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Abstract 
Self-assembling molecules are ubiquitous in nature, among which are pro-
teins, nucleic acids (DNA and RNA), peptides and lipids. Recognizing the 
ability of biomolecules to self-assemble into various 3D shapes at the nanos-
cale, researchers are mimicking the self-assembly strategy for engineering of 
complex nanostructures. However, the general principles underlying the de-
sign of self-assembled molecules have not yet been identified. The question is 
“How to obtain a well-defined shape with desired properties by folding a 
chain of subunits (such as amino acids and nucleic acids)”, where properties 
are determined by the precise spatial arrangement of the subunits on the sur-
face. In this paper, we consider the question from the viewpoint of the dis-
crete differential geometry of n-simplices. Self-assembling molecules are then 
represented as a union of trajectories of 3-simplices (i.e., tetrahedrons), and 
the question is rephrased as a “boundary value problem” for flows on a space 
of tetrahedrons. Also considered is a characterization of two types of surface 
flows of n-simplices. It is a rough classification of surface flows, but may be 
essential in characterizing important properties of biomolecules such as 
allosteric regulation. The author believes this paper not only provides a 
new perspective for the engineering of self-assembling molecules, but also 
promotes further collaboration between mathematics and other disciplines in 
life science. 
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1. Introduction 

Self-assembling molecules are ubiquitous in nature, among which are proteins, 
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nucleic acids (DNA and RNA), peptides and lipids. Recognizing the ability of 
biomolecules to self-assemble into various 3D shapes at the nanoscale, re-
searchers are mimicking the bottom-up self-assembly strategy for precise engi-
neering of complex nanostructures [1] [2] [3]. As suggested by Gellman in [3], 
“realization of the potential of folding polymers may be limited more by the 
human imagination than by physical barriers”. 

However, we have not yet identified the underlying general principles that 
govern the engineering of self-assembling molecules. The question is  

“How to obtain a well-defined shape with desired properties by folding a 
chain of subunits,”  
where properties are determined by the precise spatial arrangement of the sub-
units on the surface. In the case of proteins, on the surface are “active sites” 
formed by a set of amino acids arranged in a specific configuration, through 
which proteins carry out their function. Note that a pair of subunits adjacent on 
the surface are often far apart along the chain. 

The question shown above is divided into two sub-questions. One is to find a 
backbone conformation called target structure that forms a shape of the desired 
properties. The other is to find a chain of subunits that adopts the target struc-
ture. In this paper, we shall discuss the former of these two sub-questions from 
the viewpoint of the discrete differential geometry of n-simplices. 

Using the mathematical toy model proposed in [4] [5], we shall represent 
self-assembling molecules as a union of trajectories of 3-simplices (i.e., tetrahe-
drons). Then, the former sub-question is rephrased as a “boundary value prob-
lem” for flows on a space of 3-simplices:  

“Given a triangular flow (i.e., desired properties). Find a tetrahedral flow (i.e., 
well-defined shape) that induces the triangular flow as its surface flow.”  

In this paper, we first give an introduction to the discrete differential geome-
try of n-simplices. In addition to the case of triangles and tetrahedrons, we also 
consider the case of 1-simplices (line segments) in order to handle surface 
flows induced on a union of trajectories of triangles. After giving a definition 
of boundary value problem for flows on a space of n-simplices, we shall consider 
the boundary value problem with some examples. For simplicity, we mainly deal 
with flows of triangles and their surface flows of line segments. Finally given is a 
characterization of two types of surface flows of line segments, i.e., 3 -embed- 
dable surface flow and locally 3 -embeddable surface flow. This distinction may 
be essential in characterizing some important properties of biomolecules such as 
“allosteric regulation” (i.e., long distance interactions between subunits) as men-
sioned in [5]. Some open problems are also given along the way. 

We believe this paper will open up a new perspective for the engineering of 
self-assembling molecules and bring about further advances in collaboration 
between mathematics and other disciplines in life science. 

Finally, Genocript (http://www.genocript.com) is the one-man bio-venture 
started by the author in 2000 which is developing software tools for protein 
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structure analysis. In particular, the author is not affiliated with any research in-
stitution. 

2. Previous Works 

Actively researched self-assembling molecules include biomolecules such as DNA 
(i.e., polynucleotides), proteins (i.e., polypeptides), and unnatural molecules 
such as foldamers (i.e., unnatural oligomers). As for approaches from mathe-
matics, there are no known attempts other than sporadic applications of graph 
theory in the engineering of DNA- and protein-based nanostructures. 

2.1. DNA-Based Nanostructures 

Self-assembling DNA-based nanostructures have been extensively studied, as the 
specificity of Watson-Crick base pairing provides ease of control over interac-
tions between DNA strands. Well known in the field of DNA nanotechnology is 
the scaffolded DNA origami method [1], in which a long single-stranded DNA 
(called scaffold strand) is folded into arbitrary shapes with the help of many 
short single-stranded DNAs (called staple strands) in a single step. 

For two-dimensional shapes, a target shape is approximated by folding a scaf-
fold strand back and forth in a raster fill pattern. The target shape is then ob-
tained as a flat sheet of antiparallel DNA double helices which is cross-linked by 
lots of staple strands. 

Three-dimensional shapes are obtained by stacking flat sheets of antiparallel 
DNA double helices to form a closely packed pleated layer structure [6]. To con-
struct space-filling multilayer objects, flat sheets are packed onto a honeycomb 
lattice, a square lattice, or a hexagonal lattice [7]. 

2.2. Protein-Based Nanostructures 

Protein-based nanostructures have several advantages over DNA-based nano-
structures, such as structural richness, functional versatility, and cost effective 
manufacturing. DNA-based nanostructures consist of four nucleic acids, and are 
prepared by chemical synthesis. In contrast, protein-based nanostructures con-
sist of 20 amino acids, and are manufactured by biotechnological methods. One 
of the disadvantages is the much more complicated design rules, due to the con-
tribution of many cooperative and long range interactions between amino acids. 

There are two types of approaches in finding a polypeptide that folds into a 
specified 3D shape (i.e., protein design). One is the design of proteins with a de-
sired backbone structure. The other is the design of proteins with desired func-
tions (i.e., desired active sites or desired interacting surfaces). 

In general, structural design starts with a target backbone structure descrip-
tion. Target descriptions are usually given as a 2D schematic diagram [8] [9]. In 
the diagram, 3D backbone structures are represented as a sequence of local 
structural patterns (such as alpha-helices and beta-strands) with sets of pairwise 
spatial relationships between them. 
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A set of target backbone structures consistent with the diagram are often gen-
erated by assembling short backbone fragments from existing proteins [10] [11] 
[12]. Note that it is not clear whether the target structure is designable, i.e., there 
exists an amino acid sequence that would adopt the conformation in nature. By 
reusing naturally occurring protein fragments, it is ensured that new backbone 
structures are more likely to be designable. 

On the other hand, functional design generally starts with a target active site 
or a target interacting surface description. A target active site description in-
cludes a target reaction and a model of the reaction mechanism [13]. Active sites 
usually consist of functional residues located in different regions (i.e., disjoint 
fragments) of the linear polypeptide chain. A three-dimensional arrangement of 
the functional residues is derived from the given description. A set of existing 
proteins is then searched for backbones that can support the arrangement of the 
functional residues [14] [15], onto which the target active site is grafted. For now, 
it is difficult to generate new backbones from a set of disjoint fragments so that 
the resulting backbone accommodates the spatial arrangement of the given set of 
disjoint fragments [12]. 

2.3. Protein Origami 

In addition, there is another approach to constructing self-assembled protein 
nanostructures, called “protein origami” [2] [16]. This approcach is based on the 
specificity of pairwise interactions between coiled-coil-forming polypeptide 
segments rather than the numerous cooperative interactions between amino ac-
ids. The coiled-coils are composed of two intertwined helical segments that wrap 
around each other to form a supercoiled structure, where each segment binds 
only to its designated partner and does not interact with the others (i.e., ortho-
gonal). 

The orthogonal coiled-coil-forming segments are concatenated in a specified 
order to form a single polypeptide chain, which folds into a polypeptide polyhe-
dron as the orthogonal interacting segments assemble into coiled-coils with their 
designated partners. For example, a tetrahedron is self-assembled from a poly-
peptide chain consisting of 12 coiled-coil forming segments separated by flexible 
linkers. The generated 6 coiled-coils correspond to the 6 edges, and the linkers 
are located on the vertices. The sequential arrangement of the 12 coiled-coil 
forming segments and the orientation of each coiled-coil pair are obtained as a 
double Eulerian path in a tetrahedron, i.e. an oriented path that traverse each of 
the 6 edges of the tetrahedron exactly twice. The existence of double Eulerian 
paths is guaranteed by graph theory, because all the vertices of a double tetrahe-
dral graph have an even degree. 

2.4. Unnatural Molecules 

To realize the full potential of self-assembling molecules, researchers are also 
working on the design of unnatural molecules with structures and functionalities 
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not found in nature. 
Most of the research so far has focused on reproducing local structural pat-

terns of proteins such as helices and sheets [17] [18] [19]. It is still a major chal-
lenge to pack the local structural patterns obtained into a uniquely specified 
compact conformations [20]. 

So far no foldamaer is known that displays a given compact conformations 
[21]. Natural proteins typically require more than 100 residues to display sta-
ble compact conformation. However, careful choice of preorganized mono-
mers may lead to foldamers of less than 40 residues with stable compact con-
formation [3]. 

2.5. Flows of n-Simplices 

The author is unaware of similar studies by other researchers on flows of n-sim- 
plices. 

As for differential geometry on a space of n-simplices, differential geometry 
on polyhedra (such as differential forms on n-simplices) has been studied from 
the view point of classification of geometrical objects (For example, see [22]). In 
particular, n-simplices have been played an important role in homological alge-
bra [23]. However, shapes of trajectories of n-simplices are not explicitly consi-
dered there. 

As for surfaces consisting of triangles, they have been studied as discrete ana-
logues of smooth geometric objects [24]. Typically, they are obtained as a result 
of the triangulation of the surfaces of real world objects in 3D computer graphics. 
However, there are no known studies on flows of triangles on the triangular sur-
face. 

3. Flows of n-Simplices 

This paper proposes a novel mathematical approach for the design of self-assem- 
bling molecules, which is based on the discrete differential geometry of n-sim- 
plices [4] [5]. In our approach, self-assembling molecules are represented as a 
union of trajectories of tetrahedrons. The “spatial arrangement of the subunits 
(such as amino acids, nucleic acids, or others)” on the surface of a molecule then 
corresponds to the “flow of triangles” induced on the surface of a union of tra-
jectories of tetrahedrons. In this section, we shall give an introduction to the 
discrete differential geometry of n-simplices. 

In the following,   denotes the set of all natural numbers,   denotes the 
set of all integers,   denotes the set of all real numbers, and nE  ( n∈ ) de-
notes the n-dimensional Euclidean space. 

For space saving purposes, the coordinates of points in nE  are represented 
by a monomial in n indeterminates 0 1 1, , , nx x x −� . For example, point  
( ) 3, ,l m n E∈  is represented by 0 1 2

l m nx x x . Points ( )0,0,0 , ( )0,0,n , ( )0, ,m n  
are represented by 1, 2

nx , 1 2
m nx x , respectively. Moreover, 0

kpx  denotes the 
point ( ) 3, ,l k m n E+ ∈ , where 0 1 2

l m np x x x= . 
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3.1. General Case 
3.1.1. Flows on an n-Simplex Space 
First of all, we shall define a space of n-simplices, upon which flows of n-sim- 
plices are defined. The topology of the space is defined using “adjacent” rela-
tionship between n-simplices. 

Definition 1 (n-simplex). Let n∈ . An n-simplex is the convex hull of 
( )1n +  affinely independent points in nE  (i.e., points not lying in a ( )1n − -di- 

mensional subspace). The convex hull of 1n +  points 0 1, , , n
nv v v E∈�  is de-

noted by [ ]0 1, , , nv v v� , i.e.,  

[ ]0 1
0,1, ,0,1, ,

, , , : | 1 and , 0 .i n
n i i i

i ni n
v v v v E iλ λ λ

==

 
= ∈ = ∀ ≥ 
 

∑∏
��

�  

Then, iv  ( 0 i n≤ ≤ ) are called the vertices of [ ]0 1, , , nv v v� . Let s be an 

n-simplex. The set of all the vertices of s is denoted by ( )v s .  

For example, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex 
is a triangle, a 3-simplex is a tetrahedron. 

Definition 2 (k-face). Let ,k n∈  and k n≤ . Let s be an n-simplex. A 
k-face of s is the convex hull of any 1k +  vertices of s. A 0-face is a vertex of s. 
A 1-face is called an edge of s. An ( )1n − -face is called a facet of s. Note that the 
n-face is s itself.  

