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Abstract 
Different learning algorithms have been developed in the literature for train-
ing the radial basis function network (RBFN). In this paper, a new neural 
network named as Hanman Entropy Network (HEN) is developed from 
RBFN based on the Information set theory that deals with the representation 
of possibilistic uncertainty in the attribute/property values termed as infor-
mation source values. The parameters of both HEN and RBFN are learned 
using a new learning algorithm called JAYA that solves the constrained and 
unconstrained optimization problems and is bereft of algorithm-specific pa-
rameters. The performance of HEN is shown to be superior to that of RBFN 
on four datasets. The advantage of HEN is that it can use both information 
source values and their membership values in several ways whereas RBFN 
uses only the membership function values. 
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1. Introduction 

The artificial neural networks (ANNs) that include back propogation (BP) 
networks [1], radial basis function networks (RBFNs) [2], counter propagation 
networks [3] to mention a few show their power in data classification, pattern 
recognition and function approximation. In this paper, we are mainly concerned 
with incorporating a new learning agorithm, called JAYA into the architecture of 
RBFN to mitigate the drawbacks of its gradient descent learning. 

A radial basis function network (RBFN) [4] [5] is a three-layer feed-forward 
neural network. Each hidden layer neuron evaluates its kernel function on the 
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incoming input. The network output is simply a weighted sum of the values of 
the kernel functions in the hidden layer neurons. The value of a kernel function 
is highest when the input falls on its center and decreases monotonically as it 
moves away from the center. A Gaussian function is normally used as the kernel 
function. The training of an RBFN is done by finding the centers and the widths 
of the kernel functions and the weights connecting the hidden layer neurons to 
the output layer neurons. 

Next, we will foray into the learning domain. Finding the global optimum of a 
function is the main task of many of the scientific applications. Gradient descent 
approach is widely used but it suffers from local minima. Another limitation is 
that it cannot be used in optimization problems that have non-differentiable 
objective functions. Many modern population based heuristic algorithms focus on 
finding a near optimum solution to overcome this requirement of differentiability 
associated with gradient descent learning. 

A brief survey of the population based heuristic algorithms will enlighten 
the readers how much work has been done in the domain of learning. These 
algorithms can be clubbed into two important groups: evolutionary algorithms 
(EA) and swarm intelligence (SI) based algorithms. Some of the recognized 
evolutionary algorithms are: Genetic Algorithm (GA), Evolution Strategy (ES), 
Evolution Programming (EP), Differential Evolution (DE), Bacterial Foraging 
Optimization (BFO), Artificial Immune Algorithm (AIA), etc. Some of the well 
known swarm intelligence based algorithms are: Particle Swarm Optimization 
(PSO), Shuffled Frog Leaping (SFL), Ant Colony Optimization (ACO), Artificial 
Bee Colony (ABC), Fire Fly (FF) algorithm, etc. Besides the evolutionary and 
swarm intelligence based algorithms, there are some other algorithms that 
work on the principles of different natural phenomena. Some of them are: 
Harmony Search (HS) algorithm, Gravitational Search Algorithm (GSA), 
Biogeography-Based Optimization (BBO), Grenade Explosion Method (GEM), etc. 
All the evolutionary and swarm intelligence based algorithms are probabilistic 
algorithms that require common controlling parameters like population size, 
number of generations, elite size, etc. Besides the common control parameters, 
different algorithms require their own algorithm-specific control parameters. A 
recent meta-heuristic learning method called Human Effort for Achieving Goals 
(HEFAG) by Jyotsana and Hanmandlu contains the comparison of several 
learning methods in [6]. A new learning algorithm called JAYA is developed in 
[7] to overcome the need for the algorithm-specific parameters but the need for 
the common control parameters still exists. This algorithm helps the initial 
solutions move towards the best solution by avoiding the worst solution. 

2. Design of RBFN 

For the detailed study on artificial neural networks (ANN) and fuzzy systems 
and their applications readers may refer to Jang et al. [8]. As Multilayer 
Perceptron (MLP) is a major leap in ANNs and RBFN has arisen out of 
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simplying computational burden involved in MLP; hence it is widely used [9] for 
the traditional classification problems. A comparison between the traditional 
neural networks and RBFN is presented in [10]. 

