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Abstract 
The object of the paper is to formulate Quantum (Schrödinger) dynamics of 
spectrally bounded wavefunction. The Nyquist theorem is used to replace the 
wavefunction with a discrete series of numbers. Consequently, in this case, 
Schrödinger dynamics can be formalized as a universal set of ordinary diffe-
rential Equations, with universal coupling between them, which are related to 
Euler’s formula. It is shown that the coefficient (m, n) is inversely propor-
tional to the distance between the points n and m. As far as we know, this is 
the first time that this inverse square law was formulated. 
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1. Introduction 

Unlike in Maxwell’s wave Equation, where perturbations propagate at the speed 
of light, in Schrödinger dynamics, any local perturbation is instantaneously felt 
all over space, just as in the diffusion Equation [1]. However, unlike the diffu-
sion Equation where the nonlocal effect is exponentially small, in the Schrödin-
ger Equation, it decays much slower—as a power law. 

In both cases, i.e., in the diffusion and the Schrödinger cases, the causality is 
violated due to the asymmetry between space and time.  

In the Klein-Gordon’s (KG), or similarly in the Dirac’s, Equation, due to the 
symmetry between space and time, causality reappears. In the KG case, the non-
linear dispersion relation distorts the wavefunction in high agreement with the 
Schrödinger Equation only as far as causality allows, i.e., as far as the distance 
x ct=  from the local perturbation [2] [3]. That is, any local perturbation af-
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fects over the entire x ct= ±  domain. Clearly, in the non-relativistic regime 
(i.e., the Schrödinger case) this domain is the entire space. As a result, an ini-
tial discontinuous wavefunction can kindle currents all over space instantaneously 
[4] [5].  

There are several numerical methods to calculate non-relativistic quantum me-
chanics dynamics. Every method emphasizes a different feature of this dynamics. 
The Schrödinger Equation is a differential Equation and therefore it emphasizes 
the locality nature of the dynamics (see, for example, Ref. [6]). Consequently, it 
is not optimized to evaluate the dynamics of singular, discontinuous or even 
sharp functions. Eigenstates expansion, in general, and Fourier expansion, in 
particular, is a powerful technique when the eigenstates, as well as their boun-
dary conditions, are well-known (see, for example, Ref. [7]). It is inconvenient to 
use this method when the boundary conditions are ill-defined, such as in scat-
tering problems. Path integrals method is an elegant method to formulate the 
wavefunction as a superposition of infinite paths [8]. Due to its complexity, it is 
mainly used for pedagogical purposes to explain the nature of particle interfe-
rences (or with conjunction with Monte-Carlo simulation [6]). When other op-
tions are possible, such as kernel methods, they are usually preferred. Kernel, or 
Green function, methods are very useful in cases where the initial wavefunction 
is given [8] [9]. However, if the wavefunction is spread all over space, the ker-
nel’s oscillations frequencies, which increase indefinitely may cause numerical 
difficulties. 

In this paper we discuss the case, where the initial wavefunction is spectrally 
bounded, i.e., the results of any energy measurement are bounded by a certain 
value. In this case, all the information of the wavefunction can be encapsulated 
in a series of discrete values. Consequently, the quantum dynamics can be writ-
ten as an exact infinite set of ordinary differential Equations. It will be shown 
that the couplings between these Equations consist of universal numbers, which 
inversely depend on the spatial distance between points on the wavefunction.  

2. The Dynamics  

The differential version of the free Schrödinger Equation  

( ) ( )22

2

, ,
2

x t x t
i

t m x
ψ ψ∂ ∂

= −
∂ ∂



                    (1) 

sometimes conceals the nonlocal properties of the Schrödinger dynamics. How-
ever, its integral presentation  

( ) ( ) ( ), , ,0 dx t K x x t x xψ ψ
∞

−∞

′ ′ ′= −∫                 (2) 

with the free-space Schrödinger Kernel [8] 

( ) ( )2

, exp
2 2

x xm imK x x t
i t t

 ′−
′− =  

π    

             (3) 
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illustrates the nonlocality more vividly.  
Nevertheless, the oscillations’ frequency increase so rapidly that their averages 

(which is equivalent to the integral operation) quickly converges to zero and the 
locality properties reappear. In particular, in some cases, the latter nonlocal Eq-
uation (2) was used to derive the former local one (1) [8].  

