doi.org/10.4236/jmf.2019.94038


M. Gao 
 

 

DOI: 10.4236/jmf.2019.94038 762 Journal of Mathematical Finance 
 

References 
[1] Geske, R. (1979) The Valuation of Compound Options. Journal of Financial Eco-

nomics, 7, 63-81. https://doi.org/10.1016/0304-405X(79)90022-9 

[2] Gukhal, C.R. (2004) The Compound Option Approach to American Options on 
Jump-Diffusions. Journal of Economic Dynamics and Control, 28, 2055-2074.  
https://doi.org/10.1016/j.jedc.2003.06.002 

[3] Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. 
The Journal of Political Economy, 81, 637-654. https://doi.org/10.1086/260062 

[4] Peskir, G. and Samee, F. (2011) The British Put Option. Applied Mathematical 
Finance, 18, 537-563. https://doi.org/10.1080/1350486X.2011.591167 

[5] Peskir, G. and Samee, F. (2013) The British Call Option. Quantitative Finance, 13, 
95-109. https://doi.org/10.1080/14697688.2012.696676 

[6] Merton, R.C. (1973) Theory of Rational Option Pricing. The Bell Journal of Eco-
nomics and Management Science, 4, 141-183. https://doi.org/10.2307/3003143 

[7] Glover, K., Peskir, G. and Samee, F. (2010) The British Asian Option. Sequential 
Analysis, 29, 311-327. https://doi.org/10.1080/07474946.2010.487439 

[8] Glover, K., Peskir, G. and Samee, F. (2011) The British Russian Option. Stochastics: 
An International Journal of Probability and Stochastic Processes, 83, 315-332.  
https://doi.org/10.1080/17442501003690192 

[9] Shiryaev, A.N. and Kruzhilin, N. (1999) Essentials of Stochastic Finance: Facts, 
Models, Theory. World Scientific, Singapore.  
https://doi.org/10.1142/9789812385192 

[10] Al-Fagih, L. (2015) The British Knock-In Put Option. International Journal of 
Theoretical and Applied Finance, 4, 355-359. 

[11] Al-Fagih, L. (2015) The British Knock-Out Put Option. International Journal of 
Theoretical and Applied Finance, 18, Article ID: 1550008.  
https://doi.org/10.1142/S0219024915500089 

[12] Kitapbayev, Y. (2015) The British Lookback Option with Fixed Strike. Applied Ma-
thematical Finance, 22, 238-260. https://doi.org/10.1080/1350486X.2015.1019156 

[13] Peskir, G. and Shiryaev, A. (2006) Optimal Stopping and Free-Boundary Problems. 
Birkhäuser, Basel.  

[14] Peskir, G. (2005) A Change-of-Variable Formula with Local Time on Curves. Jour-
nal of Theoretical Probability, 18, 499-535.  
https://doi.org/10.1007/s10959-005-3517-6 

 

https://doi.org/10.4236/jmf.2019.94038
https://doi.org/10.1016/0304-405X(79)90022-9
https://doi.org/10.1016/j.jedc.2003.06.002
https://doi.org/10.1086/260062
https://doi.org/10.1080/1350486X.2011.591167
https://doi.org/10.1080/14697688.2012.696676
https://doi.org/10.2307/3003143
https://doi.org/10.1080/07474946.2010.487439
https://doi.org/10.1080/17442501003690192
https://doi.org/10.1142/9789812385192
https://doi.org/10.1142/S0219024915500089
https://doi.org/10.1080/1350486X.2015.1019156
https://doi.org/10.1007/s10959-005-3517-6

	The British Binary Option
	Abstract
	Keywords
	1. Introduction
	2. Basic Motivation for the British Binary Option
	3. The British Cash-or-Nothing Put Option: Definition and Basic Properties
	4. The Arbitrage-Free Price and the Rational Exercise Boundary
	5. Financial Analysis of the British Cash-or-Nothing Put Option
	6. Other British Binary Options
	Acknowledgements
	Conflicts of Interest
	References