For example, let [ ]0 1 2 3, , ,s v v v v=  be a tetrahedron. Then, s has 6 edges 

,i jv v    ( 0 3i j≤ < ≤ ) and 4 facets , ,i j kv v v    ( 0 3i j k≤ < < ≤ ). Moreover, 

( ) { }0 1 2 3, , ,v s v v v v= . 

Definition 3 (n-simplex space). Let M be a set of n-simplices. M is called an 
n-simplex space if each n-simplex is connected to other n-simplices in such a 
way that,  
for ∀  facet u of s M∈ , uniquely s M′∈  such that s s u′ =∩ . 

In particular, each n-simplex is connected to 1n +  “adjacent” n-simplices 
through its 1n +  facets.  

Example 1. We would obtain an n-simplex space by partitioning nE  into 
pieces of n-simplices. Shown in Figure 1(a) is a triangle space 0M  obtained by 
partitioning 2E  into pieces of triangles.  

Definition 4 (k-face neighborhood N(u)). Let M be an n-simplex space and 
s M∈ . Let u be a k-face of s. The k-face neighborhood ( )N u  of u is a set of 
n-simplices of M which contain u:  

( ) { }: | .N u s M u s′ ′= ∈ ⊂  

For [ ]0 1, , , ns v v v M= ∈� , we obtain ( )0,1, , ii n
s N v

=
=

�∩ . Note that every 

facet neighborhood consists of two n-simplices. We shall use the fact when de-
fining local trajectories of n-simplices (See just above Definition 6). 

Now let us define flows of n-simpleces on an n-simplex space. 
Definition 5 (Tangent space T(s)). Let s be an n-simplex. The tangent space 
( )T s  at s is the set of all the edges of s, i.e.,  
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Figure 1. Flow of triangles. (a) A triangle space 0M  obtained by partitioning 2E  into 
pieces of triangles; (b) Gradients of triangles of 0M . For each triangle 0s M∈ , the 
gradient (i.e., the set of edges assigned) is drawn with thick lines. The white arrow 
indicates the position of the triangle 0s  (grey) of (c); (c) Shown left is a triangle 0s  
(grey) and three adjacent triangles (white) connected to 0s  through three facets. Shown 
in the square frame are all the possible values of the gradient of 0s  and the adjacent 
triangles associated with the value. From left to right, a branch triangle, three regular 
triangles, three 2-fold singular triangles (terminal triangles), a 3-fold singular triangle 
(isolated triangle). Enclosed by a dotted circle is the gradient of 0s  of (b). 

 
( ) { }: , | 0 ,j jT s v v i j n = ≤ < ≤   

where ( ) { }0 1, , , nv s v v v= � . A subset of ( )T s  is called a gradient of s.  
Example 2. In Figure 1(b), a gradient (i.e., a set of edges) is assigned to each 

triangle of 0M . Most of the triangles are assigned one edge, some are assigned 
multiple edges, and others are assigned no edge. Shown in Figure 1(c) are all the 
possible values of the gradient of a triangle 0s  of 0M , from which the encir-
cled value is assigned to 0s  in (b).  

Let M be an n-simplex space. Let [ ]0 1, , , ns v v v M= ∈�  and  

[ ] ( ),a be v v T s= ∈ . Two facets ( ),au s e  and ( ),bu s e  of s which do not con-
tain the edge e are defined by  

( ) �

( ) �

0

0

, , , , , ,

, , , , , ,

a a n

b b n

u s e v v v

u s e v v v

  =  


 =  

� �

� �
 

where �  means that the corresponding term is omitted. 
Then, by definition, there are two n-simplices ( ),as s e  and ( ),bs s e M∈  

such that  

( )( ) ( ){ }
( )( ) ( ){ }

, , , ,

, , , .
a a

b b

N u s e s s s e

N u s e s s s e

 =


=
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Definition 6 (Adjacent n-simplices A(s,G)). Let M be an n-simplex space. Let 
s M∈  and ( )e T s∈ . The adjacent n-simplices ( ),A s e  associated with the edge 
e of s is defined by  

( ) ( ) ( ){ }, : , , , ,a bA s e s s e s s e=  

where ( ),as s e  and ( ),bs s e  are defined above. That is, ( ),A s e  is the set of 
all the adjacent triangles of s which do not contain the edge e. 

Let ( )G T s⊂  be a gradient of s. The adjacent n-simplices ( ),A s G  asso-
ciated with G is defined by  

( ) ( ), , if
, :

all the adjacent -simplices of , if
e G

A s e G
A s G

n s G
∈

 ≠ ∅= 
= ∅

∩  

In particular ( ) ( ){ }, , |A s e s A e e s′ ′= ∈ ∅ ⊂/ .  
Definition 7 (Local trajectory at an n-simplex). Let M be an n-simplex space. 

Let s M∈  and ( )e T s∈ . Let ( ) { }, ,a bA s e s s= . The local trajectory at s asso-
ciated with the edge e is the sequence  

( )ora b b as s s s s s− − − −  

of three consecutive n-simplices. Connecting these sequences together, we shall 
obtain a flow on M in Definition 12 and 13.  

Example 3. Grey triangles in Figure 1(c) are the adjacent triangles ( )0 ,A s G  
associated with the gradient G (thick lines) of 0s .  

Conversely, a sequence 0 2s s s− −  of three consecutive n-simplices determines 
uniquely an edge of the middle n-simplex s as follows. 

Definition 8 (Tangent ( )0 2tD s s s− − ). Let M be an n-simplex space. Let 

0 2s s s− −  be a sequence of three consecutive n-simplices of M, i.e.,  
( )0 2, ,s s A s∈ ∅  such that 0 2s s≠ . Let  

( )
( )

0 0 0

2 2 2

: the facet shared by  and ,
: the facet shared by  and .

u s s s s
u s s s s
 =
 =

∩
∩

 

The tangent ( )0 2tD s s s− −  to 0 2s s s− −  at s is an edge [ ]0 2,v v  of s, where  

( ) ( ) ( )
( ) ( ) ( )

0 0 0

2 2 2

: \ the vertex not included in ,
: \ the vertex not included in .

v v s v u u
v v s v u u
 =
 =

 

Note that tD  is not defined at singular simplices because singular simplices 
never occupy the middle position of a sequence of three consecutive n-simplices. 
(See Figure 1(c).)  

Lemma 1. Let M be an n-simplex space. Let s M∈  and ( )e T s∈ . Let  

0 2s s s− −  be a sequence of three consecutive n-simplices of M. Then,  

( )( ) { }
( ) ( )( ) ( ) ( )( )

0 2 0 2, , ,

, , , , ,
t

t a b t b a

A s D s s s s s

D s s e s s s e D s s e s s s e e

 − − =


− − = − − =
 

where ( ),as s e  and ( ),bs s e  are the two n-simplices of ( ),A s e .  
Proof. It follows immediately from the definition.  
A differential structure is defined on an n-simplex space as follow. 
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Definition 9 (Tangent bundle ( ), , MTM M π ). Let M be an n-simplex space. 
The tangent bundle ( ), , MTM M π  of M is defined by  

( ) ( ){ }
( )

: , | , ,

: , , : .M

TM s u s M u T s

TM M s u sπ π

 = ∈ ∈


→ =
 

Definition 10 (Vector field V on M). Let M be an n-simplex space. A vector 
field V on M is a mapping which assigns to each n-simplex s of M, a gradient of 
s, i.e.,  

( ) [ ]( ) [ ]{ }0 1: 2 , , , , , , , , ,T s
n i j k lV M V v v v v v v v → =  � �  

where ( )2T s  denotes the power set of ( )T s . If ( )V s  contains only one edge, s 
is called a regular n-simplex of V. Otherwise, s is called a singular n-simplex of V. 
If ( )V s = ∅ , s is called a branch n-simplex of V. If ( )V s  consists of m edges, s 
is called an m-fold singular n-simplex of V. If ( )( ),A s V s  has only one n-sim- 
plex, s is called a terminal n-simplex of V. If ( )( ),A s V s = ∅ , s is called an iso-
lated n-simplex.  

Example 4. Shown in Figure 1(b) is a vector field of the triangle space 0M  
of (a).  

Definition 11 (Local trajectory of V on M). Let M be an n-simplex space and 
s M∈ . Let V be a vector field of M. Let 0 2s s s− −  be a sequence of three con-
secutive n-simplices. Then, 0 2s s s− −  is called a local trajectory of V at s if  

( ) ( )0 2 .tD s s s V s− − ⊃  

Note that local trajectories may contain branch n-simplices.  
Definition 12 (Trajectory of V on M). Let M be an n-simplex space. Let V be 

a vector field of M. Let [ ]{ }|L s i i I= ∈ ⊂   be a sequence of n-simplices, 
where I is either [ ],k m , [ ),k +∞ , ( ], m−∞ , or ( ),−∞ +∞  ( ,k m∈  such that 
k m< ). Then, L is called a trajectory of V if every consecutive three n-simplices 
of L is a local trajectory of V. i.e.,  

[ ] [ ] [ ] [ ]1 2  is a local trajectory of for , 2 .s i s i s i V i i I− + − + ∀ + ⊂  

A trajectory [ ] [ ]{ }| ,L s i i k m= ∈ ⊂   of V is called closed if  

[ ] [ ] [ ] [ ] [ ] [ ]1 and 1s m s m s k s m s k s k− − − − − +  

are also local trajectories of V. 
A trajectory L of V is called maximal if either L is closed, or L L′ ⊃  implies 

L L′ =  for any trajectory L′  of V on M.  
Definition 13 (Flow of V on M). Let M be an n-simplex space. Let V be a 

vector field of M. Let { }|iF L i I= ∈ ⊂   be a set of maximal trajectories of V 
on M, where i jL L≠  if i j≠ . Then, L is called a flow of V on M if  

.i
i I

M L
∈

=∪  

Note that M is decomposed into a disjoint union of iL  if V has no branch 
triangle.  
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3.1.2. Two Functions on a Trajectory 
Here we define two functions on trajectories of vector fields on an n-simplex 
space. 

Definition 14 (U/D function g along a trajectory). Let M be an n-simplex 
space. Let V be a vector field of M. Let [ ] [ ] [ ]{ }0 , 1 , ,L s s s k= �  ( k ∈ ) be a 

trajectory of V on M. An U/D function g along L is a { }1, 1+ − -valued function 
on L defined by  

[ ]( ) { }

[ ]( ) [ ]( ) [ ]( ) [ ]( )
[ ]( )

0 1, 1 ,

, if 1
1 :

, otherwise

g s

g s i V s i V s i
g s i

g s i

 ∈ + − ⊂
  + = ∅ + = 

− 

∩



 

Example 5. Shown in Figure 2 is a trajectory  

[ ] [ ] [ ] [ ] [ ]{ }0 , 1 , 2 , 3 , 4 ,aL s s s s s= �  of the vector field of 0M  given in Figure 

1(b), where [ ] 00s s= . Then, we obtain an U/D function ag  along aL  as fol-

lows: Firstly, set [ ]( )0 1ag s = +  and move to the adjacent triangle [ ]1s  on the 

right. Then, [ ]( ) [ ]( )1 0 1a ag s g s= − = −  since [ ]( ) [ ]( )1 0V s V s ≠ ∅∩ . In the 

same way, we obtain [ ]( ) [ ]( )2 1 1a ag s g s= − = + . Now, let us move to [ ]3s . 

Then, [ ]( ) [ ]( )3 2 1a ag s g s= = +  since [ ]( ) [ ]( )3 2V s V s = ∅∩ . In the same 

way, we obtain [ ]( ) [ ]( )4 3 1a ag s g s= = + .  

By considering the “integral along the trajectory” of a given U/D function, we 
shall obtain another function on the trajectory. 

Definition 15 (Height function gh  on a trajectory). Let M be an n-simplex 

space. Let V be a vector field of M. Let [ ] [ ] [ ]{ }0 , 1 , ,L s s s k= �  ( k ∈ ) be a 

trajectory of V on M. Let g be a U/D function along L. The height function gh  
with respect to g is a  -valued function on L defined by  

[ ]( )

[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )
[ ]( )

0 ,

, if 1
1 :

, otherwise

g

g
g

g

h s

h s i g s i V s i V s i
h s i

h s i

 ∈
  + + = ∅ + = 

 

∩



 

 

 
Figure 2. Two functions on a trajectory of triangles. Shown on the left is a trajectory 

[ ] [ ] [ ] [ ] [ ]{ }0 , 1 , 2 , 3 , 4 ,aL s s s s s= �  of the vector field of 0M  given in Figure 1(b), where 

[ ] 00s s= . The table on the right shows the values of an U/D function along aL  and the 

height function on aL  with respect to the U/D function. 
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Example 6. Shown in Figure 2 is a trajectory  

[ ] [ ] [ ] [ ] [ ]{ }0 , 1 , 2 , 3 , 4 ,aL s s s s s= �  of the vector field of 0M  given in Figure 

1(b), where [ ] 00s s= . The table on the right shows the values of an U/D func-
tion ag  along aL  (See Example 5) and the height function 

agh  with respect 

to ag . 
agh  is obtained as follows: Firstly, set [ ]( )0 0

agh s = . Since  

[ ]( ) [ ]( )1 0V s V s ≠ ∅∩ , we obtain [ ]( ) [ ]( )1 0 0g gh s h s= = . In the same way, we 

obtain [ ]( ) [ ]( )2 1 0g gh s h s= = . Now, let us move to [ ]3s . Then,  

[ ]( ) [ ]( )3 2V s V s = ∅∩  and  

[ ]( ) [ ]( ) [ ]( )3 2 3 0 1 1.g gh s h s g s= + = + =  

In the same way, we obtain [ ]( ) [ ]( ) [ ]( )4 3 4 2g gh s h s g s= + = .  