A local analysis of the Schrödinger Equation is an excellent approximation in 
the quasi-classical regimes, which mathematically equivalent to the stationary 
phase approximation [10]. However, the locality is questionable in the quantum 
regime. The problem is that Equation (3) is the impulse response of the Schrödin-
ger Equation (1), i.e., it is the quantum system’s response to the initial state of a 
delta function. However, a delta function can never be a physical state (it is 
based on infinite energies and it is not normalizable). To take a more physical 
initial state, it is usually accustomed to replacing the impulse response with a 
more physical, finite-width pulse-response, i.e., 

( ) ( )
1 4

2 2
1 2

1 2,0 expx xψ ρ
ρ

 = − π 
               (4) 

In which case the pulse response (after a period t) 

( ) ( )
1 4 2

2 22 1 2

1 2, exp
1 21 2

xx t
i t mi t m

ψ
ρ ρρ ρ −−

    = −   π − −  



     (5) 

decays (in space) exponentially as well. 
Therefore, it may seem as if the locality approximation is justified since in 

principle one can choose ρ  to be arbitrarily small. However, this result is  

based on the premises that the spatial spectrum of the wavefunction is un-
bounded.  

When the spatial spectrum of the wavefunction is bounded, i.e., when the 
spectral coefficient beyond the spatial frequency domain k x< π ∆  are all zero 
(k represents the wavenumber), then, according to the Nyquist theorem, the 
wavefunction can be written as a superposition of sinc functions [11]. That is, all 
the information in the wavefunction can be written as an infinite discrete series  
of complex numbers n n niψ ψ ψ= ℜ + ℑ  for , , 1,0,1, 2, ,n = −∞ − ∞  . In the 
spectral domain, the wavefunction occupies the spatial spectral bandwidth 
1 x∆ . Consequently, from the Nyquist theorem, the initial wavefunction can be  

written as an infinite sequence of overlapping Nyquist-sinc functions (for appli-
cations in the optical communication sphere see Ref. [12]-[17]) (see Figure 1), 
i.e.,  

( ) ( ), 0 sincn
n

x t x x nψ ψ
∞

=−∞

= = ∆ −∑ ,                (6) 

where ( ) ( )sin
sinc

ξ
ξ

ξ
π

≡
π

 is the “sinc” function, which corresponds to the Fourier  

transform of the rectangular function (the spectral shape of the channel). 
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Figure 1. Illustration of the method, in which any spectrally bounded function 
can be written as an infinite series of sinc pulses. In the figure the sinc pulses, 
which are centered at 3x xξ = ∆ = , 4 and 5 are plotted by dashed curves, while 
the final function is presented by solid curves (real/imaginary part in the up-
per/lower panel). The dashed curves represent single sinc’s, while the solid curve 
represents the superposition function. The Upper panel represents the real part of 
the wavefunction, while the lower one represents its imaginary component. 

 

Due to the linear nature of the system, Equation (6) can be solved directly 

( ) ( )( )2, 0 dsinc ,n
n

x t x x n m t xψ ψ
∞

=−∞

> = ∆ − ∆∑             (7) 

where “dsinc” is the dynamic-sync function [18] 

( )
21dsinc , exp erf erf

2 2 2 2 2
i i

i i
ξ ξ τ ξ τξ τ

τ τ τ τ
   − π + π   

≡ − − − −      π       
.  (8) 

Clearly, ( ) ( )
0

lim dsinc , sinc
τ

ξ τ ξ
→

=   . 

