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Abstract 
In 1916, F.S. Macaulay developed specific localization techniques for deal-
ing with “unmixed polynomial ideals” in commutative algebra, transform-
ing them into what he called “inverse systems” of partial differential equa-
tions. In 1970, D.C. Spencer and coworkers studied the formal theory of 
such systems, using methods of homological algebra that were giving rise to 
“differential homological algebra”, replacing unmixed polynomial ideals by 
“pure differential modules”. The use of “differential extension modules” 
and “differential double duality” is essential for such a purpose. In particu-
lar, 0-pure differential modules are torsion-free and admit an “absolute pa-
rametrization” by means of arbitrary potential like functions. In 2012, we 
have been able to extend this result to arbitrary pure differential modules, in-
troducing a “relative parametrization” where the potentials should satisfy 
compatible “differential constraints”. We recently noticed that General Rela-
tivity is just a way to parametrize the Cauchy stress equations by means of the 
formal adjoint of the Ricci operator in order to obtain a “minimum parame-
trization” by adding sufficiently many compatible differential constraints, 
exactly like the Lorenz condition in electromagnetism. In order to make this 
difficult paper rather self-contained, these unusual purely mathematical re-
sults are illustrated by many explicit examples, two of them dealing with con-
tact transformations, and even strengthening the comments we recently pro-
vided on the mathematical foundations of General Relativity and Gauge 
Theory. They also bring additional doubts on the origin and existence of gra-
vitational waves. 
 

Keywords 
Homological Algebra, Extension Module, Torsion-Free Module, Pure  
Differential Module, Purity Filtration, Involution, Electromagnetism,  
General Relativity 

How to cite this paper: Pommaret, J.-F. 
(2019) Differential Homological Algebra 
and General Relativity. Journal of Modern 
Physics, 10, 1454-1486. 
https://doi.org/10.4236/jmp.2019.1012097 
 
Received: September 12, 2019 
Accepted: November 3, 2019 
Published: November 6, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2019.1012097
https://www.scirp.org/
https://doi.org/10.4236/jmp.2019.1012097
http://creativecommons.org/licenses/by/4.0/


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2019.1012097 1455 Journal of Modern Physics 
 

1. Introduction 

The main purpose of this paper is to prove how apparently totally abstract ma-
thematical tools, ranging among the most difficult ones existing in differential 
geometry and homological algebra today, can also become useful and enlighten 
many engineering or physical concepts (see the review Zbl 1079.93001 for the 
only application to control theory).  

In the second section, we first sketch and then recall, with more specific ref-
erences, the main (difficult) mathematical results on differential extension mod-
ules and differential double duality that are absolutely needed in order to under-
stand the purity concept and, in particular, the so-called purity filtration of a 
differential module ([1] [2] [3] [4]). We also explain the unexpected link existing 
between involutivity and purity allowing to exhibit a relative parametrization of 
a pure differential module, even defined by a system of linear PD equations with 
coefficients in a non-constant differential field K. It is important to notice that 
the reduced Spencer form, which is used for such a purpose, generalizes the 
Kalman form existing for an OD classical control system and we shall illustrate 
this fact.  

The third section will present for the first time a few explicit motivating aca-
demic examples in order to illustrate the above mathematical results, in particu-
lar the unexpected striking situations met in the study of contact and unimodu-
lar contact structures.  

In the fourth section, we finally provide examples of applications, studying the 
mathematical foundations of OD/PD control theory (CT) ([3] [5]), electromag-
netism (EM) ([6] [7]) and general relativity (GR) ([8] [9] [10]). Most of these 
examples can be now used as test examples for certain computer algebra pack-
ages recently developed for such a purpose ([11] [12]).  

2. Mathematical Tools 

Let [ ] [ ]1, , nD K d d K d= =  be the ring of differential operators with coeffi-
cients in a differential field K of characteristic zero, that is such that K⊂ , 
with n commuting derivations 1, , n∂ ∂  and commutation relations  

,i i id a ad a a K= + ∂ ∀ ∈ . If 1, , my y  are m differential indeterminates, we may 
identify 1 mDy Dy Dy+ + =  with mD  and consider the finitely presented 
left differential module DM M=  with presentation 0p mD D M→ → →  
determined by a given linear multidimensional system with n independent va-
riables, m unknowns and p equations. Applying the functor ( ),Dhom D• , we get 
the exact sequence ( )0 , 0m p

D Dhom M D D D N→ → → → →  of right diffe-
rential modules that can be transformed by a side-changing functor to an exact 
sequence of finitely generated left differential modules. This new presentation 
corresponds to the formal adjoint ( )ad   of the linear differential operator   
determined by the initial presentation but now with p unknowns and m equations, 
obtaining therefore a new finitely generated left differential module DN N=  and 
we may consider ( ),Dhom M D  as the module of equations of the compatibility 
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conditions (CC) of ( )ad  , a result which is not evident at first sight (see [3] 
[13]). Using now a maximum free submodule ( )0 ,l

DD hom M D→ →  or, 
equivalently, a maximum number of differentially linearly independent CC, and 
repeating this standard procedure while using the well known facts that the co-
kernel of this monomorphism is a torsion module and ( )( )ad ad =  , we 
obtain therefore an embedding ( )( )0 , , l

D Dhom hom M D D D→ →  of left diffe-
rential modules for a certain integer 1 l m≤ <  because K is a field and thus D is 
a Noetherian bimodule over itself, a result leading to  

( )( ) ( ),D D Dl rk hom M D rk M m= = <  as in ([14], p. 341, [15] p. 1228) (see Section 
3 for the definition of the differential rank Drk ). Now, the kernel of the map 

( )( ) ( )( ) ( ): , , :D DM hom hom M D D m m f f m→ → =  , ( ),Df hom M D∀ ∈  is 
the torsion submodule ( ) { }| 0 , 0t M m M P D Pm= ∈ ∃ ≠ ∈ =  and   is injective 
if and only if M is torsion-free, that is ( ) 0t M = . In that case, we obtain by 
composition an embedding 0 lM D→ →  of M into a free module (that can also 
be obtained by localization if we introduce the ring of fractions 1 1S D DS− −=  
when { }0S D= − ). This result is quite important for applications as it provides 
a (minimal) parametrization of the linear differential operator D and amounts to 
the controllability of a classical control system when 1n =  ([3] [16]). This pa-
rametrization will be called an “absolute parametrization” as it only involves ar-
bitrary “potential-like” functions (see [4] [8] [9] [15] [17] [18] [19] [20] for more 
details and examples, in particular the fact that the Einstein equations cannot be 
parametrized).  

It is however essential to notice that such an approach is leading to a “vicious 
circle” because the only constructive way to check whether M is torsion-free or 
not is to use the differential double duality. For this reason, we briefly recall the 
five steps of the corresponding test allowing to know whether a given differential 
system or operator can be parametrized or not:  
• STEP 1: Write down the system in the form of a differential operator 1 .  
• STEP 2: Construct its formal adjoint ( )1ad  .  
• STEP 3: Construct the generating CC of such an operator as a new operator 

and use the fact that ( )( ) ,ad ad P P P D= ∀ ∈  in order to denote it by 
( )ad  .  

• STEP 4: Write down ( )( )ad ad=  .  
• STEP 5: As ( ) ( ) ( ) ( )1 1 10 0 0ad ad ad ad= = = ⇔ =        , we just 

need to check whether 1  generates the CC of   or not.  
If “yes”, we shall say that 1  is parametrized by  .  
If “no”, we shall say that 1  cannot be parametrized.  
The purpose of this paper is to extend such a result to a much more general 

situation, that is when M is not torsion-free, by using unexpected results first 
found by F.S. Macaulay in 1916 ([21]) through his study of “inverse systems” for 
“unmixed polynomial ideals”.  

Introducing ( ) ( ){ }|rt M m M cd Dm r= ∈ >  where the codimension of Dm is 
n minus the dimension of the characteristic variety determined by m in the cor-
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responding system for one unknown, we may define the purity filtration as in 
([1] [3] [4]): 

( ) ( ) ( ) ( ) ( )1 1 00 n nt M t M t M t M t M M−= ⊆ ⊆ ⊆ ⊆ = ⊆  

The module M is said to be r-pure if ( ) 0rt M = , ( )1rt M M− =  or, equivalently, 
if ( ) ( ) ,cd M cd N r N M= = ∀ ⊂  and a torsion-free module is a 0-pure module. 
Moreover, when ( )K k cst K= =  is a field of constants and 1m = , a pure 
module is unmixed in the sense of Macaulay, that is defined by an ideal having 
an equidimensional primary decomposition.  