3.2. Flows of n+1 -Embeddable Vector Fileds 

In general, n-simplex spaces consist of n-simplices of various shapes. Here, we 
shall consider a special class of n-simplex spaces consisting of n-simplices of the 
same shape. 

3.2.1. 3 -Embeddable Vector Fields of Triangles 
Shown in Figure 3(a) is a triangle space 1M  obtained by partitioning 2E  into 
triangles of the same shape. A vector field on 1M  is shown in Figure 3(b). In 
this case, the “two-dimensional” vector field of 1M  corresponds to a “three- 
dimensional” drawing on the surface of “mountains” of unit cubes of 3E  as 
shown in Figure 3(c) and Figure 3(f). It is this type of vector fields of triangles 
that is considered in this section. 

Definition 16 (The three-dimensional lattice 3L ). Let 3L  be the three-di- 
mensional lattice generated by three vectors ( )1,0,0 , ( )0,1,0 , and ( )0,0,1 , 
i.e.,  

{ }3 3
0 1 2: | , , .l m nL x x x l m n E= ∈ ⊂  

Shown in Figure 3(d) is a unit cube of 3L  and its top view.  
Definition 17 (The symmetric group 3Sym  on three letters). Let 3Sym  be 

the group of all the permutations of the set { }0,1,2 . Elements of 3Sym  are 
written in cyclic notation. For example, let ( ) 3021 Symρ = ∈ . Then, ( )0 2ρ = , 
( )1 0ρ = , and ( )2 1ρ = .  
Definition 18 (The set B2 of all flat triangles). Let 3a L∈  and 3Symρ ∈ . The 

slant triangle ( ) ( )0 1a x xρ ρ
 
   is defined by  

( ) ( ) ( ) ( ) ( )0 1 0 0 1: , , ,a x x a ax ax xρ ρ ρ ρ ρ
   =     

where [ ], ,a b c  denotes the convex hull of three points 3, ,a b c E∈  (Definition 
1). For example, the four slant triangles shown in Figure 3(e) are [ ]0 1a x x , 

[ ]0 1 2ax x x , [ ]0 1 2 0ax x x x , and [ ]0 1 2 0 1ax x x x x  (from top to bottom). 
Let 2S  be the set of all slant triangles, i.e.,  
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Figure 3. 3 -embeddable vector field. (a) A triangle space 1M  consisting of triangles 
of the same shape; (b) A vector field on 1M . Three closed trajectories are colored 

differently; (c) The top view of “mountains” obtained by piling up unit cubes of 3E  in 
the direction of ( )1, 1, 1− − − . Shown in the circle is a unit cube, where each of the three 

upper faces is divided into two triangles by the vertical diagonal (thick line). The flow of 
triangles obtained by connecting thick lines corresponds to the flow of the vector field of 
(b); (d) A unit cube of 3L  (bottom) and its top view (top); (e) The σ -equivalence class 
of [ ]0 1a x x ; (f) Projection of the slant triangles on the surface of the “mountains” of (c) 

(bottom) onto the triangle space 1M  of (a) (top). 

 

( ) ( ){ }3 3
2 0 1: | , .S a x x a L Symρ ρ ρ = ∈ ∈   

The shift operator σ  on 2S  is defined by  

( ) ( )( ) ( ) ( ) ( )0 1 0 1 2: .a x x ax x xρ ρ ρ ρ ρσ    =     

Then, an equivalence relation σ  is defined on 2S  by  

a bt tσ  if and only if ( )s.t. .m
a bm t tσ∃ ∈ =�  

The σ -equivalence class of 2t S∈  is called a flat triangle and denoted by 
modt σ . For example, shown in Figure 3(e) is the σ -equivalence class of  
[ ]0 1 moda x x σ  ( 3a L∈ ). 
The set of all flat triangles is denoted by 2B , i.e.,  

2 2: .B S σ=  

Lemma 2. 2B  is a triangle space (Definition 3).  
Proof. It follows immediately from the definition.  
By an abuse of notation, the “image on 2B “ of an edge e of 2s S∈  is also 

denoted by mode σ . Note that  

[ ] [ ] [ ]0 1 0 1 0 1, mod , mod , mod ,a ax x a ax x a a x xσ σ σ′ ′ ′= =  

where 3a L∈  and 0 1 2a ax x x′ =  (See Figure 3(e)). The tangent space  

( ) ( )( )0 1 modT a x xρ ρ σ 
   at ( ) ( ) 20 1 moda x x Bρ ρ σ  ∈   (Definition 5) is given by  
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( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ){ }

0 1

0 1 1 2 2 0

mod

, mod , , mod , , mod ,

T a x x

a ax x a a x x a a x x

ρ ρ

ρ ρ ρ ρ ρ ρ

σ

σ σ σ

 
 

     ′ ′ ′′ ′′=      

 

where ( )0a axρ′ =  and ( ) ( )0 1a ax xρ ρ′′ = . 
For simplicity, we often identify the edge , modi ja ax x σ    with the monomial 

i jx x  and we shall obtain a one-to-one correspondence  

( ) ( )( ) { }0 1 1 2 0 20 1 mod , , .T a x x x x x x x xρ ρ σ 
  

 

Definition 19 (Tangent bundle ( )22 2, , BTB B π ). The tangent bundle of 2B  
(Definition 9) is given by  

( ) ( ){ }
( )

2 2

2 2

2 2

: mod , | mod , mod ,

: , mod , : mod .B B

TB t u t B u T t

TB B t u t

σ σ σ

π π σ σ

 = ∈ ∈


→ =
 

Definition 20 (Gradient SD t ). Let ( ) ( ) 20 1t a x x Sρ ρ
 = ∈  . The gradient SD t  

of t is defined by  

( ) ( )0 1: , mod .SD t a ax xρ ρ σ =    

That is, SD  is a ( )_ modT σ -valued function on 2S . The “edge” SD t  is 
also called the boundary edge of modt σ . (Strictly speaking, SD t  is a set of 
one element. Here, we identify the set with its only element.)  

Example 7. In Figure 3, the boundary edges SD t  are drawn with a thick line. 
For example, the boundary edge of [ ]0 1a x x  is [ ]0 1, moda ax x σ  (Figure 3(d)).  

Lemma 3. Let 2t S∈ . Then,  

( ) ( )( )3 .S SD t D tσ=  

That is, SD  induces a ( )_ modT σ -valued function on 3
2S σ . By an abuse 

of notation, the induced function is also denoted by SD , i.e.,  

( ) ( )( ) ( ) ( )
3

0 1 0 1mod : , mod .SD a x x a ax xρ ρ ρ ρσ σ   =     

Proof. By definition,  

( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )

3
0 1

0 1 2 0 1 0 1

0 1 0 1

, mod

, mod ,

S

S

S

D a x x

D ax x x x x a a x x

a ax x D a x x

ρ ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

σ

σ

σ

 
 

   ′ ′= =   

   = =   

 

where 0 1 2a ax x x′ = .  
Lemma 4. Let ( ) ( ) 20 1t a x x Sρ ρ

 = ∈  . Then, the local trajectory at  

2modt Bσ ∈  associated with ( )3modSD t σ  (Definition 7) is either  

( ) ( )mod , mod mod ,a S b Ss t D t t s t D tσ σ σ− −  

or  

( ) ( )mod , mod mod , ,b S a Ss t D t t s t D tσ σ σ− −  

where  
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( ) ( ) ( ) ( )

( ) ( ) ( )

0 1 0

0 2

mod , mod ,

mod , mod

a S

b S

s t D t ax x x

s t D t a x x

ρ ρ ρ

ρ ρ

σ σ

σ σ

  =  


 =  

 

(See Figure 4(a)). The local trajectory is called the local trajectory associated 
with 3modt σ .  

Proof. Note that the two facets which do not contain the boundary edge 

( ) ( )0 1, moda ax xρ ρ σ 
   are  

( ) ( ) ( ) ( )

( ) ( )

0 0 1

0

mod , , ,

mod , ,

a S

b S

u t D t ax ax x

u t D t a ax

ρ ρ ρ

ρ

σ

σ

  =  


 =  

 

(See above Definition 6). The result follows immediately.  
Now, let us give the definition of “mountains of unit cubes” shown in Figure 

3(c) and Figure 3(f). 
Definition 21 (A tangent cone Cone A). Let A be a finite subset of 3L . A 

three-dimensional tangent cone 3Cone A L⊂  is defined by  

{ }0 1 2: | , 0 , , .l m nCone A ax x x a A l m n= ∈ ≤ ∈  

The set of all the slant triangles on the surface of Cone A  is denoted by  
( )d Cone A , i.e.,  

( ) ( ){ }2: | vertices  are on the surface of .d Cone A t S v t Cone A= ∈  

Example 8. The tangent cone corresponding to the “mountains of unit cubes” 
of Figure 3(c) and Figure 3(f) is given by  

{ }1 2 13, , , ,Cone P P P�  

where 4 3
1 0 2P x x= , 3 4

2 0 2P x x= , 2 5
3 0 2P x x= , 2 5

4 1 2P x x= , 1 3 5
5 0 1 2P x x x−= ,  

1 4 4
6 0 1 2P x x x−= , 4 3

7 1 2P x x= , 2 4
8 0 1 2P x x x= , 4 3

9 0 1P x x= , 3 2
10 0 1 2P x x x= , 2 2

11 0 1 2P x x x= ,  
4

12 0 1 2P x x x= , and 3 2
13 0 1 2P x x x= .  

Lemma 5. Let 3c L⊂  be a tangent cone. Then,  

( ) ( ){ }2 2| 0 for ,cdc t S l p p v t S= ∈ = ∀ ∈ ⊂  

where  

( ) { }{ }0 1 2: max min , , | .l m n
c a c

l p l m n p ax x x
∈

= =  

Proof. For 3,p a L∀ ∈ , , ,l m n∃ ∈  s.t. 0 1 2
l m np ax x x= . Then, ( ), ,l m n  is the 

coordinate of p with respect to “origin” a. In particular,  

{ }
{ }( ) { }
 if and only if , , 0,

 if and only if min , , 0.
p Cone a l m n
p d Cone a l m n
∈ ≥

 ∈ =
 

The result follows immediately.  
The surface of a tangent cone induces a vector field of ( )22 2, , BTB B π . 
Definition 22 (Vector field cV  on 2B ). Let 3c L⊂  be a tangent cone. The 

vector field cV  on 2B  induced by c is defined by  

( ) ( ) ( )3mod : mod .c SV t D t t dcσ σ= ∈  
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Figure 4. Trajectory on 2B . (a) A local trajectory associated with [ ]1 0 2t a x x S= ∈ ; (b) 

The values of the U/D function (above) and the height function (below) on a closed 
trajectory shown in Figure 3(b). In the figure, U and D denotes +1 and −1, respectively. 
The trajectory starts from [ ] [ ]4 3

0 2 1 00 mods x x x x σ=  and moves clockwise. For the boundary 

edges e (thick line) of the grey triangles, the edge neighborhood ( )N e  is contained in 

the trajectory. Note that the boundary of the trajectory consists of the boundary edges of 
the white triangles. (See Proposition 2 and its Corollary.) 

 

cV  is called a 3 -embeddable vector field of triangles. Note that cV  has no 
singular triangle.  

Remark 1. { }2 mod |B t t dcσ= ∈ , and the value of cV  is determined uni-
quely on 2B .  