To simplify the derivation we use the dimensionless variables  

( ) 2m t xτ ≡ ∆  and x xξ ≡ ∆ .                  (9) 

Some of the properties of the dsinc function are illustrated in Figure 2 and 
Figure 3. As can be seen, the distortions from the initial delta function 

( ) ( )dsinc ,0n nδ=  gradually increase with time (τ ). 
With notations (9) at hand, Equations (1) and (7) can be rewritten 

( ) ( )2

2

, ,1
2

i
ψ ξ τ ψ ξ τ

τ ξ
∂ ∂

= −
∂ ∂

                  (10) 

and  

( ) ( ), 0 dsinc ,n
n

nψ ξ τ ψ ξ τ
∞

=−∞

> = −∑               (11) 

respectively. 

3. Matrix Formulation  

When x∆  is the spatial resolution of the problem, then the wavefunction at the  
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Figure 2. The relation between the real and imaginary parts of 
the dsinc function for the discrete values 0,1,2,3ξ = . 

 

 
Figure 3. The temporal dependence of the absolute value of 
dsinc for the discrete values 0,1,2,3ξ = . 

 
center of the mth point, i.e., at mξ = , is a simple discrete convolution 

( ) ( ) ( ), n m n
n n

m h m n h m nψ τ ψ ψ ψ δ
∞ ∞

=−∞ =−∞

= − = + −∑ ∑           (12) 

where  

( ) ( )dsinc ,h n n τ≡  and ( ) ( ) ( )dsinc ,h n n nδ τ δ≡ − .         (13) 

Moreover, since  

( ) ( )
2

1
2 2

0

sinc 2 1 n

n
n

τ

ξ
ξ

+

= ≠

∂
= −

∂
 and 

( )2 2

2
0

sinc
3

τ

ξ
ξ

=

∂ π
= −

∂
,       (14) 

then Equation (10) can be written as a linear set of differential Equations 

( ) ( ) ( ) ( ) ( )
d ,

, ,
d n

m
i w m n n iw m m

ψ τ
ψ τ ψ τ

τ
= − ≡ ∗∑          (15) 
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with the universal (and dimensionless) vector 

( ) ( ) 1 2

2

1 0
6 0

m m mw m
m

+ − ≠≡ 
−π =

,                  (16) 

and the asterisk stands for discrete convolution. 
Note that ( ) 0m w m∞

=−∞
=∑  due to Euler’s formula [19] [20]. 

This Equation is universal in the sense that the vector ( )w m  is time inde-
pendent. This is a unique property of the sinc pulses, which does not exist in 
other sets of orthogonal pulses (like rectangular pulses). 

Moreover, since the Schrödinger dynamics is a unitary operation, normalisa-
tion is kept and there is no change in the wavefunction spectrum. Therefore, 
Equation (15) is valid for any given time.  

In a matrix form, Equation (15) can be written 

( )
( )
( )
( )
( )

( )
( )
( )
( )
( )

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2, 6 1 2 3 2,
1, 1 6 1 2 3 1,

d 0, 2 1 6 1 2 0,
d

1, 3 2 1 6 1 1,
2, 3 2 1 6 2,

i

ψ τ ψ τ
ψ τ ψ τ
ψ τ ψ τ

τ
ψ τ ψ τ
ψ τ ψ τ

− −

− −

− −

− −

− −

    
    − −π − −    
    − −π − −
    

= − −π −    
    − −π
    

− −π    
    
    

    

 

    

(17) 

i.e.,  
d

d
iM

τ
=ψ ψ                          (18) 

where M is a matrix with the coefficients 

( )
( ) ( )

2

1 2

6
,

1 n m

n m
M m n

n m n m− +

−π == 
− − ≠

             (19) 

The nonlocality of this form is clearly emphasized, when compared to the or-
dinary numerical form of the Schrödinger Equation with the ordinary 1D Carte-
sian local Laplacian 