Example 2.1: As an elementary example with K k= = , 1m = , 2n = , 
2p = , the differential module defined by 22 0d y = , 12 0d y =  is not pure be-

cause 2z d y′ =  satisfies 2 0d z′ = , 1 0d z′ =  while 1z d y′′ =  only satisfies 

2 0d z′′ =  and ( )( ) ( ) ( )2 2
2 1 2 2 1 2, ,χ χ χ χ χ χ=  . We obtain therefore the purity 

filtration ( ) ( ) ( ) ( )2 1 00 t M t M t M t M M= ⊂ ⊂ = =  with strict inclusions as 
( )10 z t M′≠ ∈  while ( )0z t M′′∈  but ( )1z t M′′∉ .  

From the few (difficult) references ([1] [2] [3] [4] [5] [22]-[31]) dealing with 
the extension modules ( ) ( ),r r

Dext M ext M D=  and purity in the framework of 
differential homological algebra, it is known that M is r-pure if and only if there 
is an embedding ( )( )0 r rM ext ext M→ → . Indeed, the case 0r =  is exactly 
the one already considered because ( ) ( ) ( )0 0 , ,D Dext M ext M D hom M D= =  and 
the ker/coker exact sequence ([4] [5]): 

( ) ( )( ) ( )1 0 0 20 0ext N M ext ext M ext N→ → → → →  

allows to test the torsion-free property of M in actual practice by using the 
double-duality formula ( ) ( )1t M ext N=  as in ([3] [5]). 

Independently of the previous results, the following procedure, where one 
may have to change linearly the independent variables if necessary, is the heart 
towards the next effective definition of involution. It is intrinsic even though it 
must be checked in a particular coordinate system called δ -regular ([32] [33] 
[34]) and is quite simple for first order systems without zero order equations.  
• Equations of class n: Solve the maximum number n

qβ  of equations with re-
spect to the jets of order q and class n. Then call ( )1, , nx x  multiplicative 
variables. 

• Equations of class 1i ≥ : Solve the maximum number i
qβ  of remaining eq-

uations with respect to the jets of order q and class i. Then call ( )1, , ix x  
multiplicative variables and ( )1, ,i nx x+

  non-multiplicative variables. 
• Remaining equations of order 1q≤ − : Call ( )1, , nx x  non-multiplicative 

variables. 
In actual practice, we shall use a Janet tabular where the multiplicative “va-

riables” are represented by their index in upper left position while the 
non-multiplicative variables are represented by dots in lower right position ([3] 
[32] [35]) (compare to ([36]).  

DEFINITION 2.2: A system of PD equations is said to be involutive if its first 
prolongation can be achieved by prolonging its equations only with respect to 
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the corresponding multiplicative variables. In that case, we may introduce the  

Cartan characters 
( )
( ) ( )

1 !
1 ! !

i i
q q

q n i
m

q n i
α β

+ − −
= −

− −
 for 1, ,i n=   and we have  

( ) 1 n
q q q qdim g α α α= = + +∑   and ( ) 1

1 1i n
q q q qdim g i nα α α+ = = + +∑  . More-

over, one can exhibit the Hilbert polynomial ( )q rdim R +  in r with leading term 
( )! dd rα  with d n≤  when α  is the smallest non-zero character in the case 
of an involutive symbol. Such a prolongation allows to compute in a unique way 
the principal ( pri ) jets from the parametric ( par ) other ones. This definition 
may also be applied to nonlinear systems as well.  

REMARK 2.3: For an involutive system with n
q mβ β= < , then ( )1, , my yβ +

  
can be given arbitrarily and may constitute the input variables in control theory, 
though it is not necessary to make such a choice. In this case, the intrinsic num-
ber 0n

q mα α β= = − >  is called the n-character and is the system counterpart 
of the so-called “differential transcendence degree” in differential algebra and 
the “rank” in module theory. As we shall see in the next Section, the smallest 
non-zero character and the number of zero characters are intrinsic numbers that 
can most easily be known by bringing the system to involution and we have 

1 0n
q qα α≥ ≥ ≥ .  
In the situation of the last remark, the following procedure will generalize for 

PD control systems the well known first order Kalman form of OD control sys-
tems where the derivatives of the input do not appear ([3], VI, Remark 1.14, p 
802). For this, we just need to modify the Spencer form and we provide the pro-
cedure that must be followed in the case of a first order involutive system with 
no zero order equation, for example an involutive Spencer form. 
• Look at the equations of class n solved with respect to 1 , ,n ny yβ

 . 
• Use integrations by parts like: 

( ) ( )( ) ( ) ( )1 1 1 1 1 1 1
n n n n n ny a x y d y a x y a x y y a x yβ β β β+ + + +− = − + ∂ = + ∂  

• Modify 1, ,y yβ
  to 1, ,y y β

  in order to “absorb” the various 1, , m
n ny yβ +
  

only appearing in the equations of class n. 
We have the following unexpected result providing what we shall call a re-

duced Spencer form: 
THEOREM 2.4: The new equations of class n contain 1, ,y yβ

  and their 
jets but only contain 1, , m

i iy yβ +
  with 0 1i n≤ ≤ −  while the equations of class 

1, , 1n −  no longer contain 1, , my yβ +
  and their jets. Accordingly, as we 

shall see in the next section, any torsion element, if it exists, only depends on 
1, ,y y β
 . 

If 1, , nχ χ  are n algebraic indeterminates or, in a more intrinsic way, if 
*i

idx Tχ χ= ∈  is a covector and ( ) ( ): : k
kE F a x xτµ

µξ ξ→ → ∂  is a linear 
involutive operator of order q, we may introduce the characteristic matrix 
( ) ( )( )1, ,k na x a x qτµ

µχ χ µ µ µ= = + + =  and the resulting map  
( ) : E Fχσ →  is called the symbol of   at χ . Then there are two possibil-

ities:  
• If ( )( ) 0n

qmax rk mχ χσ α< ⇔ > : the characteristic matrix fails to be injec-
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tive for any covector. 
• If ( )( ) 0n

qmax rk mχ χσ α= ⇔ = : the characteristic matrix fails to be injec-
tive if and only if all the determinants of the m m×  submatrices vanish. 
However, one can prove that this algebraic ideal [ ]K χ∈a  is not intrinsi-
cally defined and must be replaced by its radical ( )rad a  made by all poly-
nomials having a power in a . This radical ideal is called the characteristic 
ideal of the operator. 

DEFINITION 2.5: For each x X∈ , the algebraic set defined by the characte-
ristic ideal is called the characteristic set of   at x and xx XV V

∈
=


 is called 
the characteristic set of   while we keep the word “variety” for an irreducible 
algebraic set defined by a prime ideal. 

One has the following important theorem ([3] [13]) that will play an impor-
tant part later on:  

THEOREM 2.6: (Hilbert-Serre) The dimension ( )d V  of the characteristic 
set, that is the maximum dimension of the irreducible components, is equal to 
the number of non-zero characters while the codimension ( ) ( )cd V n d V= −  is 
equal to the number of zero characters, that is to the number of “full” classes in 
the Janet tabular of an involutive system.  

If [ ]P a d D K dµ
µ= ∈ =  with implicit summation on the multi-index, the 

highest value of µ  with 0aµ ≠  is called the order of the operator P and the ring 
D with multiplication ( ),P Q P Q PQ→ =  is filtred by the order q of the opera-
tors. We have the filtration 0 10 qK D D D D D∞⊂ = ⊂ ⊂ ⊂ ⊂ ⊂ =  . Moreo-
ver, it is clear that D, as an algebra, is generated by 0K D=  and 1 0T D D=  
with 1D K T= ⊕  if we identify an element i

id Tξ ξ= ∈  with the vector field 
( )i

ixξ ξ= ∂  of differential geometry, but with i Kξ ∈  now. It follows that 

D DD D=  is a bimodule over itself, being at the same time a left D-module by 
the composition P QP→  and a right D-module by the composition P PQ→ . 
We define the adjoint map ( ) ( ): : 1opad D D P a d ad P d aµµ µ

µ µ→ = → = −  
and we have ( )( )ad ad P P= . It is easy to check that  

( ) ( ) ( ), ,ad PQ ad Q ad P P Q D= ∀ ∈ . Such a definition can also be extended to 
any matrix of operators by using the transposed matrix of adjoint operators (see 
[3] [5] [8] [17] [20] [37] [38] for more details and applications to control theory 
and mathematical physics).  