RBFN deals with attrubute/feature values that are clustered. The attribue 
values in a cluster are fitted with the radial basis function which is another 
name for Gaussian function. RBFN fuzzifies the attribute values in a cluster 
into the membership function values. Each RBFN neuron stores a cluster 
centre or centroid, which is initially taken to be one of the samples from the 
training set. When we want to classify a new input, each neuron computes the 
Euclidean distance between the input and its centroid and computes the 
membership function using the standard deviation or width of the Gaussian 
function. The output of the RBFN is a weighted sum of the membership 
function values as shown in Figure 1. In this iµ  denotes the ith membership 
function (MF) of a neuron. The MF vector is of size k and each value of this 
vector is multiplied with the output weight and then summed up to get the 
computed output. 

2.1. The Derivation of the Model of RBFN 

We will derive an input-output relation underlying the architecture of RBFN in 
Figure 1 in which prototype refers to the cluster centre. In this architecture there 
are two phases. The first phase is fuzzification and second phase is regression. For 
the fuzzification let us assume a cluster consisting of feature vectors of 
dimension k. Let ith feature Xui in this vector Xu be fuzzified using the ith 
membership function iµ  and u stands for uth input vector-output pair. Thus 
we have k fuzzy sets. Here we have as many neurons as the number of the 
input feature values. We don’t require any equation for this phase. In the 
regression phase we employ Takagi-Sugeno-Kang fuzzy rule [8] on k-input 
fuzzy sets and one output as: 

If Xu1 is A1 and Xu2 is A2 and ∙∙∙ Xuk is Ak then 

0 1 1 2 2u u u k ukY b b X b X b X= + + + +                 (1) 

where the fuzzy set { }, | 1, , ; 1, 2, ,i ui uiA X P u m i k= = =  . Now substituting 
the fuzzified inputs, i.e. ( )ui uiiP Xµ= , for the inputs we get 

0 1 1 2 2u u u ukY b b P b P b= + + + +                  (2) 

This equation is valid if there is one class. We now extend this equation to the 
multi-class case. We feed the input vector of size k denoted by Xu and the neurons 
compute the membership function values Puj. Let the number of classses be c. The 
regression equation that computes the outputs Yl in multi-class is framed as: 

0 1 1 2 2 ;  1, ,l l l u l u kl ukY w w P w P w P l c= + + + + =               (3) 

where we have replaced the weight vector {bi} by the weight matrix {wil} to 
account for multi-class. This is the governing equation for the architecture in 
Figure 1. The calculation of the output weights is deferred to Section III. The 
case when a class is represented by more than one cluster is now explained. 
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Figure 1. Architecture of RBFN. 

2.2. Procedure for Learning of Weights 

Consider first the problem of Iris flower recognition. In this we have 4 features. 
That is each feature vector is 4 dimensional. Assume that these are clustered into 
say, 3. It means that each cluster contains some number of feature vectors. 
According to the fuzzy set theory, we can form 4 fuzzy sets in each cluster 
corresponding to four features. Now each fuzzy set is defined by its attribute 
values and their membership function values. As we are using clustering, we can 
obtain mean values as well as scaling factors that are functions of variances 
involved in MFs of the fuzzy sets resulting from clustering. Our attempt is to 
focus on learning of weights. 

Let us assume that we are feeding each feature vector of a cluster. Then we will 
have four neurons that convert four feature values of the feature vector into four 
membership function values. Then these membership values will be summed up. 
As we have assumed three clusters for one class (each flower type of Iris), this 
procedure is repeated on all feature vectors of the remaining two clusters. By this, 
we get three sums which will be multiplied with three weights (i.e. forming one 
weight vector) and the weighted sum is the computed output that represents one 
class. 

The above procedure is repeated for the other three classes and the three 
weight vectors so obtained correspond to the remaining three flower types. 
There will also be three weighted sums called the computed outputs. In this 
paper, we are concerned with one cluster per class for simplicity. 

3. Training of RBFN 

The training process for RBFN consists of finding the three sets of parameters: 
the centrods of clusters, scaling parameters for each of the neurons of RBFN, 
and a set of the output weight vectors between the neurons and the output nodes 
of RBFN. The approaches for finding the centriods and their variances are 
discussed next. 