( )
( )
( )
( )
( )

( )
( )
( )
( )
( )

2, 2 1 2,
1, 1 2 1 1,

d 0, 1 2 1 0,
d

1, 1 2 1 1,
2, 1 2 2,

i

ψ τ ψ τ
ψ τ ψ τ
ψ τ ψ τ

τ
ψ τ ψ τ
ψ τ ψ τ

    
    − − −    
    − − −
    

= −    
    −
    

−    
    
    

    

 

    

   (20) 

In the presence of a non-zero potential, whose maximum spatial frequencies is 
also lower than 1 2 x∆  the Schrödinger Equation can be rewritten in a matrix form 

( )d
d

i M V
τ

= −ψ ψ                     (21) 

where 
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( )
( )

( )
( )

( )

2
1

0
1

2

V
V

V V
V

V

 
 − 
 −
 

=  
 
 
 
 
 

  

 

  

         (22) 

or simply 

( ) ( ) ( ),V n m V n n mδ= − .                  (23) 

Therefore, a pulse which is initially located at 0x =  has an instantaneous 
effect over the entire space, and its effect on any other point (say n x∆ ) is in-
versely proportional to the distance between them, i.e., ( ) 2n x −∆ . 

On the other hand, when the local Laplacian is used, i.e., (20), then the pulse 
effect on a point n x∆  afar, would be felt only after n consecutive steps. There-
fore, if there is a barrier (i.e., non zero potential) between these points ( 0x =  
and x n x= ∆ ) then with a local Laplacian it may seem that the effect of the one 
on the other (and vice versa) must take into account the barrier in between the 
two points. However, in fact, as the nonlocal form teaches, in the short time its 
effect is negligible since the Schrödinger Equation can be approximated by 

( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
( )

22

2 2

6 1, ,d
, ,d 1 6

n m

n m

V n n mn n
i

m mn m V m

ψ τ ψ τ
ψ τ ψ ττ

−

−

 π + − −   
 = −    − − π +    

,  (24) 

and its short-time solution  

( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )
( )

22

22 2

1 6 1, ,0
, ,01 1 6

n m

n m

i V n i n mn n
m mi n m i V m

τ τψ τ ψ
ψ τ ψτ τ

−

−

  − π + − − −     =          − − − − π +  

 (25) 

shows that in the short time the potential has only a local effect (provided it is a 
smooth function), i.e., ( ),nψ τ  is affected only by ( )V n  (and the effect is a 
simple phase change). However, the wavefunction has a nonlocal effect, i.e., 
( ),nψ τ  is affected by any non zero ( ),mψ τ  (for any m). This result is con-

sistent with Ref. [21], where it was demonstrated that in short time, singular 
wavefunction are unaffected by the barrier despite their nonlocal effect.  

4. Inverse Square Law 

By multiplying Equation (15) with the complex conjugate of the wavefunction 
and taking the real part of the Equation one finds a nonlocal Equation for the 
probability density 

( ) ( )
( )

( ) ( ){ }
2 1

*
2

d , 1
2 , ,

d

m n

n m

m
n m

m n

ψ τ
ψ τ ψ τ

τ

− +

≠

−
= − ℑ

−
∑             (26) 

Using the notation ( ) ( ), expn nn A iψ τ φ≡  then Equation (26) is simply 

( ) ( )
( )

2

2

1 sind
2

d

m n
n m n mm

n m

A AA
m n

φ φ
τ

−

≠

− −
=

−
∑                   (27) 
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and the equivalent phase Equation reads 

( )
( )

( )
2

2

1d
cos

d 6

m n
m n

n m
n m m

A
Am n

φ
φ φ

τ

−

≠

− π
= − − −

−
∑                 (28) 

If ( ),nψ τ  is presented as a 2D vector in a 3D space  

( ) ( ) ( ), , ,n x n y nτ ψ τ ψ τ≡ ℜ + ℑ ψ                   (29) 

instead of a complex number in a complex plane, then the numerator in the 
summation can be presented as the cross product of two vectors, i.e.,  

( ) ( ) ( ) ( )
( )

2

2

ˆd , 1 , ,
2

d

m n

n m

m n m z

m n

τ τ τ
τ

−

≠

− × ⋅  =
−

∑
ψ ψ ψ

            (30) 

In this terminology, ( ),m τψ  is the norm of the vector ( ),m τψ  and the 
cross represents cross (3D vectors) product. 