Accordingly, if ( )1, , my y y=   are differential indeterminates, then D acts 
on ky  by setting k kd y yµ µ=  with 1i

k k
id y yµ µ+=  and 0

k ky y= . We may there-
fore use the jet coordinates in a formal way as in the previous section. Therefore, 
if a system of OD/PD equations is written in the form:  

0k
ka yτ τµ

µΦ ≡ =  

with coefficients ka Kτµ ∈ , we may introduce the free differential module 
1 m mDy Dy Dy D= + +   and consider the differential submodule  

I D Dy= Φ ⊂  which is usually called the module of equations, both with the 
differential module M Dy D= Φ  or D-module and we may set DM M=  if 
we want to specify the ring of differential operators. The work of Macaulay only 
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covers the case 1m =  with K replaced by ( )k cst K⊆ . Again, we may intro-
duce the formal prolongation with respect to id  by setting:  

( )1i

k k
i k i kd a y a yτ τµ τµ

µ µ+Φ ≡ + ∂  

in order to induce maps 1: :
i

k k
id M M y yµ µ+→ →  if we use to denote the resi-

due : k kDy M y y→ →  by a bar as in algebraic geometry. However, for sim-
plicity, we shall not write down the bar when the background will indicate clear-
ly if we are in Dy or in M. 

As a byproduct, the differential modules we shall consider will always be finitely 
generated ( 1, ,k m= < ∞ ) and finitely presented ( 1, , pτ = < ∞ ). Equivalently, 
introducing the matrix of operators ( )ka dτµ

µ=  with m columns and p rows, 
we may introduce the morphism ( ) ( ): :p mD D P P P P Pτ

τ τ→ → Φ → Φ =   
over D by acting with D on the left of these row vectors while acting with   
on the right of these row vectors and the presentation of M is defined by the ex-
act cokernel sequence 0p mD D M→ → → . It is essential to notice that the 
presentation only depends on ,K D  and Φ  or  , that is to say never refers 
to the concept of (explicit or formal) solutions. It is at this moment that we have 
to take into account the results of the previous section in order to understand 
that certain presentations will be much better than others, in particular to estab-
lish a link with formal integrability and involution.  

DEFINITION 2.7: It follows from its definition that M can be endowed with 
a quotient filtration obtained from that of mD  which is defined by the order of 
the jet coordinates qy  in qD y . We have therefore the inductive limit  

0 10 qM M M M M∞⊆ ⊆ ⊆ ⊆ ⊆ ⊆ =   with 1i q qd M M +⊆  and qM DM=  
for 0q  with prolongations , , 0r q q rD M M q r+⊆ ∀ ≥ . We shall set  

( ) 1q q q qgr M G M M −= =  and ( ) q qgr M G G= = ⊕ .  
Having in mind that K is a left D-module for the action  

( ) ( ), : ,i iD K K d a a→ →∂  and that D is a bimodule over itself, we have only 
two possible constructions:  

DEFINITION 2.8: We define the system ( ) *,KR hom M K M= =  and set 

( ) *,q K q qR hom M K M= =  as the system of order q. We have the projective limit 

1 0qR R R R R∞= → → → → →  . It follows that : k k
q qf R y f Kµ µ∈ → ∈  with 

0k
ka fτµ

µ =  defines a section at order q and we may set f f R∞ = ∈  for a section 
of R. For a ground field of constants k, this definition has of course to do with 
the concept of a formal power series solution. However, for an arbitrary diffe-
rential field K, the main novelty of this new approach is that such a definition 
has nothing to do with the concept of a formal power series solution (care) as il-
lustrated in ([39]). 

DEFINITION 2.9: We may define the right differential module  
( ) ( )0 ,Dext M hom M D= .  

PROPOSITION 2.10: When M is a left D-module, then R is also a left 
D-module.  

Proof: As D is generated by K and T as we already said, let us define:  
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( )( ) ( ), ,af m af m a K m M= ∀ ∈ ∀ ∈  

( )( ) ( ) ( ), ,i
if m f m f m a d T m Mξ ξ ξ ξ= − ∀ = ∈ ∀ ∈  

In the operator sense, it is easy to check that i i id a ad a= + ∂  and that 
[ ],ξη ηξ ξ η− =  is the standard bracket of vector fields. We finally get 

( ) ( )( ) 1i

k k k k
i i id f d f y f fµ µ µµ += = ∂ −  and thus recover exactly the Spencer operator 

though this is not evident at all. We also get  

( ) 1 1 1 1 , , 1, ,
j i i j

k k k k k
i j ij i j i j j id d f f f f f d d d d i j nµ µ µ µµ + + + += ∂ − ∂ − ∂ + ⇒ = ∀ =   and 

thus 1i q q id R R d R R+ ⊆ ⇒ ⊂  induces a well defined operator  
* : i

iR T R f dx d f→ ⊗ → ⊗ . This result has been discovered (up to sign) by 
Macaulay in 1916 ([21]). For more details on the Spencer operator and its appli-
cations, the reader may look at ([14] [40] [41] [42]).  

Q.E.D.  
DEFINITION 2.11: ( )rt M  is the greatest differential submodule of M hav-

ing codimension > r.  
PROPOSITION 2.12: ( ) ( ) 0n r

qcd M cd V r α −= = ⇔ ≠ ,  
( )1 0n r n

q q rt M Mα α− + = = = ⇔ ≠ , ( ) ( ) ( )1 0rt M t M t M M− = = = =  and this 
intrinsic result can be most easily checked by using the standard or reduced 
Spencer form of the system defining M.  

We are now in a good position for defining and studying purity for differen-
tial modules.  

DEFINITION 2.13: M is r-pure ( ) 0rt M⇔ = , ( ) ( )1rt M M cd Dm r− = ⇔ = , 
m M∀ ∈ . More generally, M is pure if it is r-pure for a certain 0 r n≤ ≤ . In 

particular, M is 0-pure if ( ) 0t M =  and, if ( )cd M r=  but M is not r-pure, 
we may call ( )rM t M  the pure part of M. It follows that ( ) ( )1r rt M t M−  is 
equal to zero or is r-pure (see the picture in [3], p. 545). When ( )1nM t M−=  is 
n-pure, its defining system is a finite dimensional vector space over K with a 
symbol of finite type, that is when 0qg =  is (trivially) involutive. Finally, 
when ( ) ( )1r rt M t M− = , we shall say that there is a “gap” in the purity filtra-
tion:  

( ) ( ) ( ) ( ) ( )1 1 00 n nt M t M t M t M t M M−= ⊆ ⊆ ⊆ ⊆ = ⊆  

PROPOSITION 2.14: ( )rt M  does not depend on the presentation or on the 
filtration of M.  

EXAMPLE 2.15: If K =  and M is defined by the involutive system 

33 23 130, 0, 0y y y= = = , then 3z y=  satisfies 3 2 10, 0, 0d z d z d z= = =  and 
( ) 3cd Dz =  while 2z y′ =  only satisfies 3 0d z′ =  and ( ) 1cd Dz′ = . We have 

the purity filtration ( ) ( ) ( ) ( ) ( )3 2 1 00 t M t M t M t M t M M= ⊂ = ⊂ = =  with one 
gap and two strict inclusions.  

We now recall the definition of the extension modules ( ),i
Dext M D  that we 

shall simply denote by ( )iext M  and the way to use their dimension or codi-
mension. We point out once more that these numbers can be most easily ob-
tained by bringing the underlying systems to involution in order to get informa-
tions on M from informations on G. We divide the procedure into four steps 
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that can be achieved by means of computer algebra ([11] [12]):  
• STEP 1: Construct a free resolution of M, say:  

1 0 0iF F F M→ → → → → →   

• STEP 2: Suppress M in order to obtain the deleted sequence:  

1 0 0iF F F→ → → → →   

• STEP 3: Apply ( ),Dhom D•  in order to obtain the dual sequence heading 
backwards:  

( ) ( ) ( )1 0, , , 0D i D Dhom F D hom F D hom F D← ← ← ← ←   

• STEP 4: Define ( )iext M  to be the cohomology at ( ),D ihom F D  of the dual 
sequence in such a way that ( ) ( )0 ,Dext M hom M D= .  