Example 9. Shown in Figure 3(c) and Figure 3(f) is the vector field cV  on 

2B  induced by { }1 2 13, , ,c Cone P P P= �  of Example 8.  
Local trajectories of cV  on 2B  (Definition 11) is computed as follows. 
Lemma 6. Let 2s B∈ . Let 3c L⊂  be a tangent cone. Suppose that  

( ) ( ) ( )( )3
0 1 modc SV s D a x xρ ρ σ =   . Then, the local trajectory of ( )cV s  at s is 

either  

( )( ) ( )( ), ,a c b cs s V s s s s V s− −  

or  

( )( ) ( )( ), , ,b c a cs s V s s s s V s− −  

where  

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

0 1 0

0 2

, mod ,

, mod .

a c

b c

s s V s ax x x

s s V s a x x

ρ ρ ρ

ρ ρ

σ

σ

  =  


 =  

 

Proof. See Lemma 4.  
Lemma 7. Let 2s B∈ . Let 3c L⊂  be a tangent cone. Let 0 2s s s− −  be the 

local trajectory of cV  at s. Then,  

( ) ( )0 2 .t cD s s s V s− − =  
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Proof. Note that cV  has no singular triangle on 2B . The result follows im-
mediately.  

Proposition 1. Let V be a vector field on 2B  without singular triangles. 
Then,  

3 a tangent cone  such that .cc L V V∃ ⊂ =  

Proof. See [4].  

3.2.2. The U/D and Height Functions Associated with 3 -Embeddable  
Vector Fields 

Vector fields induced by a tangent cone are inherently associated with an U/D 
function and a height function. 

Let 2s B∈ . Let 3c L⊂  be a tangent cone. Suppose that  
( ) ( ) ( )( )3

0 1 modc SV s D a x xρ ρ σ =   . Then, the local trajectory at s is either  

a bs s s− −  or b as s s− − , where  

( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

0 1

0 1 0

0 2

mod ,

, mod ,

, mod

a a c

b b c

s a x x

s s s V s ax x x

s s s V s a x x

ρ ρ

ρ ρ ρ

ρ ρ

σ

σ

σ

  =  
  = =  


  = =  

 

(See Figure 4(a)). 
Definition 23 (U/D function Sg ). Let 2s B∈ . Let 3c L⊂  be a tangent cone. 

Let [ ] [ ] [ ]0 1 2s s s− −  be the local trajectory of cV  at s (i.e. [ ]1s s= ). The U/D 
function Sg  at s along the trajectory associated with cV  is defined by  

( ) [ ]
[ ]

1, if 2
, :

1, if 2
a

S
b

s s
g c s

s s
− == + =

 

where as  and bs  are given above. That is, −1 and +1 indicate “downhill” and 
“uphill” on the “mountain road” [ ] [ ] [ ]0 1 2s s s− − , respectively.  

Remark 2. In Definition 14, U/D functions are not uniquely specified on an 
n-simplex space because the uphill and downhill along a trajectory are not given 
explicitly. On the other hand, the U/D function is uniquely specified on nB  us-
ing the uphill and downhill along a trajectory of slant n-simplices.  

Lemma 8. Let 3c L⊂  be a tangent cone. Then, ( ),Sg c  is an U/D function 
defined in Definition 14.  

Proof. Let [ ] [ ] [ ]0 1 2s s s− −  be a local trajectory of cV . Let  

[ ] ( ) ( )0 11 mods a x xρ ρ σ =    and [ ]( ) ( ) ( )( )3
0 11 modc SV s D a x xρ ρ σ =   . Suppose 

that [ ]( ), 1 1Sg c s = + . Then, either  

[ ]( ) ( ) ( ) ( )( )1 3
1 1 02 modc SV s D ax x xρ ρ ρ σ−  =    

or  

[ ]( ) ( ) ( )( )3
0 22 mod .c SV s D a x xρ ρ σ =    

Suppose that [ ]( ), 2 1Sg c s = + . Then, [ ]( ) [ ] [ ]( )( )( )1 2 , 1c c a cV s V s s V s= , 
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where either  

[ ] [ ]( )( )( ) ( ) ( )( )3
0 12 , 1 modc a c SV s s V s D a x xρ ρ σ =    

or  

[ ] [ ]( )( )( ) ( ) ( ) ( )( )3
0 2 02 , 1 mod ,c a c SV s s V s D ax x xρ ρ ρ σ =    

respectively. Since [ ] ( ) ( )0 11 mods a x xρ ρ σ =   , we obtain  

[ ]( ) ( ) ( ) ( )( )1 3
1 1 02 mod .c SV s D ax x xρ ρ ρ σ−  =    

That is,  

[ ]( ) [ ]( ) [ ]( ) [ ]( )if , 2 , 1 1, then 2 1 .S S c cg c s g c s V s V s= = + = ∅∩  

Continuing in the same way for the other case, we obtain  

[ ]( ) [ ]( ) [ ]( ) [ ]( ), 2 , 1 if and only if 2 1 .S S c cg c s g c s V s V s= = ∅∩  

The result follows immediately.  
Proposition 2. Let 3c L⊂  be a tangent cone. Let [ ]{ }|L s k k I= ∈ ⊂   be a 

maximal trajectory of cV  on 2B . Let 2s B∈ . Then,  

( )( )
( ) ( )( ), 0 if .

c

S c
s N V s

g c s N V s L
′∈

′ = ⊂∑  

Remark 3. The edge neighborhood ( )( )cN V s  consists of two triangles which 
share the boundary edge ( )cV s  (Definition 4).  

Proof. Let ( )( ) [ ] [ ]{ },cN V s s i s j=  ( i j< ). Suppose that  
[ ]( ) [ ]( ), ,S Sg c s i g c s j= . Then, either [ ]1s i −  or [ ]1s j +  is enclosed by the 

trajectory [ ] [ ] [ ]2s i s i s j− + − −�  of finite length, and the trajectory starting 
from the enclosed triangle (either [ ] [ ]1 2s i s i− − − −�  or  
[ ] [ ]1 2s j s j+ − + −� ) has an “end point”. However, cV  has no singular trian-

gle, which is a contradiction.  
Corollary 1. Suppose that L is closed. Then, the sum of ( ),Sg c  over the 

“boundary” of L is equal to zero, i.e.,  

( ), 0,
bd

S
s R

g c s
∈

=∑  

where ( )( ){ }|bd cR s L N V s L= ∈ ⊂/ .  

Proof. Because of Proposition 2, the sum of ( ),Sg c  over L is equal to the 
sum of ( ),Sg c  over the “boundary” of L, i.e.,  

( ) ( ) ( ) ( ), , , , ,
in bd bd

S S S S
s L s R s R s R

g c s g c s g c s g c s
∈ ∈ ∈ ∈

= + =∑ ∑ ∑ ∑  

where ( )( ){ }|in cR s L N V s L= ∈ ⊂ . Since the sum of ( ),Sg c  over L is zero 

when L is closed, the result follows.  
Example 10. Shown in Figure 4(b) above is the value of the U/D function 

Sg  along a trajectory shown in Figure 3(b). The grey triangles belong to inR , 
and the white triangles belong to bdR . The value of cV  on the first three trian-
gles are  
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[ ]( ) [ ]( )
[ ]( ) [ ]( )
[ ]( ) [ ]( )

4 3 3
0 2 1 0

4 3 3
0 2 1 2

3 3 3
0 1 2 0 2

0 mod ,

1 mod ,

2 mod .

c S

c S

c S

V s D x x x x

V s D x x x x

V s D x x x x x

σ

σ

σ

=

=

=

 

Since  

[ ] [ ]( )( ) [ ] [ ]4 3
0 2 1 20 , 0 mod 1 ,b cs s V s x x x x sσ= =  

we obtain [ ]( ), 0 1Sg c s = + . Since  

[ ] [ ]( )( ) [ ]
[ ]

[ ]

4 3
0 1 2 2 1

3 3
0 1 2 0 2

1 , 1 mod

mod

2 ,

a cs s V s x x x x x

x x x x x

s

σ

σ

=

=

=

 

we obtain [ ]( ), 1 1Sg c s = − . 
Note that two grey triangles sharing a thick edge have opposite values. The 

sum of the U/D function over the set of all the white triangles is equal to zero.  
Definition 24 (Height function Sh ). The height function Sh  on 3L  is a 

-valued function defined by  

( ) ( )0 1 2 : .l m n
Sh x x x l m n= − + +  

The height function Sh  on 2S  is a  -valued function defined by  

( ) ( ): .S i j Sh a x x h a  =   

Let 3c L⊂  be a tangent cone. Then, the height function Sh  on 2B  asso-
ciated with cV  is a  -valued function defined by  

( ) ( ), mod : .S Sh c t h tσ =  

where t dc∈ . 
By an abuse of notation, we use the same name Sh  for three functions with 

different domains.  
Lemma 9. Let 3c L⊂  be a tangent cone. Then, ( ),Sh c  is a height function 

with respect to ( ),Sg c  defined in Definition 15.  
Proof. Let [ ] [ ] [ ]0 1 2s s s− −  be a local trajectory of cV . Then, ( ),Sh c  on 
[ ]2s  is given by  

[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )
[ ]( )

, 1 , 1 , if , 2 , 1
, 2

, 1 , otherwise
S S S S

S
S

h c s g c s g c s g c s
h c s

h c s

 + == 


 

The result follows immediately.  
Proposition 3. Let 2s B∈ . Let 3c L⊂  be a tangent cone. Then, ( ),Sh c  is 

constant on ( )( ) { }0 1,cN V s s s= , i.e.,  

( ) ( )0 1, , .S Sh c s h c s=  

Proof. Since ( ) ( )0 1c cV s V s= , the result follows immediately.  
Example 11. Shown in Figure 4(b) below is the value of the height function 

Sh  along a trajectory shown in Figure 3(b). The value of cV  on the first three 
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triangles are  

[ ]( ) [ ]( )
[ ]( ) [ ]( )
[ ]( ) [ ]( )

4 3 3
0 2 1 0

4 3 3
0 2 1 2

3 3 3
0 1 2 0 2

0 mod ,

1 mod ,

2 mod ,

c S

c S

c S

V s D x x x x

V s D x x x x

V s D x x x x x

σ

σ

σ

=

=

=

 

where [ ]4 3
0 2 1 0x x x x , [ ]4 3

0 2 1 2x x x x , [ ]3 3
0 1 2 0 2x x x x x dc∈ . Then,  

[ ]( ) [ ]( ) ( )4 3 4 3
0 2 1 0 0 2, 0 7.S S Sh c s h x x x x h x x= = = −  

In the same way, we obtain [ ]( ) [ ]( ), 1 , 2 7S Sh c s h c s= = − . 
Note that two grey triangles sharing a thick edge have the same value.  

3.2.3. 4 -Embeddable Vector Fields of Tetrahedrons 
This paper proposes a novel mathematical approach for the design of self-assem- 
bling molecules, where self-assembling molecules are represented as a union of 
trajectories of tetrahedrons. Here we shall consider vector fields on a tetrahedron 
space which are induced by a four-dimensional tangent cone. 

In the same way as for the space 2B  of flat triangles, we shall define a “tetra-
hedron space” by partitioning 3E  into tetrahedrons of the same shape. “Three- 
dimensional” vector fields of tetrahedrons then correspond to a “four-dimen- 
sional” drawing on the surface of “mountains” of unit cubes of 4E . 

Definition 25 (The four-dimensional lattice 4L ). Let 4L  be the four-di- 
mensional lattice generated by four vectors ( )1,0,0,0 , ( )0,1,0,0 , ( )0,0,1,0 , 
and ( )0,0,0,1 , i.e.,  

{ }4 4
0 1 2 3: | , , , .l m n kL x x x x l m n k E= ∈ ⊂  

Shown in Figure 5(a) is a unit cube of 4L  and its “top view”.  
Definition 26 (The symmetric group 4Sym  on four letters). Let 4Sym  be 

the group of all the permutations of the set { }0,1,2,3 . Elements of 4Sym  are 
written in cyclic notation. For example, let ( ) 4021 Symρ = ∈ . Then, ( )0 2ρ = , 
( )1 0ρ = , ( )2 1ρ = , and ( )3 3ρ = .  
Definition 27 (The set B3 of all flat tetrahedrons). Let 4a L∈  and 4Symρ ∈ . 

The slant tetrahedron ( ) ( ) ( )0 1 2a x x xρ ρ ρ
 
   is defined by  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 0 0 1 0 1 2: , , , ,a x x x a ax ax x ax x xρ ρ ρ ρ ρ ρ ρ ρ ρ
   =     

where [ ], , ,a b c d  denotes the convex hull of four points 4, , ,a b c d E∈  (Defi-
nition 1). 