It is instructive to see the resemblance between this law and any other inverse 
square law. 

Equation (30) can also be written in terms of the derivative of the vector’s 
norm ( ),m τψ  

( ) ( ) ( )
( )2

ˆ ˆd , 1 ,
d

m n
m

n m

m n z

m n

τ τ
τ

−

≠

− × ⋅  =
−

∑
ψ ψ ψ

             (31) 

where  

( ) ( )ˆ , ,m m mτ τ≡ψ ψ ψ  

is the unit vector in the ( ),m τψ  direction. 
It is therefore clear, that maximum probability density transfer occurs when 

the relative phase between the two points is 2π , i.e. when the “vectors” 
( ),n τψ  and ( ),m τψ  are orthogonal.  
In Figure 4 such a density transfer is illustrated. In this case the wavefunction  
( ) ( ) ( ), 0 sinc 8 sinc 9N iψ ξ τ ξ ξ= = − + −    was taken as the initial state (N is 

the normalisation constant). As can be seen, in the short time regime ( 0.198τ =  
in this case), the probability was transferred from the pulse at 9ξ =  to the one 
at 8ξ = . 

Moreover, it is clear from Equation (27) and Equation (30) that maximum 
probability transfer to a certain location (say 0ξ = ) occurs (provided the initial 
state is bounded) when the initial state oscillates in signs, i.e., 

( ) ( ) ( ) ( )
0

, 0 1 sinc sincn

n
i nψ ξ τ ξ ξ

≠

= = − − +∑             (32) 

In this case the rate in which the probability increases (or decreases in the 
opposite case) is exactly 22 3π  since (using Euler formula, see Ref. [19] [20]) 

( )

( )

2
2

2

d ln , 12 2
d 3n m

m

m n

ψ τ

τ ≠

 
  π  = =

−
∑               (33) 

and the probability density at 0ξ =  can increase almost four fold before it 
start to decay (see Figure 5). 
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Figure 4. Illustration of probability transfer. The dashed curve represents the ini-
tial state ( ) ( ) ( ), 0 sinc 8 sinc 9iψ ξ τ ξ ξ= = − + − , while the solid curve stands for 

( ) ( ) ( ), 0.198 dsinc 8, dsinc 9,iψ ξ τ ξ τ ξ τ= = − + − . In both cases the real part is 

plotted in the upper panel, while the imaginary part is plotted in the lower one. 
 

 
Figure 5. The short time dynamics of the wavefunction (32). The dashed curves rep-
resent the initial ( 0τ = ) state, while the solid curves represent the state after a period 
of 0.51τ = , where the probability density at 0ξ =  increases by a factor of 4. 

 
The source of this nonlocality is the fact that each one of the sinc is spread 

over the entire space. However, the important result is, that this nonlocal pres-
entation of the Schrödinger Equation is universal and it is independent of x∆ , 
which can be as short as the spatial measurement’s accuracy.  

5. Conclusions 

It has been shown that when a given wavefunction is spectrally bounded, then 
the Schrödinger dynamics can be formulated in a universal nonlocal form. In-
stead of a local partial differential Equation, it can be formulated as an infinite 
set of ordinary differential Equation, where the coupling is pure numbers, which 
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are strongly related to Euler’s formula 2 2
1 6n n∞

=
= π∑ . 

Therefore, the mutual effect of every two points on the wavefunction is in-
stantaneous and can be formulated by an inverse square law. 
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