3.1. Cluster Centrods 

The possible approaches for the selection of clustercentrods are: Random 
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selection of centroids, Clustering based approach and Orthogonal Least Squares 
(OLS). We have selected the K-means clustering for the computation of 
centroids of clusters or cluster centres from the training setr. Note that this 
clustering method partitionsn observations into K number of clusters such that 
each observation having its value closest to the cluster centre belongs to that 
cluster. 

3.2. Scaling Parameters 

Camped with the centoid of each cluster, the variance is computed as the average 
distance between all points in the cluster and the centrod. 

( )22
1

1 m
i ui iu X C

m
σ

=
= −∑                     (4) 

Here, iC  is the centroid of ith cluster, m is the number of training samples 
belonging to this cluster, Xui is the uth training sample in the ith cluster. Next we 

use 2
iσ  to compute the scaling parameters denoted by 2

1
i

i

β
σ

= . 

3.3. Output Weights 

In the literature, there are two popular methods for the determination of the 
output weights: one learning method called gradient descent [11] and another 
computational method called pseudo inverse [12] [13]. As gradient descent 
learning has problems of slow convergence to local minima, we embark on a 
new learning algorithm called JAYA. Prior to using JAYA for learning the 
parameters of RBFN, we will discuss how the weights can be determined by 
Pseudo-inverse (PINV) method. 

Consider an input vector which is generally a feature vector of some 
dimension n. When all the feature vectors are clustered, we will have C number 
of clusters (Note that c denotes the number of classes). In some datasets such as 
Iris dataset, we can easily separate out all the feature vectors belonging to each 
class of one flower type. Thus the feature vectors belonging to a class form a 
cluster. Out of these feature vectors some are selected for training and the rest 
for testing. 

Let { }, ; 1, ,u uX Z u m=   be the set of feature vectors with each feature vector 
having the size of n, i.e.   k

uX R∈  with target, c
ulZ R∈ , and ( )uj ujiP Xµ=  be 

the membership function of the jth basis radial function jµ  with the uth feature 
vector. Xuj is the jth component of the feature vector Xu and Zul is the lth target 
output. Note that this formulation is meant for one cluster per one class. After 
the fuzzification of Xuj into Puj, we can form a matrix P by taking 1, ,u m=  ; 

1,2, ,j k=  . The matrix Q is written as 
 

P11 P12 ∙∙∙ P1k 

P21 P22 ∙∙∙ P2k 

 .. ∙∙∙ .. 

Pm1 Pm2 ∙∙∙ Pmk 
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As we have [ ]1 2, , ,l l l klW w w w=  ; ; 1, 2, ,lZ l c=  ; [ ]1 2, , , cZ Z Z Z=  . Let 
us denote [ ]1 2, , , mQ P P P=   with [ ]1 2, , ,u u u ukP P P P=   and  

[ ]1 2, , , kW W W W=  . The objective function to be minimized is given by: 

( ) 2, ,f W Q Z W Q Z= ∗ −                      (5) 

where Y W Q= ∗  with [ ]1 2, , , cY Y Y Y=   as per Equation (3). The solution to 
the above equation lies in the assumption that be Y W Q Z= ∗ =  which leads to 
W Q Z+=  where Q+ denotes the pseudo inverse matrix of Q, defined as follows: 

( ) 1T T

0
lim nQ QQ I Q
α

γ
−

→

+ +=                  (6) 

where kI  is the k-dimensional unity matrix and γ  is a small positive constant. 
The pseudo inverse ( ) 1T T Q Q Q Q

−+ =  exists if (QTQ) is nonsingular. After 
calculating the weights at the output layer, all the parameters of RBFN with its 
3-layered architecture in Figure 1 can be determined. 

4. Learning of the Output Weights by JAYA 

We will now discuss JAYA algorithm to be used for learning the parameters of 
RBFN. 

Description of the JAYA Algorithm 

It is a simple and powerful learning method for solving the constrained and 
unconstrained optimization problems. As mentioned above JAYA algorithm is 
the offshoot of Teacher-Learner Based Optimization (TLBO) algorithm 
proposed in [14] [15]. This needs only the common controlling parameters like 
population size and number of iterations. The guidelines for fixing these 
parameters can be seen in [15]. Here we have fixed the population size as 10 and 
the number of iterations as 3000. 

Let ( ), ,f W Q Z  be the objective function to be minimized. Let the best 
candidate be the one associated with the least value of the function (i.e. 

