Infinite Sets of Related \boldsymbol{b}-wARH Pairs

Catalin Nitica ${ }^{1}$, Viorel Nitica ${ }^{2}$
${ }^{1}$ Technical College Dimitrie Leonida, Bucharest, Romania
${ }^{2}$ Department of Mathematics, West Chester University, West Chester, USA
Email: catanit@gmail.com, vnitica@wcupa.edu

How to cite this paper: Nitica, C. and Nitica, V. (2020) Infinite Sets of Related b-wARH Pairs. Open Journal of Discrete Mathematics, 10, 1-3.
https://doi.org/10.4236/ojdm.2020.101001

Received: August 14, 2019
Accepted: November 8, 2019
Published: November 11, 2019

Copyright © 2020 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

Let $b \geq 2$ be a numeration base. A b-weak additive Ramanujan-Hardy (or b-wARH) number N is a non-negative integer for which there exists at least one non-negative integer A, such that the sum of A and the sum of base b digits of N, added to the reversal of the sum, give N. We say that a pair of such numbers are related of degrees $d \geq 0$ if their difference is d. We show for all numeration bases an infinity of degrees d for which there exists an infinity of pairs of b-wARH numbers related of degree d.

Keywords

Palindrome, Integer Number Theory, Numeration Base

1. Introduction

Let $b \geq 2$ be a numeration base. In Nițică [1], motivated by some properties of the taxicab number, 1729, we introduced the class of b-additive Ramanu-jan-Hardy (or b-ARH) numbers. It consists of non-negative integers N for which there exist at least an integer $M \geq 1$ such that the product of M and the sum of base b digits of N, added to the reversal of the product, give N. Many examples of b-ARH numbers can be found in [1] [2]. In [3], we introduced the class of b-weak-additive Ramanujan-Hardy (or b-wARH) numbers. It consists of non-negative integers N for which there exist at least an integer $A \geq 0$, such that the sum of A and the sum of base b digits of N, added to the reversal of the sum, give N. It is shown in [3] that the class of b-wARH numbers contains the class of b-ARH numbers. Moreover, the class of b - wARH numbers contains all numerical palindromes with an even number of digits or with an odd number of digits and the middle digit even.

We say that a pair of $b-w$ ARH numbers are related of degree $d \geq 0$ if their difference is d. Our main result shows, for all numeration base $b \geq 2$ an infinity of
degrees d for which there exists an infinity of pairs of $b-w$ ARH numbers related of degree d. Our main result leaves open the case when $b=10$ and $d=2$, which is of strong particular interest and for which Table 1 in [3] suggests a positive answer. This case is solved by following example.

Example 1. The palindromes $9^{\wedge k}$ and $10^{\wedge k-2} 1, k \geq 1$ are a pair of $10-w$ ARH numbers separated of degree 2 .

2. The Statement of the Main Result

Let $s_{b}(N)$ denote the sum of base b digits of integer N. If x is a string of digits, let $(x)^{\wedge k}$ denote the base 10 integer obtained by repeating x-times. Let $[x]_{b}$ denote the value of the string x in base b. If N is an integer, let $N^{\mathcal{R}}$ denote the reversal of N, that is, the number obtained from N writing its digits in reverse order. The operation of taking the reversal is dependent on the base. In the definition of a b-ARH number or a b-wARH number N we take the reversal of the base b representation of $s_{b}(N) \cdot M$, respectively $s_{b}(N)+A$. The following Theorem is our main result.

Theorem 2. For all numeration bases $b \geq 2$ there exists an infinity of degrees $d \geq 0$ for which there exists an infinity of pairs of b-wARH numbers related of degree d.

Theorem 2 is proved in Section 3. The following Theorem is ([2], Theorem 1) and it is a crucial ingredient in the proof of our main result, Theorem 2.

Theorem 3. Let $\alpha \geq 1$ integer, $b \geq \alpha+1$ integer, and $k=(1+\alpha)^{l}, l \geq 0$. Assume $b \equiv 2+\alpha(\bmod 2+2 \alpha)$. Define $N_{k}=\left[(1 \alpha)^{\wedge k}\right]_{b}$. Then there exists $M \geq 0$ integer such that

$$
s_{b}\left(N_{k}\right) \cdot M=\left(s_{b}\left(N_{k}\right) \cdot M\right)^{R}=\frac{N_{k}}{2}
$$

In particular, the numbers $N_{k}, k \geq 1$, are b-ARH numbers and consequently also b-wARH numbers.

Remark 4. The particular case $b=10, \alpha=2$, of Theorem 2, which gives $N_{k}=(12)^{3^{l}}$, is also covered by ([1], Example 10). Theorem 3 does not give any information if $b=2$.

3. Proof of Theorem 2

Proof. If $b \geq 3$ Theorem 3 can be applied to $\alpha=b-2$. This gives the b-wARH numbers $N_{k}=\left[(1 \alpha)^{\wedge k}\right]_{b}$ for $k=(1+\alpha)^{l}, l \geq 0$. Consider now the degrees $d_{q}=\left[1\left(b^{2}-4 b+3\right)^{\wedge q}\right]_{b}, q \geq 1$.

Using that $[1 \alpha]_{b}+\left[1\left(b^{2}-4 b+3\right)\right]_{b}=[1 \alpha]_{b}$, the following computation, in which the right hand side is a palindrome with an even number of digits, shows that the numbers N_{k} and $\left[(1 \alpha)^{\wedge k-q}\right]\left[1(\alpha 1)^{\wedge q}\right]_{b}$ form a pair of $b-w$ ARH numbers separated of degree d_{q}.

$$
\left[(1 \alpha)^{\wedge k}\right]_{b}+\left[1\left(b^{2}-4 b+3\right)^{\wedge q}\right]_{b}=\left[(1 \alpha)^{\wedge k-q}\right]\left[1(\alpha 1)^{\wedge q}\right]_{b}
$$

Assuming $k \geq q$, this finishes the proof of the theorem if $b \geq 3$. Assume now $b=2$. Consider the degrees $d_{k, q}=\left[1^{\wedge k} 0^{\wedge q}\right]_{2}, k \geq 1, q \geq 1$. Let S be a string of length q with 0 and 1 digits. The following computation shows that the palindromes $\left[S 10^{\wedge k} 1 S^{R}\right]_{2}$ and $\left[S(1)^{\wedge k+2} S^{R}\right]_{2}$ form a pair of $2-w$ ARH numbers separated of degree $d_{k, q}$.

$$
\left[S 10^{\wedge k} 1 S^{R}\right]_{2}+\left[1^{\wedge k} 0^{\wedge q}\right]_{2}=\left[S(1)^{\wedge k+2} S^{R}\right]_{2} .
$$

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Nițică, V. (2018) About Some Relatives of the Taxicab Number. Journal of Integer Sequences, 21, Article 18.9.4.
[2] Nițică, V. (2019) Infinite Sets of b-Additive and b-Multiplicative Ramanujan-Hardy Numbers. Journal of Integer Sequences, 22, Article 19.4.3.
[3] Nițică, V. and Török, A. About Some Relatives of Palindromes. arXiv:1908.00713.
[4] Nițică, V. High Degree b-Niven Numbers, to Appear in Integers. http://arxiv.org/abs/1807.02573