The following nested chain of difficult propositions and theorems can be ob-
tained, even in the non-commutative case, by combining the use of extension 
modules and bidualizing complexes in the framework of algebraic analysis. The 
main difficulty is to obtain first these results for the graded module ( )G gr M=  
by using techniques from commutative algebra before extending them to the fil-
tered module M as in ([1] [2] [3] [4] [24] [25] [26] [27] [37] [42]).  

THEOREM 2.16: The extension modules do not depend on the resolution of 
M used.  

PROPOSITION 2.17: Applying ( ),Dhom D•  provides right D-modules that 
can be transformed to left D-modules by means of the side changing functor and 
vice-versa. Namely, if DN  is a right D-module, then n

D K DN T N= ∧ ⊗  is the 
converted left D-module while, if DN N=  is a left D-module, then 

*n
D KN T N= ∧ ⊗  is the converted right D-module. 
PROPOSITION 2.18: Instead of using ( ),Dhom D•  and the side changing 

functor in the module framework, we may use ad  in the operator framework. 
Namely, to any operator : E F→  we may associate the formal adjoint 

( ) * * * *: n nad T F T E∧ ⊗ → ∧ ⊗  with the useful though striking relation 
( )( ) ( )D Drk ad rk=  .  

PROPOSITION 2.19: ( )iext M  is a torsion module 1 i n∀ ≤ ≤  but 
( ) ( )0 ,Dext M hom M D=  may not be a torsion module.  

EXAMPLE 2.20: When M is a torsion module, we have ( ), 0Dhom M D = . 
Indeed, if m M∈ , we may find 0 P D≠ ∈  such that 0Pm = . Hence, if 

( ),Df hom M D∈ , we have ( ) ( ) ( )0 0Pf m f Pm f= = =  in D and thus 
( ) 0,f m m M= ∀ ∈ , that is to say 0f =  because D is an integral domain. When 

3n =  and the torsion-free module M is defined by the formally surjective div  
operator, the formal adjoint of div  is grad−  which defines a torsion module. 
Also, when 1n =  as in classical control theory, a controllable system with coef-
ficients in a differential field allows to define a torsion-free module M which is 
free in that case because a finitely generated module over a principal ideal do-
main is free if and only if it is torsion-free and ( ),Dhom M D  is thus also a free 
module.  

THEOREM 2.21: ( ) ( )0,iext M i cd M= ∀ <  and 1i n∀ ≥ + .  
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THEOREM 2.22: ( )( )icd ext M i≥ .  
THEOREM 2.23: ( ) ( ) 0,icd M r ext M i r≥ ⇔ = ∀ < .  
PROPOSITION 2.24: ( ) ( )( )rcd M r cd ext M r= ⇒ =  and ( )rext M  is 

r-pure.  
PROPOSITION 2.25: ( )( )r rext ext M  is equal to 0 or is r-pure, 0 r n∀ ≤ ≤ .  
PROPOSITION 2.26: If we set ( )1t M M− = , there are exact sequences 
0 r n∀ ≤ ≤ :  

( ) ( ) ( )( )10 r r
r rt M t M ext ext M−→ → →  

THEOREM 2.27: If ( )cd M r= , then M is r-pure if and only if there is a 
monomorphism ( )( )0 r rM ext ext M→ →  of left differential modules.  

THEOREM 2.28: M is pure ( )( ) ( )0,s sext ext M s cd M⇔ = ∀ ≠ .  
COROLLARY 2.29: If M is r-pure with 1r ≥ , then it can be embedded into a 

differential module L having a free resolution with only r operators.  
The previous theorems are known to characterize purity but it is however 

evident that they are not very useful in actual practice. For more details on these 
two results which are absolutely out of the scope of this paper, see ([2], pp. 
490-491) and ([3], p. 547). Proposition 3.24 and Theorem 3.25 come from the 
Cohen-Macaulay property of M, namely ( ) ( ) ( ){ }| 0icd M g M inf i ext M= = ≠  
where ( )g M  is called the grade of M (see [2] and [3] [4] for more details).  

THEOREM 2.30: When M is r-pure, the characteristic ideal is thus unmixed, 
that is a finite intersection of prime ideals having the same codimension r and 
the characteristic set is equidimensional, that is the union of irreducible alge-
braic varieties having the same codimension r.  

In 2012 we have provided a new effective test for checking purity while using 
the involutivity of the Spencer form with four steps as follows ([4]):  
• STEP 1: Compute the involutive Spencer form of the system and the number 

r of full classes.  
• STEP 2: Select only the equations of class 1 to ( )d M n r= −  of this Spencer 

form which are making an involutive system over ( )1, , n rK d d −
 
 

.  
• STEP 3: Using differential biduality for such a system, check if it defines a 

torsion-free module ( )n rM −  and work out a parametrization.  
• STEP 4: Substitute the above parametrization in the remaning equations of 

class 1, ,n r n− +   of the Spencer form in order to get a system of PD equ-
ations which provides the parametrizing module L in such a way that 
M L⊆  and L has a resolution with r operators.  

THEOREM 2.31: As purity is an intrinsic property, we may work with an in-
volutive Spencer form and M is r-pure if the classes 1, ,n r n− +   are full and 
the module ( )n rM −  defined by the equations of class 1 +   + class ( )n r−  
is torsion-free. Hence M is 0-pure if it is torsion-free.  

We shall now illustrate and apply this new procedure in the next two sections.  

3. Motivating Examples 

EXAMPLE 3.1: With 3, 1n m= =  and K = , let us consider the following 
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polynomial ideal:  

( ) ( )( ) [ ] [ ]2 2
3 2 3 1 3 2 1 2 1 2 3, , , ,K Kχ χ χ χ χ χ χ χ χ χ χ χ= − − ⊂ =a  

We shall discover that it is not evident to prove that it is an unmixed polynomial 
ideal and that the corresponding differential module is 1-pure.  

The first result is provided by the existence of the primary decomposition ob-
tained from the two existing factorizations ([23]):  

( )( ) ( )2
3 2 1 3 2, ,χ χ χ χ χ ′ ′′= − = a q q  

Taking the respective radical ideals, we get the prime decomposition:  

( ) ( ) ( ) ( ) ( )3 2 1 3 2, ,rad rad radχ χ χ χ χ ′ ′′ ′ ′′= − = =  a p p q q  

The corresponding involutive system is:  

33

23 13

22 12

0 1 2 3
0 1 2
0 1 2

y
y y
y y

=
 − = •
 − = •

 

with characters 3
2 1 1 0α = − = , 2

2 2 2 0α = − = , 1
2 3 0 3α = − =  and 

( )2 3dim g α= =∑ .  
Setting ( 1 2 3 4

1 2 3, , ,z y z y z y z y= = = = ), we obtain the involutive first order 
Spencer form:  

4 3 4 2 4 1 4
3 3 1 3 1 3
4 4 3 3 2 3 1 3
2 1 2 1 2 1 2
1 2
1

0, 0, 0, 0 1 2 3
0, 0, 0, 0 1 2
0 1

z z z z z z z
z z z z z z z z
z z

 = − = − = − =
 − = − = − = − = •
 − = • •

 

with new characters 3
1 4 4 0α = − = , 3

1 4 4 0α = − = , 1
1 4 1 3α = − =  and simi-

larly ( )1 3dim g α= =∑ . Both class 3 and class 2 are full while class 1 is defining 
a torsion-free module ( )1M  over [ ]1K d  by means of a trivially involutive sys-
tem of class 1. Hence the differential module M is such that ( ) 2cd M =  and is 
1-pure because it is 1-pure in this presentation.  