( ), ,bestf W Q Z ) and the worst candidate is the one with the highest value of the 
function (i.e. ( ), ,worstf W Q Z ) in all the candidate solutions. We choose B to 
stand for the weights W when the cluster centres and scale parameters are found 
separately. In case we use to learn all the parameters, B includes the cluster 
centres, scaling parameters and the output weights, i.e. [ ], ,B C Wβ= . 

At any run of the algorithm, assume that there are ‘j’ design variables and ‘k’ 
candidate solutions and ‘i’ iterations. So to fit B into the JAYA algorithm, it is 
denoted by , ,j k iB  which is the value of the jth variable of the kth candidate 
during the ith iteration. , ,j k iB  is updated to , ,j k iB′  during the iteration as, 

( ) ( ), , , , 1, , , , , , 2, , , , , ,j k i j k i j i j best i j k i j i j worst i j k iB B r B B r B B′ = + − − −         (7) 

where , ,j best iB  is the value of the jth variable for the best candidate, , ,j worst iB  is 
the value of the jth variable for the worst candidate at ith iteration and 1, ,j ir  and 

2, ,j ir  are the two random numbers in the range 0 to 1 for the jth variable at the ith 
iteration. The term ( )1, , , , , ,j i j best i j k ir B B−  indicates the tendency to move closer 
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to the best solution whereas the term ( )2, , , , , ,j i j worst i j k ir B B−  indicates the 
tendency to avoid the worst solution. , ,j k iB′  is accepted if its function value is 
better than that of , ,j k iB . All the accepted function values at the end of iteration 
are retained and these values become the input to the next iteration. The 
flowchart of JAYA algorithm is shown in Figure 2. Unlike TLBO algorithm that 
has two phases (i.e. teacher and learner), JAYA algorithm has only one phase 
and it is comparatively simpler to apply. Rao et al. [16] have used TLBO 
algorithm in the machining processes. A tea-category identification (TCI) 
system is developed in [17] and it uses a combination of JAYA algorithm and 
fractional Fourier entropy on three images captured by a CCD camera. In two 
studies involving heat transfer and pressure drop, i.e. thermal resistance and 
pumping power, two objective functions are used to ascertain the performance 
of the micro-channel heat sink. Multi-objective optimization aspects of plasma 
arc machining (PAM), electro-discharge machining (EDM), and micro 
electro-discharge machining (μ-EDM) processes are investigated in [18]. These 
processes are optimized while solving the multi-objective optimization problems 
of machining processes using MO-JAYA algorithm. 

There are three learning parameters, viz., the cluster centers Ci, the scaling 
parameters ( iβ ) and the output weights W between the hidden and output 
layers. The learning of these parameters is depicted in Figure 3. The first 
parameter is found using K-means clustering algorithm. 

We make use of JAYA algorithm for learning the second parameter, iβ . The 
weights are learned by optimizing the objective function using JAYA algorithm. 
The RBFN model so obtained can then be used for both classification and 
function approximation. 

5. Design of Hanman Entropy Network 

As the RBFN is not geared up to take care of the uncertainty in the input which 
may be an attribute or property value, we will make use of the Information set 
 

 
Figure 2. The learning processes in RBFN. (a) Weights using pseudo inverse; (b) Weights 
using JAYA Algorithm. 
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Figure 3. Flowchart of JAYA algorithm. 

 
theory expounded by M. Hanmandlu and his co-workers [19] [20] [21]. In this 
theory each input variable is termed as the information source value. It centres 
around the concept of information set that expands the scope of a fuzzy set in 
which each element is a pair comprising a property (Information source) value 
and its degree of association with the set/concept called the Membership 
function value. In most of the applications involving fuzzy theory only the 
membership function is at the centres tage of operations. This limitation is 
sought to be removed by proposing the concept of information set. In real life 
contexts, we operate on information values. The information sources received by 
our senses are perceived by the mind as information values. That is the reason 
why we fail to perceive sound even when it strikes our ears. Like fuzzy variables, 
information values are also natural variables. 
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5.1. Definition of Information Set and Generation of Features 