Let 3S  be the set of all slant tetrahedrons, i.e.,  

( ) ( ) ( ){ }4 4
3 0 1 2: | , .S a x x x a L Symρ ρ ρ ρ = ∈ ∈   

The shift operator σ  on 3S  is defined by  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )0 1 2 0 1 2 3: .a x x x ax x x xρ ρ ρ ρ ρ ρ ρσ    =     

Then, an equivalence relation σ  is defined on 3S  by  

( )if and only if s.t. .m
a b a bt t m s t tσ ∃ ∈ =�  
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Figure 5. Trajectory of tetrahedrons. (a) A unit cube of 4L  represented by the Schlegel 
diagram (bottom) and its projection on a three-dimensional hypersurface (top); (b) A 
facet of a unit cube of 4L  (bottom) and its projection on a three-dimensional hyper- 
surface (top), where 1 1Q = , 0xQ x= , 1yQ x= , 2zQ x= , 0 2xzQ x x= , 0 1 2xyzQ x x x= , and 

vP  is the projected image of vQ . The diagonal edge 1 xyzPP  is drawn with a thick line; (c) 

A tetrahedron and its six edges (thick lines). Edges are shown with the adjacent tetra- 
hedrons associated with them. Only four of them (left and center) are included in the 
tangent space; (d) A chain of isosceles tetrahedrons consisting four short edges and two 

long edges (length ratio is 3  to 2), where tetrahedrons are connected via a long edge 
(left). By folding the chain of tetrahedrons, we shall obtain a trajectory of tetrahedrons 
(right). The boundary edges are drawn with thick lines; (e) Closed trajectories of the 

vector field on 3B  induced by { }, , ,yzw xzw xyw xyzCone P P P P , where 0 1 2 3l m n k
l m n k

x y z w
P x x x x= . The 

boundary edges are drawn with thick lines. 
 

The σ -equivalence class of 3t S∈  is called a flat tetrahedron and denoted 
by modt σ . 

The set of all flat tetrahedrons is denoted by 3B , i.e.,  

3 3: .B S σ=  

Example 12. The facet of a unit cube 3S  shown in Figure 5(b) bottom con-
sists of six slant tetrahedrons  

[ ] [ ] [ ] [ ] [ ] [ ]{ }0 1 2 0 2 1 1 2 3 1 3 2 2 0 1 2 1 0 3, , , , , .x x x x x x x x x x x x x x x x x x S⊂  

For example, [ ]0 2 1x x x  is the tetrahedron 1 x xz xyzQ Q Q Q . Then, the “projection 
image” of the facet is divided into six flat tetrahedrons (Figure 5(b) top)  

[ ] [ ] [ ]{
[ ] [ ] [ ] }

0 1 2 0 2 1 1 2 3

1 3 2 2 0 1 2 1 0 3

mod , mod , mod ,

mod , mod , mod .

x x x x x x x x x

x x x x x x x x x B

σ σ σ

σ σ σ ⊂
 

Note that all the tetrahedrons share the “diagonal” edge 1 xyzP P .  
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Lemma 10. 3B  is a tetrahedron space (Definition 3).  
Proof. It follows immediately from the definition.  
By an abuse of notation, the “image on 3B ” of a k-face u of 3s S∈  is also 

denoted by modu σ . The tangent space ( ) ( ) ( )( )0 1 2 modT a x x xρ ρ ρ σ 
   at  

( ) ( ) ( ) 20 1 2 moda x x x Bρ ρ ρ σ  ∈   (Definition 5) is then given by  

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) }

0 1 2

1 2 3 0 2 3

0 1 3 0 1 2

0 0 1 2 0 1

mod

, mod , , mod ,

, mod , , mod ,

, mod , , mod ,

T a x x x

a a x x x a a x x x

a a x x x a ax x x

ax ax x x a ax x

ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

σ

σ σ

σ σ

σ σ

 
 

   ′ ′ ′′ ′′=    

   ′′′ ′′′   

   
   

 

where ( )0a axρ′ = , ( ) ( )0 1a ax xρ ρ′′ =  and ( ) ( ) ( )0 1 2a ax x xρ ρ ρ′′′ = . 

For simplicity, we often identify the edge , modi ja ax x σ    and  
, modi j ka ax x x σ    with the monomial i jx x  and i j kx x x , respectively. Then, 

we shall obtain a one-to-one correspondence  

( ) ( ) ( )( ) { }1 2 3 0 2 3 0 1 3 0 1 2 1 2 0 10 1 2 mod , , , , , .T a x x x x x x x x x x x x x x x x x x xρ ρ ρ σ 
  

 

Definition 28 (Tangent bundle ( )33 3, , BTB B π ). The tangent bundle of 3B  
(Definition 9) is given by  

( ) ( ){ }
( )

3 3

3 3

3 3

: mod , | mod , mod ,

: , mod , : mod .B B

TB t u t B u T t

TB B t u t

σ σ σ

π π σ σ

 = ∈ ∈


→ =
 

Definition 29 (Gradient DSt). Let ( ) ( ) ( ) 30 1 2t a x x x Sρ ρ ρ
 = ∈  . The gradient 

SD t  of t is defined by  

( ) ( ) ( )0 1 2: , mod .SD t a ax x xρ ρ ρ σ =    

That is, SD  is a ( )_ modT σ -valued function on 3S . In particular,  

( ) { }3 1 2 3 0 2 3 0 1 3 0 1 2, , , .SD S x x x x x x x x x x x x  

The “edge” SD t  is called the boundary edge of modt σ . (Strictly speaking, 

SD t  is a set of one element. Here, we identify the set with its only element.)  
Example 13. Shown in Figure 5(c) is the flat tetrahedron [ ]0 2 1 modx x x σ  

(top) and its six edges (thick lines, bottom). All the six edges are shown with the 
adjacent tetrahedrons associated with them (Definition 6). Only four of them are 
included in the image of SD  (left and center). Roughly speaking, U-turns are 
prohibited on 3B  (right).  

Lemma 11. Let 3t S∈ . Then,  

( ) ( )( )4 .S SD t D tσ=  

That is, SD  induces a ( )_ modT σ -valued function on 4
3S σ . By an abuse 

of notation, the induced function is also denoted by SD , i.e.,  

( ) ( ) ( )( ) ( ) ( ) ( )
4

0 1 2 0 1 2mod : , mod .SD a x x x a ax x xρ ρ ρ ρ ρ ρσ σ   =     
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Proof. It can be proved in the same way as the proof of Lemma 3.  
Lemma 12. Let ( ) ( ) ( ) 30 1 2t a x x x Sρ ρ ρ

 = ∈  . Then, the local trajectory at  

3modt Bσ ∈  associated with ( )4modSD t σ  (Definition 7) is  

( ) ( )mod , mod mod ,a S b Ss t D t t s t D tσ σ σ− −  

or  

( ) ( )mod , mod mod , ,b S a Ss t D t t s t D tσ σ σ− −  

where  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 2 0

0 1 3

mod , mod ,

mod , mod .

a S

b S

s t D t ax x x x

s t D t a x x x

ρ ρ ρ ρ

ρ ρ ρ

σ σ

σ σ

  =  


 =  

 

The local trajectory is called the local trajectory associated with 4modt σ .  
Proof. Note that the two facets which do not contain the edge  

( ) ( ) ( )0 1 2, moda ax x xρ ρ ρ σ 
   are  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 1 0 1 2

0 0 1

mod , , , ,

mod , , ,

a S

b S

u t D t ax ax x ax x x

u t D t a ax ax x

ρ ρ ρ ρ ρ ρ

ρ ρ ρ

σ

σ

  =  


 =  

 

(See above Definition 6). The result follows immediately.  
Example 14. Shown in Figure 5(d) (right) is a trajectory on 3B  obtained by 

patching overlapping local trajectories together. By connecting tetrahedrons  
modi j ka x x x σ    via edges , modi i j kax ax x x σ    and , modi ja ax x σ   , we shall 

obtain a chain of isosceles tetrahedrons as shown on the left. In the case of 3B , 
trajectories are obtained by folding the chain of tetrahedrons.  

Four-dimensional “mountains of unit cubes” is defined as follows. 
Definition 30 (A tangent cone Cone A). Let A be a finite subset of 4L . A 

four-dimensional tangent cone 4Cone A L⊂  is defined by  

{ }0 1 2 3: | , 0 , , , .l m n kCone A ax x x x a A l m n k= ∈ ≤ ∈  

The set of all the slant tetrahedrons on the surface of Cone A  is denoted by 
( )d Cone A , i.e.,  

( ) ( ){ }3: | vertices  are on the surface of .d Cone A t S v t Cone A= ∈  

Lemma 13. Let 4c L⊂  be a tangent cone. Then,  

( ) ( ){ }3 3| 0 for ,cdc t S l p p v t S= ∈ = ∀ ∈ ⊂  

where  

( ) { }{ }0 1 2 3: max min , , , | .l m n k
c a c

l p l m n k p ax x x x
∈

= =  

Proof. It follows immediately from the definition.  
The surface of a tangent cone induces a vector field of ( )33 3, , BTB B π . 
Definition 31 (Vector field cV  on 3B ). Let 4c L⊂  be a tangent cone. The 

vector field cV  on 3B  induced by c is defined by  

( ) ( ) ( )4mod : mod .c SV t D t t dcσ σ= ∈  
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cV  is called a 4 -embeddable vector field of tetrahedrons. Note that cV  
has no singular tetrahedron.  

Local trajectories of cV  on 3B  (Definition 11) is computed as follows. 
Lemma 14. Let 3s B∈ . Let 4c L⊂  be a tangent cone. Suppose that  
( ) ( ) ( ) ( )( )4

0 1 2 modc SV s D a x x xρ ρ ρ σ =   . Then, the local trajectory of ( )cV s  at s 
is either  

( )( ) ( )( ), ,a c b cs s V s s s s V s− −  

or  

( )( ) ( )( ), , ,b c a cs s V s s s s V s− −  

where  

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

0 1 2 0

0 1 3

, mod ,

, mod .

a c

b c

s s V s ax x x x

s s V s a x x x

ρ ρ ρ ρ

ρ ρ ρ

σ

σ

  =  


 =  

 

Proof. See Lemma 12.  
Example 15. Shown in Figure 5(e) are four closed trajectories of the vector 

field cV  on 3B  induced by  

{ }, , ,yzw xzw xyw xyzc Cone P P P P=  

(The fourth trajectory is hidden behind others). A rhombic dodecahedron is 
divided into the set of four closed trajectories of length six.  

There is no proof of the following claim. 
Problem 1. Let V be a vector field on 3B  without singular tetrahedrons. 

Then, show that  
4a tangent cone  such that .cc L V V∃ ⊂ =  

3.2.4. The U/D and Height Functions Associated with 4 -Embeddable  
Vector Fields 

Vector fields induced by a tangent cone are inherently associated with an U/D 
function and a height function. 

Definition 32 (U/D function Sg ). Let 3s B∈ . Let 4c L⊂  be a tangent cone. 
Let [ ] [ ] [ ]0 1 2s s s− −  be the local trajectory of cV  at s (i.e. [ ]1s s= ). The U/D 
function Sg  at s along the trajectory associated with cV  is defined by  

( )
[ ] ( )( )
[ ] ( )( )

1, if 2 ,
, :

1, if 2 ,
a c

S
b c

s s s V s
g c s

s s s V s

− == 
+ =

 

where ( ),as  and ( ),bs  are given in Lemma 14.  
Lemma 15. Let 3c L⊂  be a tangent cone. Then, ( ),Sg c  is an U/D function 

defined in Definition 14.  
Proof. It can be proved in the same way as the proof of Lemma 8.  
There is no proof of the following two claims (See Proposition 2). 
Problem 2. Let 4c L⊂  be a tangent cone. Let L be a maximal trajectory of 

cV  on 3B . Let 3s B∈ . Then, show that  
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( )( )
( ) ( )( ), 0 if .

c

S c
s N V s

g c s N V s L
′∈

′ = ⊂∑  

Problem 3. Let 4c L⊂  be a tangent cone. Let L be a maximal trajectory of 

cV  on 3B . Suppose that L is closed. Let 3s B∈ . Then, show that the sum of 
( ),Sg c  over the “boundary” of L is equal to zero, i.e.,  

( ), 0 if  is closed,
bd

S
s R

g c s L
∈

=∑  

where ( )( ){ }|bd cR s L N V s L= ∈ ⊂/ .  
Definition 33 (Height function Sh ). The height function Sh  on 4L  is a  - 

valued function defined by  

( ) ( )0 1 2 3 : .l m n k
Sh x x x x l m n k= − + + +  

The height function Sh  on 3S  is a  -valued function defined by  

( ) ( ): .S i j k Sh a x x x h a  =   

Let 4c L⊂  be a tangent cone. Then, the height function Sh  on 3B  asso-
ciated with cV  is a  -valued function defined by  

( ) ( ), mod : .S Sh c t h tσ =  

where t dc∈ . 
By an abuse of notation, we use the same name Sh  for three functions with 

different domains.  
Lemma 16. Let 4c L⊂  be a tangent cone. Then, ( ),Sh c  is a height func-

tion with respect to ( ),Sg c  defined in Definition 15.  
Proof. It can be proved in the same way as the proof of Lemma 9.  
Proposition 4. Let 2s B∈ . Let 3c L⊂  be a tangent cone. Then, ( ),Sh c  is 

constant on ( )( )cN V s , i.e.,  

( ) ( ) ( )( ), , for , .S S ch c s h c s s s N V s′ ′′ ′ ′′= ∀ ∈  

Proof. Since ( ) ( )c cV s V s′ ′′= , the result follows immediately.  