Suppressing the bar for the various residues, we are ready to exhibit the relative 
parametrization defining the parametrization module L because we may choose 
the 3 potentials ( )1 3 4, ,z y z z=  while taking into account that 2

1 1z y d y= = :  
4
3
3 4
3 1
1 4
3
4 4
2 1
3 3
2 1
1 3
2

1 2 30
1 2 30
1 2 30
1 20
1 20
1 20

z
z z
z z
z z
z z
z z

 =
 − =
 − =
 •− =
 •− =


•− =

 

Both ( )3 4, ,y z z  are torsion elements and we can eliminate ( )3 4,z z  in order to 
find the desired system that must be satisfied by y which is showing the inclu-
sion M L⊂  but we have indeed M L=  because 3 4

2 3,z y z y= = . It follows 
that M admits a free resolution with only 2 operators, a result following at once 
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from the last Janet tabular, contrary to the previous one.  
The reader may treat similarly the example ( ) ( )1 2 3 4, ,χ χ χ χ= a  and look 

at ([39]) for details. (Hint: use the involutive system 44 14 0y y+ = , 34 13 0y y+ = , 

33 23 0y y+ = , 24 13 0y y− = ).  
EXAMPLE 3.2: With 3n = , 1m = , 2q = , K = , [ ]1 2 3, ,D K d d d= , let 

us consider the differential module M defined by the second order system 

33 0Py y≡ = , 13 2 0Qy y y≡ − =  first considered by Macaulay in 1916 ([19] 
[21]). We shall prove that M is 2-pure through the inclusion  

( )( )2 20 M ext ext M→ →  directly and by finding out a relative parametrization, 
a result highly not evident at first sight.  

First of all, in order to find out the codimension ( ) 2cd M = , we have to con-
sider the equivalent involutive system:  

4
33

3
23 1 3

2
22 11 13 2

1
13 2

1 2 3
1 2
1 2
1

y u
y d u d v
y d u d v d v
y y v

Φ ≡ =
 •Φ ≡ = −
 •Φ ≡ = − −
 • •Φ ≡ − =

 

The Janet tabular on the right allows at once to compute the characters 3
2 0α = , 

2
2 0α = , 1

2 3 1 2α α= = − =  and to construct the following strictly exact se-
quence of differential modules:  

4 40 0pD D D D M→ → → → → →  

Also, we have  

( ) ( ) ( )( ) ( ) ( )2 2
3 2 3 2 1 3 3 2, , , , 1rad rad dim Vχ χ χ χ χ χ χ χ= = = ⇒ =a p .  

As the classes 3 and 2 are full, it follows that  
( ) ( ) ( )1 1 2d M d Dy cd M n= = ⇒ = − =  if we denote simply by y the canonical 

residue y  of y after identifying D with Dy . We have constructed explicitly in 
([29]) a finite length resolution of ( )2N ext M=  by pointing out that N does 
not depend on the resolution of M used and one can refer to the single compati-
bility condition (CC) 0P Qy Q Py− =   for the initial system in the exact se-
quence made by second order operators:  

1 2
20 0pD D D M→ → → → →   

Indeed, introducing differential duality through the functor ( ),Dhom D•  and 
the respective adjoint operators, we may define the torsion left differential mod-
ule N by the long exact sequence:  

( ) ( )1 20 0ad adqN D D D← ← ← → ←   

showing that ( ) ( )0 1 2 1 0D Drk M rk N= ⇒ = − + =  because of the additivity 
property of the differential rank and the vanishing of the Euler-Poincaré charac-
teristic of the full sequence. It follows that ( ) ( )( )2 2 2M ext N ext ext M= = .  

Similarly, using certain parametric jet variables as new unknowns, we may set 
1z y= , 2

1z y= , 3
2z y= , 4

3z y=  in order to obtain the following involutive 
first order system with no zero order equation:  
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1 4 2 3 3 4
3 3 3 3

1 3 2 3 3 4
2 2 1 2 2

1 2 4 3
1 1

class 3 0, 0, 0, 0 1 2 3
class 2 0, 0, 0, 0 1 2
class 1 0, 0 1

d z z d z z d z d z
d z z d z d z d z d z
d z z d z z

 − = − = = =
 − = − = = = •
 − = − = • •

 

where we have separated the classes while using standard computer algebra no-
tations this time instead of the jet notations used in the previous example. Con-
trary to what could be believed, this operator does not describe the Spencer se-
quence that could be obtained from the previous Janet sequence but we can use 
it exactly like a Janet sequence or exactly like a Spencer sequence. We obtain 
therefore a long strictly exact sequence of differential modules with only first 
order operators while replacing Dy  by 1 2 3 4Dz Dz Dz Dz Dz= + + +  as fol-
lows:  

2 8 10 4
1 1 10 0D D D D M→ → → → → →  

and we still have the vanishing Euler-Poincaré characteristic 2 8 10 4 0− + − = .  
The differential module 1M  is defined over [ ]1K d  by the two PD equations 

of class 1 and is easily seen to be torsion-free with the two potentials ( )1 4,z y z= . 
Substituting into the PD equations of class 2 and 3, we obtain the generating dif-
ferential constraints:  

1 4
3

4
3

1 4
2 1

4
2

1 2 30
1 2 30
1 20
1 20

d z z
d z
d z d z
d z

 − =
 =
 •− =
 •=

 

They define the parametrization module L and the inclusion M L⊆  is ob-
tained by eliminating 4z  but we have indeed M L=  because 4

3z d y= .  
EXAMPLE 3.3: We have provided in ([4], Example 4.2) a case leading to a 

strict inclusion M L⊂  that we revisit now totally in this new framework. With 
, 1, 4, 2K m n q= = = = , let us study the 2-pure differential module M defined 

by the involutive second order system:  

44

34

33

24 13

0 1 2 3 4
0 1 2 3
0 1 2 3

0 1 2

y
y
y
y y

=
 = •
 = •
 − = • •

 

From the Janet tabular we may construct at once the Janet sequence:  
1 20 1 4 4 1 0→Θ→ → → → →   

where 1  is defined by the involutive system:  

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

4 34 3 44

4 33 3 34

4 24 13 2 44 1 34

3 24 13 2 34 1 33

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3

d y d y
d y d y
d y y d y d y
d y y d y d y

− =
 − =
 − − + =
 − − + = •

 

and so on. We have therefore a free resolution of M with 3 operators:  
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4 40 0D D D D M→ → → → → →  

and thus discover that ( ) 3pd M ≤ .  
However, we have  

( ) ( )( ) ( ) ( )2 2
4 3 4 3 2 4 1 3 4 3, , , , 1rad dim Vχ χ χ χ χ χ χ χ χ χ− = = ⇒ =p .  

Let us transform the initial second order involutive system for y into a first 
order involutive system for ( )1 2 3 4 5

1 2 3 4, , , ,z y z y z y z y z y= = = = =  as follows:  
1 5 2 5 3 4 4 5

4 4 1 4 1 4 4
1 4 2 4 3 4 4 5

3 3 1 3 2 3 3
1 3 2 3 5 4

2 2 1 2 1
1 2

1

1 2 3 40, 0, 0, 0, 0
1 2 30, 0, 0, 0, 0
1 20, 0, 0
10

d z z d z d z d z d z d z d z
d z z d z d z d z d z d z d z
d z z d z d z d z d z
d z z

 − = − = − = = =
 •− = − = − = = =
 • •− = − = − =
 • • •− =

 

with five equations of full class 4, five equations of full class 3, three equations of 
class 2 and finally one equation of class 1. The equations of classes 2 and 1 are pro-
viding an involutive system over [ ]1 2,d d  defining a torsion-free module ( )2M  
that can be parametrized by setting 1 2 3 4 5

1 2 2 1, , , ,z y z d y z d y z d z z d z= = = = =  
with only 2 arbitrary potentials ( ),y z . Substituting in the other equations of 
classes 3 and 4, we finally discover that L is defined by the involutive system de-
scribing the relative parametrization:  

4 1

4

3 2

3

0 1 2 3 4
0 1 2 3 4

0 1 2 3
0 1 2 3

d y d z
d z
d y d z
d z

− =
 =
 − = •
 = •

 

We have the strict inclusion M L⊂  obtained by eliminating z because now 
z Dy∉  if we take the residue or, equivalently, the residue of z does not belong 
to M. The differential module L defined by the above system is therefore 2-pure 
with a strict inclusion M L⊂  and admits a free resolution with only 2 opera-
tors according to its Janet tabular.  

