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Abstract 
In this paper, we reduced the governing equation describing the one-dimensional 
granular crystals of elastic spheres to a continuous equation by small defor-
mation and long wave approximation. Then, the G’/G-expansion method is 
applied to this continuous equation, and the exact solitary wave solutions 
with arbitrary parameters are obtained. Compared with other papers, the so-
lutions obtained in this paper are more extensive and contains more parame-
ters. The simultaneous existence of exact solitary wave solutions can help us 
study the propagation of shock waves in one-dimensional granular crystals of 
elastic spheres. At the same time, it has important theoretical significance in 
nondestructive testing with non-linear wave. 
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1. Introduction 

In recent years, the study of the propagation of highly nonlinear solitary waves 
in granular materials has drawn considerable attention from the scientific com-
munity [1] [2] [3] [4]. 

A solitary wave was shown to be an ideal method for transferring vibrational 
excitations [5]. Elastic spherical chain is an ideal experimental device for study-
ing nonlinear science. Because the spherical chain is in a strong nonlinear state 
under a small precompression, the spherical chain is in a weak nonlinear state 
under a strong precompression. Such tunability is valuable not only for studies 
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of the basic physics of granular lattices but also in potential engineering applica-
tions, such as energy trapping [6], energy harvesting [7], nonlinear waves sensor 
technology [8], acoustic lenses [9], acoustic diodes [10] and switches [11], and 
sound scramblers [12], and more. 

The dynamic properties of one-dimensional granular crystals have been ex-
tensively studied, using analytical, numerical, and experimental methods. In 
Reference [1] [13], the numerical solitary wave solutions were obtained in a 
chain of granular spheres. In Reference [2], the approximate analytic dark soli-
tary wave solutions were obtained in a chain of uncompressed elastic beads. 
Moreover, In Reference [14] the approximate bright and dark solitary wave so-
lutions were obtained in the chain of elastic spheres.  

In the present work, we use G’/G-expansion method [15] [16] [17] [18] [19] 
to investigate the eigensolutions of elastic spherical chains. 

2. The Continuous Equation of One-Dimensional Granular  
Crystals of Elastic Spheres 

A granular crystal of elastic spheres compressed by a static force 0F  is consi-
dered , as shown in Figure 1. For this elastic sphere, 3

04 / 3m Rπ ρ= , where m is 
the mass of the elastic spheres, Moreover, it is assumed that the one-dimensional 
granular crystals is subjected to a static constant force 0F , resulting in an initial 
displacement 0δ  between neighboring particle centers.  

Using the dynamic equilibrium condition, the equation describing the motion 
of the one-dimensional granular crystals of elastic spheres can be derived as: 

3 3
2 2

0 1 0 1( ) ( )i i i i iu A u u A u uδ δ− += − + − − + ,              (1) 

where 2

2
3(1 )
E RA

ν
=

−
 is the Hertzian constant determined by material properties  

of the beads and the radius of the contact curvature, E is the Young’s modulus, 

0ρ  is the density of the sphere material, R and ν  are the sphere radius and 
Poisson’s ratio. 

If the force between the elastic spheres is a small nonlinear force and the static 
compression at the initial time is greater than the interparticle compression, we 
have 

1

0

1i iu u
δ
− −

                          (2) 

Then from Equation (1), we have (of Equation (2.2) in [1]) 
 

 
Figure 1. One-dimensional granular crystals of elastic spheres compressed by a static 
force 0F . 
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In the long-wave approximation, Equation (3) can be written as the continua-
tion form: 

2
0 0

0 0 0

6 36 182
10tt xx x xx xxxx xxxxxx xx xxx x xxxxu c u u u c u u u u u u

c c c
εγ εγ εγε γ− = − + − − −   (4) 

where 2 1/2 2 2 2
0 0 0 0 06 , / 6, /c A R c R c Rδ γ ε δ= = = . 