3.2.5. 2 -Embeddable Vector Fields of Line Segments 
Finally, let us consider briefly vector fields on a line segment space (Figure 6(a)) 
which are induced by a two-dimensional tangent cones. In the following section, 
vector fields of line segments will appear on the contour of a union of trajecto-
ries of triangles. 

Definition 34 (The two-dimensional lattice 2L ). Let 2L  be the two-dimen- 
sional lattice generated by two vectors ( )1,0  and ( )0,1 , i.e.,  

{ }2 2
0 1: | , .l mL x x l m E= ∈ ⊂  

Definition 35 (The symmetric group 2Sym  on two letters). Let 2Sym  be 
the group of all the permutations of the set { }0,1 . 2Sym  consists of an identity 
element and ( )01 .  

Definition 36 (The set B1 of all flat line segments). Let 2a L∈  and  
2Symρ ∈ . The slant line segment ( )0a xρ 

   is defined by  
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Figure 6. Line segment space. (a) A line segment space consisting of line segments of the 
same length; (b) Gradients of line segments. The arrows indicate the position of boundary 
vertices. From top to bottom, an isolated line segment, two regular line segments, a 
branch line segment; (c) The vector field cV  on 1B  (top) induced by a tangent cone 

{ }3 1 1 2
0 1 0 1, ,c Cone ax x a ax x− −=  (bottom). 

 

( ) ( )0 0: , .a x a axρ ρ
   =     

Let 1S  be the set of all slant tetrahedrons, i.e.,  

( ){ }2 2
1 0: | , .S a x a L Symρ ρ = ∈ ∈   

The shift operator σ  on 1S  is defined by  

( )( ) ( ) ( )0 0 1: .a x ax xρ ρ ρσ    =     

Then, an equivalence relation σ  is defined on 1S  by  

( )if and only if s.t. .m
a b a bt t m s t tσ ∃ ∈ =�  

The σ -equivalence class of 1t S∈  is called a flat line segment and denoted 
by modt σ . 

The set of all flat triangles is denoted by 1B , i.e.,  

1 1: .B S σ=  

Lemma 17. 1B  is a line segment space (Definition 3).  
Proof. It follows immediately from the definition.  
By an abuse of notation, the “image on 1B ” of a vertex v of 1s S∈  is also 

denoted by modv σ . The tangent space ( )( )0 modT a xρ σ 
   at  

( ) 10 moda x Bρ σ  ∈   (Definition 5) is then given by  

( )( ) ( ){ }
( ) ( ){ }

0 0

0 1

mod mod , mod

mod , mod ,

T a x ax a

ax a x

ρ ρ

ρ ρ

σ σ σ

σ σ

  = 

′=
 

where ( )0a axρ′ = . For simplicity, we often identify the vertex ( )0 modaxρ σ  
with ( )0xρ . We shall then obtain a one-to-one correspondence  

( )( ) { }0 10 mod , .T a x x xρ σ 
  

 

Definition 37 (Tangent bundle ( )11 1, , BTB B π ). The tangent bundle of 1B  
(Definition 9) is given by  

( ) ( ){ }
( )

1 1

1 1

1 1

: mod , | mod , mod ,

: , mod , : mod .B B

TB t v t B v T t

TB B t v t

σ σ σ

π π σ σ

 = ∈ ∈


→ =
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Definition 38 (Gradient SD t ). Let ( ) 10t a x Sρ
 = ∈  . The gradient SD t  of t 

is defined by  

( )0: mod .SD t axρ σ=  

That is, SD  is a ( )_ modBT σ -valued function on 1S . The “vertex” SD t  is 
called the boundary vertex of modt σ . (Strictly speaking, SD t  is a set of one 
element. Here, we identify the set with its only element.)  

Example 16. Shown in Figure 6(b) are all the four types of gradients of line 
segments (Definition 5). In the case of 1B , only regular line segments are al-
lowed.  

Lemma 18. Let 1t S∈ . Then,  

( ) ( )( )2 .S SD t D tσ=  

That is, SD  induces a ( )_ modBT σ -valued function on 2
1S σ . By an abuse 

of notation, the induced function is also denoted by SD , i.e.,  

( )( ) ( )
2

0 0mod : mod .SD a x axρ ρσ σ  =   

Proof. It can be proved in the same way as the proof of Lemma 3.  
Lemma 19. Let ( ) 10t a x Sρ

 = ∈  . Then, the local trajectory at 1modt Bσ ∈  
associated with ( )2modSD t σ  (Definition 7) is either  

( )mod mod ,b St s t D tσ σ−  

or  

( )mod , mod ,b Ss t D t tσ σ−  

where ( ) ( )1mod , modb Ss t D t a xρσ σ =   . The local trajectory is called the local 
trajectory associated with 2modt σ .  

Proof. Note that ( )mod ,b Su t D tσ  is the only vertex of modt σ  that is not 
the boundary vertex ( )0 modaxρ σ . Because of the boundary vertex ( )0 modaxρ σ  
between modt σ  and ( )mod ,a Ss t D tσ , local trajectories only go in one direc-
tion.  

Two-dimensional “mountains of unit cubes” is defined as follows. 
Definition 39 (A tangent cone Cone A). Let A be a finite subset of 2L . A 

two-dimensional tangent cone 2Cone A L⊂  is defined by  

{ }0 1: | , 0 , .l mCone A ax x a A l m= ∈ ≤ ∈  

The set of all the slant line segments on the surface of Cone A  is denoted by 
( )d Cone A , i.e.,  

( ) ( ){ }1: | vertices  are on the surface of .d Cone A t S v t Cone A= ∈  

The surface of a tangent cone induces a vector field of ( )11 1, , BTB B π . 
Definition 40 (Vector field cV  on 1B ). Let 2c L⊂  be a tangent cone. The 

vector field cV  on 1B  induced by c is defined by  

( ) ( ) ( )2mod : mod .c SV t D t t dcσ σ= ∈  

cV  is called a 2 -embeddable vector field of line segments. Note that cV  
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has no singular line segment.  
Example 17. Shown in Figure 6(c) is a tangent cone  

{ }3 1 1 2
0 1 0 1, ,Cone ax x a ax x− −  

and the vector field on 1B  induced by the cone (top).  
Local trajectories of cV  on 1B  (Definition 11) is computed as follows. 
Lemma 20. Let 1s B∈ . Let 2c L⊂  be a tangent cone. Suppose that  

( ) ( )( )2
0 modc SV s D a xρ σ =   . Then, the local trajectory of ( )cV s  at s is either  

( ) ( )1 1mod or mod .s a x a x sρ ρσ σ   − −     

Proof. See Lemma 19.  
Example 18. Let us consider a trajectory [ ] [ ] [ ]{ }0 , 1 , , 9s s s�  of the vector 

filed cV  shown in Figure 6(c).  

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

The local trajectory at 0  is 0 1 ,

The local trajectory at 1  is 1 2 ,

The local trajectory at 2  is 1 2 ,

The local trajectory at 3  is 3 4 .

s s s

s s s

s s s

s s s

−

−

−

−

 

By connecting overlapping local trajectories, we shall obtain three maximal 
trajectories of line segments (Definition 12, 13), i.e.,  

[ ] ( ]{ } [ ] [ ]{ } [ ] [ ){ }1 | , 2 | 3,7 | 8, .B s i i s i i s i i= ∈ −∞ ∈ ∈ ∞∪ ∪  

Proposition 5. Let V be a vector field on 1B  without singular line segments. 
Then,  

2a tangent cone such that .cc L V V∃ ⊂ =  

Proof. It follows immediately from the definition.  

3.2.6. The U/D and Height Functions Associated with 2 -Embeddable  
Vector Fields 

Vector fields induced by a tangent cone are inherently associated with an U/D 
function and a height function. 

Definition 41 (U/D function Sg ). Let 1s B∈ . Let 2c L⊂  be a tangent cone. 
Let [ ] [ ]0 1s s−  be the local trajectory of cV  at s (i.e. [ ]0s s=  or [ ]1s s= ). 
The U/D function Sg  at s along the trajectory associated with cV  is defined 
by  

( ) [ ]
[ ]

1, if 1
, :=

1, if 0 .S

s s
g c s

s s
− =
+ =

 

Lemma 21. Let 3c L⊂  be a tangent cone. Then, ( ),Sg c  is an U/D function 
defined in Definition 14.  

Proof. It follows immediately from the definition.  
Example 19. Let us consider a flow [ ] [ ] [ ]{ }0 , 1 , , 10s s s�  of the vector filed 

cV  shown in Figure 6(c).  
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[ ]( ) [ ] [ ] [ ]
[ ]( ) [ ] [ ] [ ]
[ ]( ) [ ] [ ] [ ]
[ ]( )

, 0 1 because the local trajectory at 0  is 0 1 ,

( , 1 1 because the local trajectory at 1  is 1 2 ,

, 2 1 because the local trajectory at 2  is 1 2 ,

, 3 1 because the local trajectory at

S

S

S

S

g c s s s s

g c s s s s

g c s s s s

g c s

= + −

= + −

= − −

= + [ ] [ ] [ ] 3  is 3 4 .s s s−

 

Definition 42 (Height function Sh ). The height function Sh  on 2L  is a  - 
valued function defined by  

( ) ( )0 1 : .l m
Sh x x l m= − +  

The height function Sh  on 1S  is a  -valued function defined by  

[ ]( ) ( ): .S i Sh a x h a=  

Let 2c L⊂  be a tangent cone. Then, the height function Sh  on 1B  asso-
ciated with cV  is a  -valued function defined by  

( ) ( ), mod : .S Sh c t h tσ =  

where t dc∈ . 
By an abuse of notation, we use the same name Sh  for three functions with 

different domains.  
Lemma 22. Let 2c L⊂  be a tangent cone. Then, ( ),Sh c  is a height func-

tion with respect to ( ),Sg c  defined in Definition 15.  
Proof. It follows immediately from the definition.  
Example 20. Let us consider a flow [ ] [ ] [ ]{ }0 , 1 , , 10s s s�  of the vector filed 

cV  shown in Figure 6(c). Suppose that ( ) ( )0 1 :l m
Sh ax x l m= − + . Then,  

[ ]( ) ( )
[ ]( ) ( )
[ ]( ) ( )
[ ]( ) ( )

4 1
0 1

3 1
0 1

3 1
0 1

2
0

, 0 3,

, [ 1 2,

, 2 2,

, 3 2.

S S

S S

S S

S S

h c s h ax x

h c s h ax x

h c s h ax x

h c s h ax

−

−

−

= = −

= = −

= = −

= = −

 

3.3. Flows of Locally n+1 -Embeddable Vector Fileds 

In our mathematical model of self-assembling molecules, the “spatial arrange-
ment of the subunits (such as amino acids, nucleic acids, or others)” on their 
surfaces corresponds to the “flow of triangles” induced on the surface of a union 
of trajectories of tetrahedrons. Surface flows (i.e., flows of triangles) on trajecto-
ries of tetrahedrons of 4Z -embeddable vector fields are not necessarily 3Z
-embeddable. Here, we shall consider vector fields of n-simplices that is locally 
isomorphic to a 1nZ + -embeddable vector field. 

In the previos paper [5], we have proposed the 1nZ + -embeddability as a novel 
geometrical interpretation of the long-distance regulation of protein interactions 
such as “allosteric regulation”. (See the self-eclipsed closed trajectory shown in 
Example 26.) 

Let M be an n-simplex space and U M⊂ . Let ( )P U  be the set of all the 
k-faces ( 0 k n≤ ≤ ) of n-simplices of U, i.e.,  
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( ) ( )
0

: ,k
s U k n

P U P s
∈ ≤ ≤

= ∪ ∪  

where ( )kP s  is the set of all the k-faces of s (Definition 2). 
Definition 43 (Simplical isomorphism). Let aM  and bM  be n-simplex 

spaces. Let a aU M⊂  and b bU M⊂ . A one-to-one mapping µ  from ( )aP U  
to ( )bP U  is called a simplical isomorphism on aU  if  

[ ]( ) ( ) ( ) ( )0 1 0 1, , , , , ,k kv v v v v vµ µ µ µ =  � �  

for each k-face [ ]0 1, , , kv v v�  ( )0 k n≤ ≤  of as U∈ . Then, aU  is called sim-
plically isomorphic to bU  by µ . This is denoted by writing a bU Uµ≈ .  

Definition 44 (n-cube neighborhood). An n-cube neighborhood of nB  is a 
set of n-simplices expressed in the form of  

( ) ( ) ( ){ }0 1 1 mod | ,n
na x x x Symρ ρ ρ σ ρ−

  ∈ �  

where 1na L +∈ . As shown in Figure 7, a 1-cube neighborhood is an interval 
composed of two flat line segments, a 2-cube neighborhood is a hexagonal re-
gion composed of six flat triangles, and a 3-cube neighborhood is a dodecahe-
dronal region composed of 24 flat tetrahedrons. 