EXAMPLE 3.4: (Contact structure) With 3n m= =  and ( )1 2 3, ,K x x x=  
let us introduce the so-called contact 1-form 1 3 2dx x dxα = −  and consider the 
first order system of infinitesimal Lie equations obtained by eliminating the 
contact factor ρ  from the equations ( )L ξ α ρα= . We let the reader check 
that he will obtain only the two equations 1 20, 0Φ = Φ =  which is nevertheless 
neither formally integrable nor even involutive. Using crossed derivatives one 
obtains the involutive system:  

( )

3 3 2 3 2
3 2 1

2 1 3 2
3 3

21 1 3 2 3 1 3 2 3
2 2 1 1

2 0 1 2 3
0 1 2 3

1 20

x
x

x x x

ξ ξ ξ
ξ ξ

ξ ξ ξ ξ ξ

Φ ≡ ∂ + ∂ + ∂ =Φ ≡ ∂ − ∂ =
 •Φ ≡ ∂ − ∂ + ∂ − ∂ − =

 

with the unique CC 1 2 3 2 3
3 2 1 0xΨ ≡ ∂ Φ − ∂ Φ − ∂ Φ +Φ = . The following injective 

absolute parametrization is well known and we let the reader find it by using 
differential double duality:  
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3 1 2 3 3 1 3 2
3 3 2 1, ,x x xφ φ ξ φ ξ φ φ ξ ξ ξ φ− ∂ = − ∂ = ∂ + ∂ = ⇒ − =  

We obtain the Janet sequence  
1 10 1 3 3 1 0

φ ξ

−→ → → → →
Φ Ψ

 

 

with formally exact adjoint sequence:  
( ) ( ) ( )1 10 1 3 3 1 0ad ad ad

θ ν µ λ

−← ← ← ← →  

 

and the resolution of the trivially torsion-free module M D :  
3 30 0D D D M→ → → → →  

which splits totally because it is made with free and thus projective modules.  
EXAMPLE 3.5: (Unimodular contact structure) With 3n m= =  and 

( )1 2 3, ,K x x x=  let us introduce the 1-form 1 3 2dx x dxω = −  used as a geo-
metric object and consider the first order system of infinitesimal Lie equations 
from the equations ( ) 0L ξ ω = . One obtains the system using jet notations:  

1 3 2 1 3 2 3 1 3 2
3 3 2 2 1 10, 0, 0x x xξ ξ ξ ξ ξ ξ ξ− = − − = − =  

We let the reader prove that these three PD equations are differentially inde-
pendent and we obtain the free resolution of M:  

3 30 0D D M→ → → →  

and its adjoint sequence is:  
( )3 30 0adN D D← ← ← ←  

because ( ) ( ) 3 3 0D Drk M rk N= = − = , that is both M and N are torsion mod-
ules with ( ) ( ) ( )( )1 1 1 1N ext M M ext N ext ext M= ⇒ = =  and M is surely 
1-pure. However, this system is not formally integrable, as it can be checked di-
rectly through crossed derivatives or by noticing that ( ) 0dξ ω =  with 

2 3d dx dxω = ∧  and ( )( ) 0dξ ω ω∧ =  with 1 2 3d dx dx dxω ω∧ = ∧ ∧ . Hence, 
we have to add the 3 first order equations:  

2 3 3 2 1
2 3 1 1 10, 0, 0 0ξ ξ ξ ξ ξ+ = = = ⇒ =  

Exchanging 1x  and 3x , we obtain the equivalent involutive system in δ
-regular coordinates:  

3
3
2
3
1
3
2 3
2 1
1 1 3 3
2 1
1 1 2
1 1

1 2 30
1 2 30
1 2 30
1 20
1 20
10

x
x

ξ
ξ
ξ
ξ ξ
ξ ξ ξ
ξ ξ

 =
 =
 =
 •+ =
 •+ − =


• •− =

 

The differential module ( )2M  over [ ]1 2,K d d  is defined by the three bottom 
equations. Setting now 1 1 2xφ ξ ξ= − , we deduce from the last bottom equation 
that 2

1dξ φ= −  and thus 1 1
1x dξ φ φ= − . Finally, substituting in the equation 
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before the last, we get 3
2dξ φ= . We have thus obtained an injective parametri-

zation of ( )2M  which is therefore torsion-free and M is 2-pure in a coherent 
way. Substituting into the three upper equations, we obtain the desired relative 
parametrization by adding the differential constraint 3 0d φ = . Coming back to 
the original coordinates, we obtain the relative parametrization:  

3 1 2 3 3 3
3 3 2 1 2 1, , with 0x d d d d d x dφ φ ξ φ ξ φ ξ φ φ φ ξ− = − = = = ⇒ + =  

which is thus strikingly obtained from the previous contact parametrization by 
adding the only differential constraint 1 0d φ =  obtained by substituting it in the 
new system of Lie equations.  

4. Applications  

Before studying applications to mathematical physics, we shall start with an ex-
ample describing in an explicit way the Janet and Spencer sequences used the-
reafter, both with their link, namely the relations existing between the dimen-
sions of the respective Janet and Spencer bundles.  

EXAMPLE 4.1: When 2, 2n m q= = = , ω  is the Euclidean metric of 
2X =   with Christoffel symbols γ  and metric density ( )detω ω ω= , we 

consider the two involutive systems of linear infinitesimal Lie equations  
( )2 2 2R R J T⊂ ⊂  respectively defined by ( ) ( ){ }0, 0L Lξ ω ξ γ= =  and  

( ) ( ){ }0, 0L Lξ ω ξ γ= = . We have 2 2 0g g= =  and construct the following 
successive commutative and exact diagrams followed by the corresponding di-
mensional diagrams that are used in order to construct effectively the respective 
Janet and Spencer differential sequences while comparing them.  

( )

( )

*
2 0

2 2 0

1 1 0

0 0 0

0 0

0 0

0 0

0 0 0

S T T F

R J T F

R J T F

↓ ↓
′′→ ⊗ → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
′→ → → →

↓ ↓ ↓





 

0 0 0

0 6 6 0

0 3 12 9 0

0 3 6 3 0

0 0 0

↓ ↓
→ → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓





 

In the present situation we notice that  
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( ) ( ) ( ) ( )( )2 1 1 1 1 2 1 1R R J R J T J J Tρ= = ⊂  and thus ( )0 1 0F J F ′  with  
* *

0 0 2F T F S T T′′ ′⊗ ⊗   by counting the dimensions because we have surely 
( )0 1 0F J F ′⊂  with 2 0g = .  

( ) ( )

( )

* *
3 0 1

3 3 1 0 1

2 2 0

0 0 0

0 0

0 0

0 0

0 0 0

S T T T F F

R J T J F F

R J T F

↓ ↓ ↓
→ ⊗ → ⊗ → →

↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓



 

0 0 0

0 8 18 10 0

0 3 20 27 10 0

0 3 12 9 0

0 0 0

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓





 

SPENCER 

( ) ( ) ( )

1 2

1 2

1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 0 0

0 0

0 0

0 0

0 0 0

q

q

j D D

j D D

C C C

T C T C T C T

T F F F

↓ ↓ ↓

→ Θ → → → →
↓ ↓ ↓

→ → → → →
↓Φ ↓Φ ↓Φ

→ Θ → → → → →
↓ ↓ ↓

 



 

JANET 
2 1 2

2 1 2

2 1 2

1 2

1 2

0 1 2

0 4 8 4 0

0 3 6 3 0 SPENCER

0 2 12 16 6 0 HYBRID

0 2 9 10 3 0 JANET

0 2 8 8 2 0

j D D

j D D

j D D

→ Θ → → → →

→ Θ → → → →
↓ ↓ ↓

→ → → → →
↓Φ ↓Φ ↓Φ

→ Θ → → → → →

→ Θ → → → → →





 

 



 

https://doi.org/10.4236/jmp.2019.1012097


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2019.1012097 1471 Journal of Modern Physics 
 

( )*
0 0 1 1

* *
3 0 1

* *
3 0 1

0 0

0 0

0 0

0 0

0 0 0

T C C C C

S T T T F F

S T T T F F

↓ ↓

→ ⊗ = →

↓ ↓ ↓
→ ⊗ → ⊗ → →

↓ ↓
→ ⊗ → ⊗ → →

↓ ↓ ↓

 

 



 

0 0

0 2 2 0

0 8 18 10 0

0 8 16 8 0

0 0 0

↓ ↓
→ → →

↓ ↓ ↓
→ → → →

↓ ↓
→ → → →

↓ ↓ ↓



 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

*
0 0

r
r r r r

r r r r

r r r r

C C ker F F T C C

dim C dim C dim F dim F

dim C dim F dim C dim F

→ ∧ ⊗

⇒ − = −

⇒ + = +

 

 

 

 

 

In this new situation, we now notice that  

( ) ( ) ( ) ( )( )2 1 1 1 1 2 1 1R R J R J T J J Tρ = ⊂  

   

and the induced morphism ( )0 1 0F J F ′→   is thus no longer a monomorphism 
though we still have an isomorphism *

0 2F S T T′′ ⊗

  because 2 0g =  again. 
Finally, we may extend such a procedure to the conformal group of space-time 
by considering the system of infinitesimal conformal transformations of the 
Minkowski metric defined by the first order system ( )1 1R̂ J T⊂  in such a way 
that we have the strict inclusions ( )2 2 2 2

ˆR R R J T⊂ ⊂ ⊂  with ( )2ˆ 4dim g n= = .  