Ignoring the infinitely small quantities of the fifth order, we obtain 
2
0 02 0tt xx xxxx x xxu c u c u u uγ ε− − + =                   (5) 

Next, we use the G’/G-expansion method to solve Equation (5). 

3. The Exact Solutions to Equation (5) 

Firstly, the traveling wave transformation is performed 

0(x, t) ( ), x tu u kξ ξ ω ξ= = − +                     (6) 

where k and ω  are undetermined constants and 0ξ  is a constant. 
When Equation (6) is brought into Equation (5), the following ordinary diffe-

rential equations are obtained. 
2 2 2 4 3

0 0( ) 2c k u c k u k u uξ ξξξξ ξ ξξω γ ε− − +                 (7) 

By integrating Equation (7) once and taking the integral constant as zero, we 
can get the result 

( )
3 22 2 2 4

0 0( ) 2 0
2
kc k u c k u uξξξ ξ

εω γ− − + =               (8) 

Assuming that the solution of Equation (8) is 
2
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1
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∑               (9) 

where , ,i im a b  are constant to be determined, 2 21, 0, 0i i i ia b a bσ = ± = + ≠ , 
( )G G ξ=  satisfies the following second order linear ordinary differential equa-

tions 
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By solving Equation (10), we can get 
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where 1 2,C C  are constants. 
From Equation (10), it can be obtained 

1m

m
Gu ma
Gξ

+′ = − + 
 

                    (12) 

( )
2 2

2 2 2
m

m
Gu m a
Gξ

+′ = + 
 

                  (13) 

3

( 1)( 2)
m

m
Gu m m m a
Gξξξ

+′ = − + + + 
 

              (14) 

Substituting Equation (12) and Equation (14) into Equation (8) and applying 
the principle of homogeneous balance yield 

2 2 3m m+ = +                         (15) 

It can be obtained from Equation (15) that m = 1, so Equation (9) can be 
written as 

2

0 1 1

1
( )

G
G Gu a a b
G

ξ σ
µ

 ′ +  ′    = + +    
 
 

            (16) 

Substitute Equation (16) into Equation (8), merging the same power terms of 
(G’/G) and making the coefficients of these same power terms zero, the follow-
ing equations can be obtained 

2 2 2 2 4 3 2 2
1 0 1 0 1

1( ) 4 0
2

a c k a c k k aµ ω µ γ ε µ− − + + =            (17) 

2 2 2 4 3 2
1 0 1 0 1( ) 16 0a c k a c k k aω µ γ ε µ− − + + =              (18) 

4 3 2
1 0 1

112 0
2

a c k k aγ ε+ =                     (19) 

or 
4 2 2 2 4

0 0 08 ( 2 ) 0c k c k c kγ ω γ− − =                 (20) 

2 2 6
2 2 2 4 2 1

0 0( 2 )
12

b kc k c k ε
ω γ− − = −                (21) 

Solving algebraic Equation (17)-(21), we can get 

0
1 24

c k
a

γ
ε

= − , 2 2 2 4
0 08c k c kω µ γ= + , 1 0b =           (22) 

when 0µ < , the following hyperbolic function solutions can be obtained 

0 1 2
0

1 2

sinh( ) cosh( )
( ) 24

cosh( ) sinh( )
c k C Cu a

C C
γ µ µξ µξ

ξ
ε µξ µξ

 − + −
= +  − + − 

      (23) 

When 1 2,C C  take specific constants, Equation (23) can degenerate into soli-
tary wave solution. For example, when 1 20, 0C C≠ = , Equation (23) degene-
rates to: 
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0( ) tanh( )u a Eξ µξ= + −                   (24) 

where 024
c k

E
γ µ
ε

= , 0x tkξ ω ξ= − + , 0ξ  is an arbitrary constant, 

2 2 2 4
0 08c k c kω µ γ= + , 1 2,C C  are constants. 

The displacement profiles of the of the exact single solitary wave solution Eq-
uation (24), are shown in Figure 2. It is shown that the displacement of the exact 
single solitary waves is dark solitons. 