Consider a fuzzy set constructed from the feature values {Xuj} termed as the 
Information source values and their membership function values which we take 
as the Gaussian function values {Puj}. If the information source values do not fit 
the Gaussian function, we can choose any other mathematical function to 
describe their distribution. Thus each pair (Xuj, Puj) consisting of information 
source value and its membership value is an element of a fuzzy set. Puj gives the 
degree of association of Xuj and the sum of Puj values doesn’t provide the 
uncertainty associated with the fuzzy set. In the fuzzy domain, only Puj is used in 
all applications of fuzzy logic thus ignoring Xuj altogether. This limitation is 
eliminated by applying the information theoretic entropy function called the 
Hanman-Anirban function [22] to the fuzzy set. This function combines the pair 
of values Xuj and Puj into a product termed as the information value given by 

uj uj ujH X P=                           (8) 

The above relation owes its derivation to the non-normalized Hanman-Anirban 
entropy function expressed as 

( )3 2

1 e uj uj ujaX bX cX dn
ujjH X

− + + +

=
= ∑                    (9) 

where a, b, c and d are the real-valued parameters. In this equation 
normalization by n is not needed as the number of attributes is very small (less 
than 10 in the databases used) but needed if the value of H exceeds more than 1.  

With the choice of parameters: 0a = , 2

1
2

b
σ

= , 2

2
2

Xc
σ

= −  and 
2

22
Xd
σ

=  

where X  is the mean value and 2σ  is the variance of the information source 
values ujX , the exponential gain function is converted into the Gaussian 
function Pu. As a result, Equation (9) is modified to 

1
n

uj ujjH X P
=

= ∑                         (10) 

The set of information values constitutes the information set denoted by 

{ } { }uj uj ujH X P= =  whereas the corresponding fuzzy set is simply {Xuj, Puj}. 
Consider another entropy function called Mamta-Hanman entropy function [20] 
which is a generalized form of Hanman-Anirban entropy function, expressed as: 

( )e ujcX d
MH ujH X

ργ
α − +

= ∑                     (11) 

Substituting 1c
σ

=  and Xd
σ

= −  in (11) modifies MHH  to the following: 

1
n

MH uj ujjH X Gα
=

= ∑                       (12) 

where ujG  is the generalized Gaussian function given by 

e
ujX X

ujG

ργ

σ

 − − 
  =  

This function takes different shapes as we vary the value of ρ  from 1 to 5. 
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Assuming each information value as a unit of information, we can derive several 
modified information sets. For instance application of sigmoid function on 

uj ujX Gα  leads to 

1

1

1 e uj uj

n
j X G

S α= −
=

+
∑                   (13) 

In Equations (9)-(13) the information values are the ones inside the 
summation sign. Thus a family of information forms can be deduced from both 
Hanman-Anirban and Mamta-Hanman entropy functions for dealing with 
different problems. For the derivation of different forms of H and HMH the 
readers may refer to [19] and [21] respectively. 

5.2. The Hanman Transform and its Link to Intuitionistic Set 

This is a higher form of information set. To derive this transform, we have to 
consider the adaptive form of Hanman-Anirban entropy function in which the 
parameters in the exponential gain function are taken to be varaibles. Assuming 

0a b d= = =  and ujc P=  in (9) we obtain the Hanman Transform [21]: 

1 1e euj uj ujn nX P H
T uj ujj jH X X− −

= =
= =∑ ∑                 (14) 

Note that the exponentional gain function in (14) is a function of the 
information value. This transform acts as an evaulator of information values 
based on the information values obtained on them. The higher form of 
information set { }e ujH

ujX −  is recursive because r.h.s of (14) can be rewritten as 

( ) ( )e ujH old
uj ujH new X −=                      (15) 

An interesting result termed as Shannon transform emerges from Hanman 
transform by changing the substitution such that d = −1 instead of 0 in (9) and 
then simplifying the resulting exponential function as follows: 

1
1 1e logujn nH

Sh uj uj ujj jH X X H−

= =
== ∑ ∑                (16) 

Let us consider the adaptive Hanman-Anirban entropy function involving the 
membership functions alone. Then we have 

( ) ( ) ( ) ( )( )3 2. . . .