For this, we just need to introduce the metric density ( )( )
1

ˆ ndetω ω ω
−

=  and 

consider the system ( ) ˆ 0L ξ ω =  ([13]):  

2ˆ ˆ ˆ ˆ ˆ 0r r r r
ij rj i ir j ij r r ijn

ω ξ ω ξ ω ξ ξ ωΩ ≡ ∂ + ∂ − ∂ + ∂ =  

A) Control Theory:  
EXAMPLE 4.A.1: (OD control theory) In classical control theory we have 

1n =  and the only independent variable is the time, simply denoted by x but we 
may choose any ground differential field like ( )K x= . In that case, we shall 
refer to ([5] or [14]) for the proof of the following technical results that will be 
used in this case (compare to [43]). Instead of the standard “upper dot” notation 
for derivative we shall identify the formal and the jet notations, setting thus 
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x xd y dy y= = . With 2m = , let us consider the elementary Single Input/Single 
Output (SISO) second order system ( )1 2 2 0xx xy y a x y− + =  with a variable coef-
ficient a K∈ . The corresponding formally surjective operator is  

( )1 2 2
xx x a xη η η ζ∂ − ∂ + = . Treating such a system by using classical methods is 

not so easy when a is not constant as it cannot be possible to transform it to the 
standard Kalman form. On the contrary, multiplying by a test function (or La-
grange multiplier) λ  and integrating by parts, we obtain the adjoint sys-
tem/operator:  

1 1

2 2

1xx

x

y

y a

λ µ

λ λ µ

 → =
 •→ + =

 

This system has a trivially involutive zero symbol but is not even formally in-
tegrable and we have to consider:  

( )

1

2

2 2 1 2

1xx

x

x x

a

a a a

λ µ
λ λ µ

λ µ µ µ

 =
 + = •
 •∂ − = − −

 

We have thus two possibilities:  
• We have 2 0xa a− ≠  and the adjoint system has the only zero solution, that 

is the adjoint operator is injective. In this case 0N =  and thus 
( ) ( )1 0t M ext N= =  that is M is torsion-free. However, as 1n =  it follows 

that [ ]D K d=  is a principal ideal ring which is therefore free and thus pro-
jective ([26] [30]), that is M is torsion-free if and only if 0N =  and the sys-
tem is controllable.  

• The Riccati equation 2 0xa a− =  is satisfied, for example if 1a x= − , and 
we get the CC 2 1 2 0x aµ µ µ− − = . Multiplying by a test function ξ  and in-
tegrating by parts, we get the adjoint operator:  

1 1

2 2
x a

µ ξ η

µ ξ ξ η

 → − =


→ − − =
 

with only one first order generating CC, namely 1 2 1 0x aη η η∂ − + = . It follows 
that ( )10 0N ext N≠ ⇒ ≠  is a torsion module generated by the residue of 

1 2 1
xz y y ay= − + , even though 1y  and 2y  are free separately and M is not 

pure. We obtain indeed a torsion element as we can check at once that 
0xz az− =  and wish good luck for control people to recover simply this result 

even on such an elementary example because the Kalman criterion is only 
working for systems with constant coefficients (compare [5] and [43]).  

EXAMPLE 4.A.2: (PD control theory) With 2n = , let us consider the (tri-
vially involutive) inhomogeneous single first order PD equations with two inde-
pendent variables ( )1 2,x x , two unknown functions ( )1 2,η η  and a second 
member ζ :  

1 2 2 2
2 1 1xη η η ζ η ζ∂ − ∂ + = ⇔ =  

The ring of differential operators is [ ]1 2,D K d d=  with ( )1 2,K x x= . Mul-
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tiplying on the left by a test function λ  and integrating by parts, the corres-
ponding adjoint operator is described by:  

( )
1 1

2
12 2 2

1

ad
x

η λ µ
λ µ

η λ λ µ

 → −∂ = ⇔ =
→ ∂ + =

  

Using crossed derivatives, this operator is injective because  
2 1 2 1

2 1 xλ µ µ µ= ∂ + ∂ +  and we even obtain a lift λ µ λ→ → . Substituting, we 
get the two CC:  

( )

2 1 2 1 1 1
22 12 2

22 1 2 1 2 2 2 1 2 2
12 11 1 2

2 1 2
12

x

x x x

µ µ µ µ ν

µ µ µ µ µ µ ν

∂ + ∂ + ∂ + =
 •∂ + ∂ + ∂ + ∂ + − =

 

This system is involutive and the corresponding generating CC for the second 
member ( )1 2,ν ν  is:  

2 1 2 1
2 1 0xν ν ν∂ − ∂ − =  

Therefore 2ν  is differentially dependent on 1ν  but 1ν  is also differential-
ly dependent on 2ν . Multiplying on the left by a test function θ  and integrat-
ing by parts, the corresponding adjoint system of PD equations is:  

( )
1 2 1

1
12 2

2

x
ad

ν θ θ ξ
θ ξ

ν θ ξ
−

 → ∂ − = ⇔ =
→ −∂ =

  

Multiplying now the first equation by the test function 1ξ , the second equa-
tion by the test function 2ξ , adding and integrating by parts, we get the canon-
ical parametrization Dξ η= :  

( )

2 1 2 2 2 2 2
22 12 2

21 1 2 1 1 2 2 2 2 2 1
12 2 11 1

2 1 2
12

x

x x x

µ ξ ξ ξ ξ η

µ ξ ξ ξ ξ ξ ξ η

 → ∂ + ∂ − ∂ − =
 •→ ∂ − ∂ + + ∂ − ∂ + =

 

of the initial system with zero second member. This system is involutive and the 
kernel of this parametrization has differential rank equal to 1 because 1ξ  or 

2ξ  can be given arbitrarily.  
Keeping now 1ξ ξ=  while setting 2 0ξ = , we get the first second order mi-

nimal parametrization ( )1 2,ξ η η→ : 
2

22
2 1

12 2

1 2
1x

ξ η
ξ ξ ξ η

∂ =
 •∂ − ∂ + =

 

This system is again involutive and the parametrization is minimal because 
the kernel of this parametrization has differential rank equal to 0. With a similar 
comment, setting now 1 0ξ =  while keeping 2ξ ξ′= , we get the second order 
minimal parametrization ( )1 2,ξ η η′→ :  

( )22 2 1
11 1

2 2
12 2

2

2

x x

x

ξ ξ ξ η

ξ ξ ξ η

 ′ ′ ′∂ − ∂ + =


′ ′ ′∂ − ∂ − =
 

which is again easily seen to be involutive by exchanging 1x  with 2x .  
With again a similar comment, setting now 1

1 2 2,ξ φ ξ φ= ∂ = −∂  in the ca-
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nonical parametrization, we obtain the third different second order minimal pa-
rametrization:  

2 2
22 2

2 2 2 1
12 2 1

1 22
1( )

x
x x

φ φ η
φ φ φ η

 ∂ + ∂ =
 •∂ − ∂ + ∂ =

 

We are now ready for understanding the meaning and usefulness of what we 
have called “relative parametrization” in ([4]) by imposing the differential con-
straint 1 2

2 1 0ξ ξ∂ + ∂ =  which is compatible as we obtain indeed the new first 
order relative parametrization:  