Let U be a subset of an n-simplex space M. U is called an n-cube neighbor-
hood of M if there exist an n-cube neighborhood B nU B⊂  and a simplical 
isomorphism ( ) ( ): BP U P Uµ →  on U such that  

.BU Uµ≈  

Definition 45 (Locally Bn-embeddable n-simplex space). Let M be an n-sim- 
plex space and W M⊂ . W is called locally nB -embeddable if each s W∈  has 
an n-cube neighborhood U W⊂ , i.e.,  

-cube neighborhood such that ,B n m Bn U B s U U∃ ⊂ ∈ ≈  

where µ  is a simplical isomorphism on U.  
Definition 46 (Locally 1nZ + -embeddable vector field on an n-cube neigh-

borhood U). Let M be a locally nB -embeddable n-simplex space and W M⊂ . 
Let U W⊂  and B nU B⊂  be n-cube neighborhoods such that BU Uµ≈ , 
where µ  is a simplical isomorphism on U. Let V be a vector field on W. Then, 
V is called locally 1nZ + -embeddable on U if there exist a one-to-one mapping 

:
BnU UTM TBτ →  and a tangent cone 1nc L +∈  such that  

( )( )( ) ( ) ( )( )( ), , for ,cs V s s V s s Uτ µ µ= ∀ ∈  

where ( ){ }: | MUTM t TM t Uπ= ∈ ∈ , ( ){ }: |
nBn n B BUTB t TB t Uπ= ∈ ∈ , and cV  

is the vector field on nB  induced by c. This is denoted by writing 
BcU UV Vτ≅ . 

τ  is called a local 1nZ + -embedding of TM on U.  
Definition 47 (Locally 1n+� -embeddable vector field on a subset W). Let M 

be a locally nB -embeddable n-simplex space and W M⊂ . Let V be a vector 
field on M. Then, V is called locally 1n+� -embeddable on W if, for s W∀ ∈ ,  

1

-cube neighborhoods and such that ,
a tangent cone such that ,

B

B n m B
n

t cU U

n U W U B s U U
c L V V+

∃ ⊂ ⊂ ∈ ≈
∃ ⊂ ≅

 

https://doi.org/10.4236/am.2019.1011065


N. Morikawa 
 

 

DOI: 10.4236/am.2019.1011065 936 Applied Mathematics 
 

 
Figure 7. n-cube neighborhood. (a) A 1-cube neighborhood (left). Vector fields induced 
by a tangent cone on the interval are shown on the right. Arrows indicate the position of 
boundary vertices; (b) A 2-cube neighborhood (left). Vector fields induced by a tangent 
cone on the hexagonal region are shown on the right. Boundary edges are drawn with 
thick lines; (c) A 3-cube neighborhood consisting of 24 tetrahedrons. 
 
where µ  is a simplical isomorphism on U, cV  is the vector field on nB  in-

duced by c, and τ  is a local 1nZ + -embedding of TM on U.  
Definition 48 (U/D function and height function). Let M be a locally nB

-embeddable n-simplex space and W M⊂ . Let V be a locally 1n+ -embeddable 
vector field on W. Let s W∈  and sU W⊂  be an n-cube neighborhood of s. 
We can then define an U/D function and a height function on sU . 

By patching height functions on sU  ( s W∈ ) seamlessly over W, we shall 
obtain either a singlevalued or a multivalued height function on W which is 
called the continuation of the local height functions (i.e., height functions on 

sU ) to W. The continuation of height functions to W is called a height function 
on W. 

By patching U/D functions on sU  ( s W∈ ) consistently over W, we shall 
obtain a singlevalued U/D function on W which is called the continuation of the 
local U/D functions to W. The continuation of U/D functions to W is called a 
U/D function on W.  

There is no proof of the following claim. 
Problem 4. Let V be a locally 1n+ -embeddable vector field on nW B⊂ . Let 

L W⊂  be a closed trajectory of V. Let g be an U/D function along L. Let gh  be 
the height function with respect to g. Then, show that  

( )is not multivalued 0.g
s L

h g s
∈

⇔ =∑  

Example 21 (The Penrose stairs-like closed trajectory [25]). Shown in Figure 
8(a) is a locally 3 -embeddable vector fields of triangles. Note that each trian-
gle except the isolated triangle (white) has one of the 2-cube neighborhoods 
shown in Figure 7(b). Shown on the right is the closed trajectory around the 
isolated triangle: [ ] [ ]1 00 mods x x σ= , [ ] [ ]1 21 mods x x σ= , � ,  

[ ] [ ]2 1 2
0 1 2 0 115 mods x x x x x σ− − −= . Starting from the slant triangle [ ]1 0x x , an U/D 

function and a height function are computed as shown at the bottom. Returning 

to the initial triangle, we shall obtain a slant triangle [ ]2 1 2
0 1 2 1 0x x x x x− − −  over  

[ ] [ ]12 0s s= . That is, going around the trajectory increases the value of the 
height function by 6.  
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Figure 8. Trajectories on locally 1n+ -embeddable vector fields. (a) A locally 3 - 
embeddable vector field of triangles on { }2 \ the white triangleW B=  (left), and the 

closed trajectory of length 12 around the isolated triangle colored white (right). Shown at 
the bottom are the values of an U/D function and a height function along the trajectory; 
(b) A closed trajectory of length 24 around a 4-fold singular tetrahedron on a locally 4 - 
embeddable vector field. For simplicity, 0x , 1x , 2x , 3x  are written as x, y, z, w, 
respectively; (c) A trajectory going around a 3-fold singular tetrahedron clockwise helically 
on a locally 4 -embeddable vector field. One complete helix turn consists of 21 tetra- 
hedrons (white). 

 
Example 22 (A four-dimensional version of the Penrose stairs). Shown in 

Figure 8(b) is a closed trajectory on a locally 4 -embeddable vector fields of 
tetrahedrons. The trajectory goes around a 4-fold singular tetrahedron (Defini-
tion 10): [ ] [ ]0 mods wyz σ= , [ ] [ ]1 mods w yzw σ= , � ,  

[ ] [ ]3 3 3 323 mods x y z w wyx σ− − − −= . Start from the slant tetrahedron [ ]wyz  and 
go around the trajectory clockwise, we shall obtain a slant triangle  

[ ]3 3 3 3x y z w wyx− − − −  over [ ] [ ]24 0s s=  when returning to the initial tetrahe-
dron. That is, going around the trajectory increases the value of the height func-
tion by 12.  

Example 23 (A helix of tetrahedrons). Shown in Figure 8(c) is a trajectory on 

a locally 4 -embeddable vector fields of tetrahedrons. The trajectory goes around 
a 3-fold singular tetrahedron (Definition 10) clockwise helically:  
[ ] [ ]0 mods wyz σ= , [ ] [ ]1 mods w yzw σ= , � ,  

[ ] [ ]2 2 2 320 mods x y z w wyx σ− − − −= , � .  
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4. Boundary Value Problem 

Now let us consider the design problem of self-assembling molecules using the 
mathematical framework described in the previous section. In particular, we 
shall consider the problem of finding a backbone conformation that forms a 
shape of the desired properties. In our model, the question is rephrased as a 
“boundary value problem for flows on a space of 3-simplices”, i.e.,  

“Given a triangular flow (i.e., desired properties). Find a tetrahedral flow (i.e., 
well-defined shape) that induces the triangular flow as its surface flow.”  

After giving the definition of surface flow in 4.1, we shall consider the boun-
dary value problem in some simple cases in 4.2. We shall also characterize 3
-embeddable surface flow (Proposition 8) and locally 3 -embeddable surface 
flow (Problem 5) using U/D functions. 

In 4.3, we shall propose algebraic representations of 3Z -embeddabe surface 
flow (Proposition 9) and locally 3Z -embeddabe surface flow (Problem 6) using 
cotangent cones (Definition 53, 54). We believe they will give a kind of geome-
trical characterization of “allosteric proteins” as described in [5]. 

4.1. Surface Flow  

Definition 49 (The surface L∂  of L). Let V be a vector field of an n-simplex 
space M ( 1n > ). Let L M⊂  be a union of trajectories of V. A facet u of s L∈  
is called a boundary facet of L if the facet neighborhood ( )N u L⊂/  (Definition 
4). The surface L∂  of L is the set of all boundary facets of L, i.e.,  

( ){ }: |  is a facet of  such that .
s L

L u s u s N u L
∈

∂ = ⊂ ⊂/∪  

That is, L∂  is the ( )1n − -dimensional surface of the n-dimensional region 
swept by L.  

The surface of a union of maximal trajectories of n-simplices is actually an 

( )1n − -simplex space. That is, each ( )1n − -simplex on the surface is connected 
uniquely to n adjacent ( )1n − -simplices on the surface through its n facets (De-
finition 3). 

Proposition 6. Let V be a vector field of an n-simplex space M ( 1n > ). Let 
L M⊂  be a union of maximal trajectories of V. Then, L∂  is an ( )1n − -sim- 
plex space.  

Proof. We shall show that, for any u L∈∂  and any facet w u⊂ , there is a 
unique adjacent ( )1n − -simplex of L∂  connecting to u through w. 

Let u L∈∂ . Then, by definition,  

0 0 0, such that , , .s s M s L s L u s s∃ ∈ ∈ ∉ = ∩  

Let w u⊂  be a facet. Then, ( )N w  is divided into two subsets ( )N w L∩  
and ( ) \N w L  by L∂  and  

( ) ( )0and \ .s N w L s N w L∈ ∈∩  

Let 0 0u s⊂  be the facet such that 0u u w=∩ . If ( )0N u L ≠ ∅∩ , then  
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0u L⊂ ∂  and 0u  gives an ( )1n − -simplex connecting to u through w. 
Otherwise, there exists an adjacent n-simplex 1s  of 0s  such that  

( )1 \ .s N w L∈  

Let 1 1u s⊂  be the facet such that 1u u w=∩ . If ( )1N u L ≠ ∅∩ , then  

1u L⊂ ∂  and 1u  gives an ( )1n − -simplex connecting to u through w. 
Otherwise, continuing in the same way, we will obtain an ( )1n − -simplex 

connecting to u through w because the finite set ( )N w  is divided into two 
subsets by L∂ . 

Note that ( )N w L∩  and ( ) \N w L  may consist of multiple consecutive 
parts, i.e., u may have multiple ( )1n − -simplices connecting through w. How-
ever, the “adjacent ( )1n − -simplex on the surface” of u is uniquely determined.  

A union of maximal trajectories of n-simplices induces a flow of ( )1n −
-simplices on its surface that is an ( )1n − -simplex space. 

Proposition 7. Let V be a vector field of an n-simplex space M ( 1n > ). Let 
L M⊂  be a union of maximal trajectories of V. Set  

( ) ( ){ }: | , .V L L V s u s L u L′ ′∂ = ∈ ∈∂∩ ∩  

( )V L L∂∩  then induces a vector field on L∂ . We denote the induced vector 
field by V∂ . 

Let u L∈∂ . Note that ( )N u L∩  consists of an n-simplex by definition. We 
then have  

( ) ( )( )the unique -simplex of .V u V n N u L∂ = ∩  

If V has no singular n-simplices, then V∂  has no singular ( )1n − -simplices 
neither.  

Proof. It follows immediately from the definition. See the following remark.  
Remark 4. Recall that ( )V s  is a subset of the set ( )T s  of all the edges of 

s M∈  (Definition 5, 10). s is a regular n-simplex of V if ( )V s  contains only 
one edge. Otherwise, s is called a singular n-simplex of V.  

Example 24 (Surface flow of line segments). Shown in Figure 9(a) are a 
closed trajectory (right) and a union of closed trajectories (left) of 2B . The same 
surface flow shown in Figure 9(b) is induced on their surfaces. In other words, 
the surface flow dose not specify uniquely a region (i.e., a union of trajectories of 
triangles) of 2B . 

Shown in Figure 9(c) is a union of closed trajectories of 2B , which induces 
the surface flow shown in Figure 9(d). In this case, the surface flow specifies 
uniquely a region of 2B . 

Both of the surface flows are locally 2  embeddable. (They are not 2  
embeddable because they are defined on a “closed curve”.)  

4.2. Boundary Value Problem  

The definition of the boundary value problem for flows on a space of n-simplices 
is given as follows. 
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Figure 9. Surface flow of line segments. The boundary edge of a white triangle gives the 
starting line segment [ ]0s  of the surface, i.e., the contour of the region swept by the 

union of closed trajectories. (a) A closed trajectory (left) and a union of closed trajectories 
(right) of 2B , both of which induce the same surface flow [ ] [ ]{ }| 0,15s i i∈  of length 16; 

(b) The surface flow of the vector field induced on the trajectories of (a) (top), where 
arrows indicate the position of the boundary vertices (See also Figure 6). Shown at the 
bottom is the tangent cone which induces the vector field; (c) A union of closed trajectories 
of 2B , which induces a surface flow [ ] [ ]{ }| 0,15s i i∈  of length 16; (d) The surface flow 

of the vector field induced on the trajectories of (c). 
 