1 e uj uj uja P b P c P dn
ujjH P

− + + +

=
= ∑                (17) 

This gives the uncertainty in the membership function values. This is useful 
when a mathematical function describing the information source values is not 
appropriate thus leading to error in the fuzzy modeling. Now with a particular 
substitution of values for ( ) ( ) ( ). . . 0a b d= = =  and ( ). ujc X= . Equation (14) 
takes the form 

1 e ujn H
T ujjH P −

=
= ∑                       (18) 

This equation paves the way for the recursive membership function value. The 
r.h.s. of (18) without summation can be written as: 
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( ) ( ) ( )e ujH old
uj ujP new P old −=                      (19) 

On the lines of derivation of (19), we can have another derivation from (11) as 
follows: 

( ) ( ) ( )e ujH old
uj ujP new P oldα −=                    (20) 

This is a useful relation becuase it can be used to make RBFN adaptive by 
changing the membership function. At this juncture we can make an interesting 
connection between the modified membership function in Equation (19) and 
hesitancy function in the Intuitionistic fuzzy set [23]. The hesitancey function is 
defined as follows: 

1uj uj ucjh P P= − −                         (21) 

where 1ucj ujP P= − , the complemetary of Puj. The hesitancy function reflects the 
uncertainty in the modeling of Puj and Pucj. As Equation (19) bestows the way to 
evaluate Puj, we can use the new values of Puj and Pucj in determining the updated 
value of huj as follows: 

( ) ( ) ( )1uj uj ucjh new P new P new= − −                 (22) 

where ( ) ( ) ( )e ucjH old
ucj ucjP new P old −=  and ucj uj ucjH X P= . We can use this 

hesitancy function for the design of a new network in future. 

5.3. Properties of Information Set 

We will now present a few useful properties of Information set. 
1) In the information set, the product of the complementary membership 

function value and the information source value gives the complementary 
information value. 

2) Information values are natural variables just as signals received by biological 
neuron from visual cortex after modification by synapse. 

3) The information values can be modified by applying various functions to 
provide effective features. 

4) Higher form of information values like Hanman Transform provides a 
better representation of the information source values. 

5) The fuzzy rules can be easily aggregated using the information set concept. 

5.4. The Architecture and Model of Hanman Entropy Network 

We will now discuss the architecture of HEN in Figure 4. 
The architecture of HEN is the same as that of RBFN but for the function iϕ , 

which assumes the specified form of an entropy function of the input. In HEN 
each n-input vector needs to be categorized into any one of “c” classes. The ith 
function denoted by iϕ  converts all the values of the input vector into the 
entropy function values. This will be clear if we consider the Takagi-Sugeno-Kang 
fuzzy rule for multi-class case: 

If Xu1 is A1 and Xu2 is A2 and ∙∙∙ Xun is An then 
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Figure 4. The Architecture of HEN. 

 
0 1 1 2 2v v v u v u vn unY b b X b X b X= + + + +               (23) 

As mentioned above that at the fuzzification phase we replace bvj with Pvj and 
set Pv0 to 0 in (23) to get the neuron output as: 

1 1 2 2 ; 1,v u v u vv n unP X P X P X vϕ = + + + =               (24) 

On substituting Huj for the information values in (24) we get: 

1 2 ; 1, 2, ,v v vnv H H H v kϕ = + + + =               (25) 

Thus the fuzzification phase in HEN is different from that of RBFN. In HEN 
the input feature vectors of size n are clustered into k clusters but in RBFN there 
is a single cluster for each feature of a feature vector. Each neuron in RBFN of 
Figure 1 has only one radial basis function whereas each neuron in HEN has k 
radial basis functions in Figure 4. So in Equation (25) k sums 1ϕ  to kϕ  will be 
multiplied with the corresponding weights w1l to wkl to yield the lth output Yl in 
the regression phase as follows: 

11 2 20 ; 1, ,l l l l k klY w w w w l cϕ ϕ ϕ= + ⋅ + ⋅ + + ⋅ =            (26) 

Here 0 1ϕ =  and [ ]1 21, , , , kϕ ϕ ϕ ϕ=  ; [ ]0 1, , ,l l l klW w w w=  . This is the 
governing equation of Hanman Entropy Network in Figure 4. The objective 
function to be optimized by the JAYA + HEN combination is different. In view 
of this, the objective function becomes: 

( ) 2, ,l l l lf W Z W Zϕ ϕ= ∗ −                     (27) 