4. Discussion and Conclusions 

In this paper, the continuous equation of one-dimensional granular crystals of 
elastic spheres is derived; and the G’/G-expansion method is applied to this con-
tinuous equation, the hyperbolic function solitary wave solutions, trigonometric 
function periodic wave solutions and rational wave solutions with arbitrary pa-
rameters are obtained. Solitary wave solution Equation (24) is a special form of 
hyperbolic function solution Equation (23), and the form of the solitary wave 
solutions obtained in [2] [14] are the same, but the solutions in this paper are 
more extensive and contains more parameters. From the results of this paper, we 
can see that there are exact solitary wave solutions in one-dimensional granular 
crystals of elastic spheres. Furthermore, the existence of solitary wave solutions 
has important theoretical significance for us to study the propagation of shock 
waves in one-dimensional granular crystals of elastic spheres. At the same time, 
it has important theoretical significance in nondestructive testing with 
non-linear wave. These studies will be published in our follow-up research.  
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Figure 2. Evolution of the exact single solitary wave solution Equation (24) in the 
space-time domain with 0 0a = , 41.2 10 ( )E Sµ−= − × , 1 1C = , 2 2C = , 1

1 1( )k m−= . 

https://doi.org/10.4236/jamp.2019.711189


Z. G. Liu, J. L. Zhang 
 

 

DOI: 10.4236/jamp.2019.711189 2765 Journal of Applied Mathematics and Physics 
 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Nesterenko, V.F. (1983) Propagation of Nonlinear Compression Pulses in Granular 

Media. Journal of Applied Mechanics and Technical Physics, 24, 733-743.  
https://doi.org/10.1007/BF00905892 

[2] Sen, S., Hong, J., Bang, J., et al. (2008) Solitary Waves in the Granular Chain. Phys-
ics Reports, 462, 21-66. https://doi.org/10.1016/j.physrep.2007.10.007 

[3] Sen, S., Manciu, M., Sinkovits, R.S., et al. (2001) Nonlinear Acoustics in Granular 
Assemblies. Granular Matter, 3, 33-39. https://doi.org/10.1007/s100350000067 

[4] Nesterenko, V. (2013) Dynamics of Heterogeneous Materials. Springer Science & 
Business Media. 

[5] Lupichev, L.N., Savin, A.V. and Kadantsev, V.N. (2015) Synergetics of Molecular 
Systems. Springer. https://doi.org/10.1007/978-3-319-08195-3 

[6] Daraio, C., Nesterenko, V.F., Herbold, E.B., et al. (2006) Energy Trapping and 
Shock Disintegration in a Composite Granular Medium. Physical Review Letters, 
96, Article ID: 58002. https://doi.org/10.1103/PhysRevLett.96.058002 

[7] Doney, R. and Sen, S. (2006) Decorated, Tapered, and Highly Nonlinear Granular 
Chain. Physical Review Letters, 97, Article ID: 155502.  
https://doi.org/10.1103/PhysRevLett.97.155502 

[8] Khatri, D., Daraio, C. and Rizzo, P. (2008) Highly Nonlinear Waves’ Sensor Tech-
nology for Highway Infrastructures. International Society for Optics and Photonics.  
https://doi.org/10.1117/12.775848 

[9] Spadoni, A. and Daraio, C. (2010) Generation and Control of Sound Bullets with a 
Nonlinear Acoustic Lens. Proceedings of the National Academy of Sciences, 107, 
7230-7234. https://doi.org/10.1073/pnas.1001514107 

[10] Liang, B., Yuan, B. and Cheng, J. (2009) Acoustic Diode: Rectification of Acoustic 
Energy Flux in One-Dimensional Systems. Physical Review Letters, 103, Article ID: 
104301. https://doi.org/10.1103/PhysRevLett.103.104301 

[11] Boechler, N., Theocharis, G. and Daraio, C. (2011) Bifurcation-Based Acoustic 
Switching and Rectification. Nature Materials, 10, 665.  
https://doi.org/10.1038/nmat3072 