Definition 50 (Boundary value problem for flows on a space of n-simplices). 
Let A be an ( )1n − -simplex space. Let M be an n-simplex space. Given a flow E 
of a vector field V ′  on A. Find a union L of trajectories of a vector field V on M 
such that  

( ) ( )
,

,
L A
V L V E

µ

µ

∂ ≈
 ′∂ ∂ ≈

 

where ( ) ( ){ }: |V L V s s L∂ ∂ = ∂ ∈∂ , ( ) ( ){ }: |V E V s s E′ ′= ∈ , and A Bµ≅  de-
notes a simplical isomorphism between A and B (Definition 43).  

Definition 51 (Locally 1n+ -embeddable surface flow of ( )1n − -simplices). 
Let A be an ( )1n − -simplex space. Let E be a flow of a vector field on A. E is 
called locally 1n+ -embeddable if the pair ( ),A E  has a solution ( ),L V  to the 
boundary value problem defined in Definition 50 such that V is locally 1n+
-embeddable on nB . E is called 1n+ -embeddable if V is 1n+ -embeddable on 

nB .  
Example 25 (Boundary value problem for flows on a space of triangles). Sup-

pose that we are given a flow of line segments shown in Figure 9(b). That is, the 
A of Definition 50 is a “closed curve” of line segments of length 16, and the E of 
Definition 50 is a flow of a locally 2 -embeddable vector field on A. 

Then, we have two solutions on 2B  shown in Figure 9(a). One is a trajectory 
of a 3  embeddable vector field on 2B  (left). The other is a union of two 
closed trajectories of another 3 -embeddable vector field on 2B  (right). In 
particular, E is 3 -embeddable. 
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On the other hand, suppose that we are given a flow of line segments shown in 
Figure 9(d). That is, A is a “closed curve” of line segments of length 16, and E is 
a flow of another locally 3 -embeddable vector field on A. 

Then, a solution is determined uniquely on 2B  (Figure 9(c)), and E is also 
3 -embeddable.  
Proposition 8. Let A be a line segment space. Let E be a flow of a vector field 

on A. That is, ( ),A E  is the pair given in Definition 50. Let g be the (continua-
tion of) U/D function on A (Definition 41, 48). Then,  

( )3is -embeddable 0.
s A

E g s
∈

⇒ =∑  

Proof. It follows immediately from Corollary 1 after Proposition 2.  
Remark 5. The claim of opposite direction is not valid. That is,  

( ) 30 is -embeddable.
s A

g s E
∈

= ⇒/∑   

For a counterexample, see Example 26.  
Example 26 (Self-eclipsed closed trajectory of triangles). Suppose that we are 

given a flow of line segments shown in Figure 10(a). That is, the A of Definition 
50 is a loop of line segments of length 10, and the E of Definition 50 is a flow of a 
locally 2 -embeddable vector field on A. 

Then, we have a solution on 2B  shown in Figure 10(b), which is a trajectory 
of a 3 -embeddable vector field on 2B . That is, E is 3 -embeddable. Note 
that the “slope” of the line segment [ ]4s  is under the influence of another line 
segment [ ]0s . (That is, the region swept by the closed trajectory of triangles is 
“eclipsed by itself” at [ ]4s  and [ ]5s . See [5] for detailed description.) 

On the other hand, suppose that we are given a flow of line segments shown in 
Figure 10(c). That is, A is a loop of line segments of length 10, and E is a flow of 
another locally 2 -embeddable vector field on A. 

 

 
Figure 10. Boundary value problem for flows on a space of triangles. (a) A flow of a 
locally 2 -embeddable vector field of line segments on a “closed curve” of length 10 
(top), where arrows indicate the position of the boundary vertices (See also Figure 6). 
Shown at the bottom is the tangent cone which induces the vector field; (b) A closed 
trajectory of a 3 -embeddable vector field cV  on 3B , where 1 1P = , 2 1

2 0 1 2P x x x−= , 
1 2

3 0 1 2P x x x−= , and { }1 2 3, ,c Cone P P P= ; (c) A flow of a locally 3 -embeddable vector field 

of line segments on a “closed curve” of length 10 (top). Shown at the bottom is the 
tangent cone which induces the vector field; (d) A closed trajectory of a locally 3 - 
embeddable vector field on 3B . 
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Then, we have a solution on 2B  shown in Figure 10(d), which is a trajectory 
of a locally 3 -embeddable vector field on 2B . That is, E is locally 3
-embeddable. In this case, height functions are not multivalued (Definition 48) 
on the surface flow, but the “slope” of the line segments [ ]0s  and [ ]4s  are 
not consistent.  

There is no proof of the following claim. 
Problem 5. Let A be a line segment space. Let E be a flow of a vector field on 

A. That is, ( ),A E  is the pair given in Definition 50. Let g be the (continuation 
of) U/D function on A (Definition 41, 48). Then, show that  

( ) 30 is locally -embeddable.
s A

g s E
∈

= ⇒∑   

Remark 6. The claim of opposite direction is not valid. That is,  

( )3is locally -embeddable 0.
s A

E g s
∈

⇒ =/ ∑  

For a counterexample, see Example 27.  
Example 27 (Closed trajectory around a singular n-simplex). Let A be a loop 

of line segments of length 9. Let E be the (outer) surface flow E induced by the 
closed trajectory of triangles of Figure 8(a) right. Then,  

( ) 3.
s A

g s
∈

=∑  

(Recall that it is a version of Penrose stirs.) 
In this case, we shall obtain a solution (to the boundary value problem) on a 

triangle space if we permit a singular triangle as shown in Figure 8(a). In partic-
ular, E is locally 3 -embeddable.  

4.3. The Cotangent Cone Representation of L∂   

So far we have considered two types of surface flows of ( )1n − -simplices. One is 
1n+ -embeddable, and the other is locally 1n+ -embeddable. In the case of 
2n = , it may be possible to distinguish between the two types using “cotangent” 

cones (Definition 53, 54) as shown below. For the case of 3n = , see [5]. 
First, let us consider the lattice generated by gradients (Definition 20) of slant 

n-simplices of nS . 
Definition 52 (The three-dimensional conjugate lattice 3L∗ ). Let 3L∗  be the 

three-dimensional lattice generated by three vectors ( )0,1,1 , ( )1,0,1 , and 
( )1,1,0 , i.e.,  

( ) ( ) ( ){ } 3
3 1 2 0 2 0 1: | , ,m nlL x x x x x x l m n E∗ = ∈ ⊂  

(Figure 11(a)). 3L∗  is called the three-dimensional conjugate lattice.  
Two types of cotangent cones are defined on 3L∗ . 
Definition 53 (A cotangent cone Cone A∗ ). Let A be a finite subset of 3L∗ . A 

three-dimensional cotangent cone 3Cone A L∗ ∗⊂  is defined by  

( ) ( ) ( ){ }1 2 0 2 0 1: | , 0 , , .m nlCone A a x x x x x x a A l m n∗ = ∈ ≤ ∈  

Example 28. Shown in Figure 11(b) are a tangent cone and a cotangent cone:  
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Figure 11. Cotangent cones. (a) The conjugate lattice 3L∗ ; (b) { }1 2 3, ,Cone P P P  and 

{ }1Cone Q∗ , where 1 1
1 0 2Q x x− −= . The surface flow of Figure 10(a) is obtained as the 

intersection of them; (c) { }1Cone Q∗  and { }2ICone Q∗ , where 2 4 2
2 0 1 2Q x x x= . The surface 

flow of Figure 10(c) is obtained as the intersection of them. 
 

{ } { }
{ } { }

2 1 1 2
1 2 3 0 1 2 0 1 2

1 1
1 0 2

, , 1, , ,

.

Cone P P P Cone x x x x x x

Cone Q Cone x x

− −

∗ ∗ − −

 =


=
 

Note that the surface flow of Figure 10(a) is obtained as the intersection  

{ } { }1 1 2 3, , .Cone Q Cone P P P∗ ∩  

That is, the intersection of a tangent cone and a cotangent cone gives a 3
-embeddable surface flow.  

Definition 54 (An inverted cotangent cone ICone A∗ ). Let A be a finite sub-
set of 3L∗ . A three-dimensional inverted cotangent cone 3ICone A L∗ ∗⊂  is de-
fined by  

( ) ( ) ( ){ }1 2 0 2 0 1: | , 0 , , .m nlICone A a x x x x x x a A l m n∗ = ∈ ≥ ∈  

Example 29. Shown in Figure 11(c) are a cotangent cone and an inverted co-
tangent cone:  

{ } { }
{ } { }

1 1
1 0 2

2 4 2
2 0 1 2

,

.

Cone Q Cone x x

ICone Q ICone x x x

∗ ∗ − −

∗ ∗

 =


=
 

Note that the surface flow of Figure 10(c) is obtained as the intersection  

{ } { }1 2 .Cone Q ICone Q∗ ∗∩  

That is, the intersection of a cotangent cone and an inverted cotangent cone 
gives a locally 3 -embeddable surface flow.  

3 -embeddable surface flows are characterize by the following proposition. 
Proposition 9. Let E be a surface flow of line segments on a closed curve. 

Then, E is 3 -embeddable if and only if E is obtained as the intersection of a 
tangent cone and a cotangent cone (See Figure 11(b)). That is,  

3

3
3

is -embeddable

, such that .

E
A L B L E Cone A Cone B∗ ∗⇔ ∃ ⊂ ∃ ⊂ = ∩
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Proof. (⇐ ) It follows immediately from the definition. 
(⇒ ) The contour of the region swept by a union of closed trajectories of a 
3 -embeddable vector field cV  (c is a tangent cone) is obtained as a intersec-

tion of a tangent cone c and a cotangent cone. See [5] for detailed description.  
In the case of locally 3 -embeddable surface flows, we have the following 

claim. (There is no proof of the claim.) 
Problem 6. Let E be a surface flow of line segments on a closed curve. Sup-

pose that height functions are not multivalued along the closed curve (Definition 
48). Show that E is locally 3 -embeddable if and only if E is obtained as the in-
tersection of a cotangent cone and an inverted cotangent cone (See Figure 
11(c)). That is,  

3

3

is locally -embeddable

, such that .

E
A B L E Cone A ICone B∗ ∗ ∗⇔ ∃ ⊂ = ∩


 

5. Conclusions 

After an introduction to the discrete differential geometry of n-simplices, we 
gave a few considerations to the boundary value problem for flows on a space of 
n-simplices. Although the boundary value problem is considered with the design 
of self-assembling molecules in mind, there are still many challenges in practical 
application. 

One of the challenges is how to describe flows (i.e., desired properties) on the 
boundary surface. Note that the shape of the closed surface is not given explicitly. 
It is not obvious how to describe flows on a closed surface without a specific 
shape. In addition, from the viewpoint of molecular design, it may be excessive 
to specify a flow over the entire surface. For example, it is a set of geometric 
constraints around the active sites that is considered in protein design. Further-
more, we don’t even know how many types of flows of ( )1n − -simplices are al-
lowed on the surface of a union of trajectories of n-simplices. 

However, it should be possible to find an approach for application. Examples 
include the characterization of two types of surface flows discussed at the end of 
this paper, i.e., 1n+ -embeddable ones and locally 1n+ -embeddable ones. It is a 
rough classification of surface flows, but may be essential in characterizing im-
portant properties of biomolecules such as allosteric regulation. 

Finally, the ultimate goal of the research is a mathematical description of the 
shape of proteins. The description of shapes is important because the function of 
a protein (i.e., protein-protein interactions) is determined by its shape. The au-
thor is considering two approaches: an implicit one and an explicit one. 

The implicit approach considers an algebraic description (or “simultaneous 
equations”) of protein-protein interactions. The shape of proteins is then ob-
tained as a semantics of the description (or “a solution set” of the equations). 
That is, the author thinks that the shape of proteins forms a kind of “number 
system”, and has proposed a system of “hetero numbers” elsewhere. 

On the other hand, the explicit approach directly considers a geometrical de-
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scription of the shape of proteins. This paper takes the explicit approach and 
geometrically considers the shape of closed trajectories of n-simplices. Unlike 
the continuum counterpart, a sphere has several triangular surface flows without 
singular triangles. Using the results of this paper, the classification of the shape 
of closed trajectories can be reduced to the classification of their surface flows. 

We believe this paper not only provides a new perspective to identify the un-
derlying general principles of self-assembling molecules, but also promotes fur-
ther collaboration between mathematics and other disciplines in life science. 
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