Instead of jµ  in RBFN, we will now use jϕ  in HEN. In the general case 

jϕ  can be taken as any relation linking the information source values to their 
membership function values. Thus, we can assume the following relations for 
this function: 

{ }
MHuj ujj u X Gαϕ = ∑  or 

S

1

1 e uj ujXu Gα−

  
 
  +

∑  or { }
T

e ujH
uu jX −∑  or 

{ }  Sh
logu uj ujX H∑                                          (28) 
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where subscripts MH, S, T and Sh indicate Mamta-Hanman, Sigmoid, Hanman 
transform and Shannon transform respectively. Note that RBFN network simply 
responds to the pattern in the input vector but the Hanman entropy network 
responds not only to the pattern but also to the uncertainty associated with it. 

6. Results of Case Studies 

The experimentation is conducted on four datasets: IRIS, Wine, and Waveform 
from UCI repository and Signature dataset [24] in two phases. In the first phase, 
we have entirely dealt with the performance analysis of RBFN and in the 
second phase only with that of Hanman Entropy Network (HEN). We have 
split up our computations into two cases. In Case-1 which is applicable only to 
RBFN, the learning/computation of the output weights is delinked from the 
computation of centriods and scaling parameters. Next, we have employed two 
learning methods such as Genetic algorithm (GA) and Gradient Descent (GD) 
and one computational method called Pseudo inverse (PINV) for the weights 
and K-means clustering for the centriods and scaling parameters. 

There is another combination, JAYA + PINV + RBFN wherein JAYA is used 
for learning scaling parameters and PINV is used for computing the output 
weights. Of course, the centroids are found by K-means clustering. 

The notations GA + RBFN, GD + RBFN, PINV + RBFN and JAYA +P INV 
refer to the learning of weights of RBFN by Genetic Algorithm, Gradient 
descent, Pseudo-Inverse, JAYA + PINV combination respectively. The results of 
classification accuracy with these four methods GA, GD, PINV and JAYA + 
PINV along with RBFN are given in Table 1. The last combination gives the best 
results. Table 2 gives the comparison of JAYA + PINV + RBFN with JAYA + 
RBFN where the latter shows the best results. 

A brief exposition on how to form fuzzy sets from which information sets are 
formed is the need of the hour. Assuming n feature types of an object, say, 
signature we form n fuzzy sets by collecting all the feature values of each feature 
type and fitting the radial basis function with the help of centroid (mean value of 
feature values) and scaling parameter (variance). Then conversion of this fuzzy 
set to information set is a simple matter. 

The dataset-wise discussion of results follows the next. 
IRIS dataset: This dataset consists of three classes with 50 samples for each 

class. There are four attributes for each sample. These are: sepal length, sepal 
 
Table 1. A comparison of the Classification accuracy of RBFN using several learning 
methods on different datasets. 

Dataset GA + RBFN GD + RBFN PINV+RBFN JAYA + PINV + RBFN 

IRIS 96.3% 96.3% 96.3% 96.7% 

WINE 86.88% 84.8% 82.6% 92.13% 

WAVE 
FORM 

87% 87.4% 87.5% 85.8% 
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Table 2. A comparison of the Classification accuracy of RBFN using JAYA for the 
learning of all parameters. 

Dataset JAYA + PINV + RBFN JAYA + RBFN 

IRIS 96.7% 98% 

WINE 92.13% 92.6% 

WAVEFORM 85.8% 87.5% 

 
width, petal length and petal width all in cms. The classes are: Setosa, 
Versicolour and Virginica. It may be noted that GA, GD and PINV learning 
methods yield the classification accuracy of 96.3% when used for learning the 
weights of RBFN by classifying 144 instances out of 150. However, the 
combination symbolized by JAYA + PINV + RBFN gives the accuracy of 96.7% 
which uses 1) JAYA to learn the scaling parameters and 2) PINV to learn the 
weights of RBFN. This is the best result among all the results obtained on this 
dataset by the methods compared. 

WINE dataset: The dataset consists of three classes with class 1, class 2, class 
3 having 59, 71, 48 samples repectively. Each sample has 13 attribultes that 
include Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, 
Flavanoids, Nonflavanoid phenols, Proanthocyanins, Color intensity, Hue, 
OD280/OD315 of diluted wines and Proline. The classification accuracies of 84.8% 
and 82.6% are achieved with GD and PINV respectively when these are used for 
the determination of the output weights of RBFN whereas GA + RBFN 
combination gives an accuracy of 86.88%. However, the best accuracy of 92.13% 
is achieved with JAYA-RBFN combination. 