[12] Nesterenko, V.F., Daraio, C., Herbold, E.B., et al. (2005) Anomalous Wave Reflec-
tion at the Interface of Two Strongly Nonlinear Granular Media. Physical Review 
Letters, 95, Article ID: 158702. https://doi.org/10.1103/PhysRevLett.95.158702 

[13] Lazaridi, A.N. and Nesterenko, V.F. (1985) Observation of a New Type of Solitary 
Waves in a One-Dimensional Granular Medium. Journal of Applied Mechanics and 
Technical Physics, 26, 405-408. https://doi.org/10.1007/BF00910379 

[14] Liu, Z., Wang, Y. and Huang, G. (2019) Solitary Waves in a Granular Chain of Elas-
tic Spheres: Multiple Solitary Solutions and Their Stabilities. Physical Review E, 99, 
Article ID: 62904. https://doi.org/10.1103/PhysRevE.99.062904 

[15] Wang, M. (1995) Solitary Wave Solutions for Variant Boussinesq Equations. Phys-
ics Letters A, 199, 169-172. https://doi.org/10.1016/0375-9601(95)00092-H 

[16] Wang, M. (1996) Exact Solutions for a Compound KdV-Burgers Equation. Physics 
Letters A, 213, 279-287. https://doi.org/10.1016/0375-9601(96)00103-X 

https://doi.org/10.4236/jamp.2019.711189
https://doi.org/10.1007/BF00905892
https://doi.org/10.1016/j.physrep.2007.10.007
https://doi.org/10.1007/s100350000067
https://doi.org/10.1007/978-3-319-08195-3
https://doi.org/10.1103/PhysRevLett.96.058002
https://doi.org/10.1103/PhysRevLett.97.155502
https://doi.org/10.1117/12.775848
https://doi.org/10.1073/pnas.1001514107
https://doi.org/10.1103/PhysRevLett.103.104301
https://doi.org/10.1038/nmat3072
https://doi.org/10.1103/PhysRevLett.95.158702
https://doi.org/10.1007/BF00910379
https://doi.org/10.1103/PhysRevE.99.062904
https://doi.org/10.1016/0375-9601(95)00092-H
https://doi.org/10.1016/0375-9601(96)00103-X


Z. G. Liu, J. L. Zhang 
 

 

DOI: 10.4236/jamp.2019.711189 2766 Journal of Applied Mathematics and Physics 
 

[17] Wang, M., Zhou, Y. and Li, Z. (1996) Application of a Homogeneous Balance Me-
thod to Exact Solutions of Nonlinear Equations in Mathematical Physics. Physics 
Letters A, 216, 67-75. https://doi.org/10.1016/0375-9601(96)00283-6 

[18] Zhang, J.-L. and Liu, Z.-G. (2011) Exact Solutions of Discrete Complex Cubic 
Ginzburg—Landau Equation and Their Linear Stability. Communications in Theo-
retical Physics, 56, Article ID: 1111. https://doi.org/10.1088/0253-6102/56/6/24 

[19] Zhang, J., Liu, Z., Li, S., et al. (2012) Solitary Waves and Stable Analysis for the 
Quintic Discrete Nonlinear Schrödinger Equation. Physica Scripta, 86, Article ID: 
15401. https://doi.org/10.1088/0031-8949/86/01/015401 

 

https://doi.org/10.4236/jamp.2019.711189
https://doi.org/10.1016/0375-9601(96)00283-6
https://doi.org/10.1088/0253-6102/56/6/24
https://doi.org/10.1088/0031-8949/86/01/015401

	The Exact Solitary Wave Solutions in Continuity Equation of the One-Dimensional Granular Crystals of Elastic Spheres
	Abstract
	Keywords
	1. Introduction
	2. The Continuous Equation of One-Dimensional Granular Crystals of Elastic Spheres
	3. The Exact Solutions to Equation (5)
	4. Discussion and Conclusions
	Acknowledgements
	Conflicts of Interest
	References