WAVEFORM dataset: The dataset consists of 5000 samples with each sample 
comprising 22 attributes. Each class is generated from a combination of 2 out of 
3 “base” waves and each instance is generated by adding noise (mean 0, variance 
1) to every attribute. RBFN classifies 4350 instances correctly out of 5000 
instances with an accuracy of 87% with GA. The weights of RBFN computed 
using GD and PINV yield the best accuracies of 87.4% and 87.5% respectively 
but with JAYA + RBFN combimation the accuracy comes down to 85.8% in 
Table 2. 

As can be seen from the results, the efficiency of the classification task 
increases when we use JAYA algorithm even for learning the weights of the 
network in comparison to learning the scaling parameters of the membership 
function. When the concept of information set is incorporated into our 
approach, the output is computed as Weights*Information values, i.e. lW ϕ∗ . If 
the parameter vector, B also includes the centrods and the scaling parameters in 
addition to the weights then these parameters modify Pu indirectly. Then we will 
write ( ),Cϕ ϕ β′ = . Accordingly the objective function is modified as: 

( ) 2, ,l l l lf W Z W Zϕ ϕ′ ′= −∗                      (29) 

For, RBFN the above with ( ),i iP P C β′=  is written as 
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Table 3. A comparison of Verification accuracy on Signature dataset. 

Dataset JAYA + PINV + RBFN JAYA + RBFN HEN 

SVC2004 90.7% 99.6% 99.8% 

 
Table 4. Comparison of Classification accuracy. 

Dataset JAYA + RBFN JAYA + HEN MLP 

IRIS 98% 98.7% 95.3% 

WINE 92.6% 93.2 % 81.4% 

WAVE 
FORM 

87.5% 88.6% 87.1% 

 

( ) 2, ,i l l l i lf P W Z W P Z′ ′= −∗                      (30) 

Applying JAYA on (29) and (30) learns B. 
SIGNATURE dataset: This dataset (SVC2004) in [24] has been used for a 

competition and it consists of 20 skilled forgeries and 20 genuine signatures of 
40 users. Each signature in the dataset is represented as a sequence of points 
containing X and Y co-ordinates, time stamp and pen status (pen up or down) 
along with the additional information like azimuth, altitude and pressure. The 
text file contains a sequence of 7-dimensional measurements (feature types) for 
each signature. Our previous work on signature verification using Information 
set features on this dataset shows the effectiveness of these features [25]. We 
have used JAYA for learning both scaling parameters and the output weights of 
Hanman Entropy network (HEN) just as in JAYA + RBFN combination. The 
results of classification accuracy with JAYA + HEN are slightly better than those 
of JAYA + RBFN. But with JAYA + PINV + RBFN combination the results are 
very poor as shown in Table 3. The power of Hanman Entropy network can 
only be realized when the dataset is very large. 

On conducting tests on three datasets as shown in Table 4, we find that the 
performance of JAYA + RBFN combination is somewhat inferior to that of 
JAYA + HEN combination on three datasets (Iris, Wine and Waveform) but the 
performance of Multi-layer perceptron (MLP) network is the worst. The use of 
high level information set features may help improve the performance of JAYA 
+ HEN. 

7. Conclusions 

In this paper not only the performance of Radial Basis Function Network 
(RBFN) is improved by learning its parameters with a new evolutionary 
method called JAYA but also the design of Hanman Entropy network is given 
based on the Hanman-Anirban entropy function. Of all the combinations of 
RBFN with GA, GD, PNV, MLP and JAYA, JAYA + RBFN gives the best results. 
The proposed Hanman Entropy network (HEN) along with JAYA outperforms 
this combination on all the datasets considered in this paper. 
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As HEN is based on information set theory that caters to uncertainty 
representation; there is so much flexibility in the choice of information forms. 
This advantage is missing in RBFN where only the membership function values 
rule the roost. The only silver lining with RBFN is that we can use Type-2 fuzzy 
sets where the membership function values can be varied by changing the 
variance parameter of Gaussian membership function. 

The present work opens up different directions to change the information at 
the hidden neurons of HEN. 
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