( )

1 2
2 1

2 2 2 2
2

22 2 2 2 1 1
1

0 1 2
2 1 2

1
x

x x

ξ ξ
ξ ξ η

ξ ξ ξ η

∂ + ∂ =− ∂ − =
 •− ∂ + + =

 

with 2 equations of class 2 (thus with class 2 full) and only 1 equation of class 1.  
In a different way, we may add the differential constraint 1 2

1 2 0ξ ξ∂ + ∂ =  but 
we have to check that it is compatible with the previous parametrization. For this, 
we have to consider the following second order system which is easily seen to be 
involutive with 2 second order equations of (full) class 2, (only) 2 second order 
equations of class 1 and 1 equation of order 1:  

( )

2 1
22 12

1 2 2 2 2 2
22 12 2

2 1
12 11

21 2 1 1 2 2 2 2 2 1
12 2 11 1

2 1
2 1

0 1 2
2 1 2

0 1
12

0

x

x x x

ξ ξ
ξ ξ ξ ξ η
ξ ξ

ξ ξ ξ ξ ξ ξ η

ξ ξ

∂ + ∂ =
∂ + ∂ − ∂ − =
∂ + ∂ = •
 •∂ − ∂ + + ∂ − ∂ + =

• •∂ + ∂ =

 

The 4 generating CC only produce the desired system for ( )1 2,η η  as we 
wished.  

We cannot impose the condition 1θ ξ− =  already found as it should give 
the identity 0 η= .  

It is however also important to notice that the strictly exact long exact se-
quence:  

1 12 20 0D D D D−→ → → → →   

splits because we have a lift ζ η ζ→ → , namely:  

( )2 1 2 2 1 2 2 2
1 2 2 1,x xζ ζ ζ η η η η η η ζ→ −∂ + = −∂ = → ∂ − ∂ + =  

We have thus an isomorphism 2D D M⊕  in the resolution  
1 20 0pD D M→ → → →  and all the differential modules defined from the 

operators involved are projective, thus torsion-free or 0-pure with vanishing 
r-extension modules ( ) 0, 1rext r= ∀ ≥ .  

As an exercise, we finally invite the reader to study the situation met with the 
system ( )1 2 2

2 1 a xη η η∂ − ∂ +  whenever a K∈  (Hint: The controllability con-
dition is now 1 0a∂ ≠ ). The comparison with the previous OD case needs no 
comment.  
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B) Electromagnetism:  
Most physicists know the Maxwell equations in vacuum, eventually in dielec-

trics and magnets, but are largely unaware of the more delicate constitutive laws 
involved in field-matter couplings like piezzoelectricity, photoelasticity or 
streaming birefringence. In particular they do not know that the phenomeno-
logical laws of these phenomena have been given ... by Maxwell ([7]). The situa-
tion is even more critical when they deal with invariance properties of Maxwell 
equations because of the previous comments ([44]). Therefore, we shall first 
quickly recall what the use of adjoint operators and differential duality can bring 
when studying Maxwell equations as a first step before providing comments on 
the so-called gauge condition brought by the Danish physicist Ludwig Lorenz in 
1867 and not by Hendrik Lorentz with name associated with the Lorentz trans-
formations.  

Though it is quite useful in actual practice, the following approach to Maxwell 
equations cannot be found in any textbook. Namely, avoiding any variational 
calculus based on given Minkowski constitutive laws F   between field F 
and induction   for dielectric or magnets, let us use differential duality and 
define the first set 1M  of Maxwell equations by 2 * 3 *:d T T∧ → ∧  while the 
second set 2M  will be defined by ( ) 4 * 2 4 *:ad d T T T T∧ ⊗∧ → ∧ ⊗  with 

* 2 *:d T T→∧ , in a totally independent and intrinsic manner, using now con-
travariant tensor densities in place of covariant tensors. As we have already 
proved since a long time in ([3] [7] [13] [14] [33] [40]), the key result is that 
these two sets of Maxwell equations are invariant by any diffeomorphism, con-
trary to what is generally believed ([44]). We recapitulate below this procedure 
in the form of a (locally exact) differential sequence and its (locally exact) formal 
adjoint sequences where the dotted down arrow in the left square is the standard 
composition of operators:  

( )
potential field induction current

ad dd

A F
→ → →
→ → → 

 

which is responsible for EM waves, though it is equivalent to the composition in 
the right square:  

( )
3 *pseudopotential induction field

ad d d
T→ → →∧  

The main difference is that we need to set 0=  in the first approach be-
cause of 2M  while we get automatically such a vanishing assumption in the 
second approach because of 1M , avoiding therefore the Lorenz condition as in 
([35], Remark 5.5) and below.  

( ) ( ) ( )

( ) ( )
( )

1

2

potential field 0

current induction pseudopotential

Md

i i j j i ij i jk j ki k ij

ad dM
ij j ij

i

A A A F F F F= → ∂ − ∂ = = → ∂ + ∂ + ∂ =

= ∂ = ← = ←  
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( ) ( )

1

2

* 2 * 3 *

4 * 4 * 2 4 * 3

3 * 2 * *

d Md

ad d M ad d

d d

A F

T T T

T T T T T T

T T T

=

=

→ ∧ → ∧

∧ ⊗ ← ∧ ⊗∧ ← ∧ ⊗∧

∧ ← ∧ ←

  

  

 

 

Using symbolic notations with an Euclidean metric instead of the Minkowski 
one because they are both locally constant while using the constitutive law 

F=  for simplicity in vacuum while raising or lowering the indices by means 
of the metric, we have the parametrization i j j i ijd A d A F− =  and obtain by 
composition in the left upper square:  

( ) ( )
( ) 0

i j j i i j j i j
i i i

i j j i j
j i i j

d d A d A d d A d d A

d d d A d d A d

− = − =

⇒ − = =




 

with implicit summations on i and j. However, such a result does not prove at all 
that the density of current does not satisfy other CC. Nevertheless, we have:  

LEMMA 4.B.1: The system ( )i j j i j
i id d A d d A− =  is involutive whenever 

0j
jd =  but the differential module defined by the corresponding homoge-

neous system is not torsion-free.  
Proof: When 0= , this second order system is formally integrable because 

it is homogeneous. However, even if we know a priori that necessarily 0j
jd = , 

it is not evident that such a condition is also sufficient, contrary to what is 
claimed in the literature. When 4n = , using the Euclidean metric for simplicity, 
one can rewrite the system in the form:  

( )
( )
( )

3 3 3 3 4 3 2 1 3
44 33 22 11 3 4 3 2 1

2 2 2 3 4 3 2 1 2
44 33 22 11 2 4 3 2 1

1 1 1 3 4 3 2 1 1
44 33 22 11 1 4 3 2 1

3 2 1 4 4 4 4
34 24 14 33 22 11

1 2 3 4
1 2 3 4

d A d A d A d A d d A d A d A d A

d A d A d A d A d d A d A d A d A

d A d A d A d A d d A d A d A d A

d A d A d A d A d A d A

 + + + − + + + =

 + + + − + + + =

 + + + − + + + =


+ + − − − = −









1 2 3 4
1 2 3 •

 

Let us check that the second order symbol is involutive with three equations of 
class 4 and only one equation of class 3. Indeed, we have successively:  

3 2 1 4 4 4 4
344 244 144 334 224 114 4

3 3 3 3 4 3 2 1 3
344 333 223 113 334 333 233 133 3

2 2 2 2 4 3 2 1 2
244 233 222 112 224 223 222 122 2

1 1 1 1
144 133 122 111

d A d A d A d A d A d A d

d A d A d A d A d A d A d A d A d

d A d A d A d A d A d A d A d A d

d A d A d A d A

+ + − − − = −

− − − − + + + + = −

− − − − + + + + = −

− − − − +






4 3 2 1 1

114 113 112 111 1d A d A d A d A d+ + + = − 

 

Summing the four equations, the left member is vanishing and we get the de-
sired only CC. The four characters are (1 7 12 16< < < ) and we check that 

( ) ( )2 1 7 12 16 36 10 4 4dim g = + + + = = × − . This procedure cannot be avoided 
though it cannot be found in the literature.  

In addition, rewriting the homogeneous system in the form 0i i j i j id d A d d A− =  
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with implicit summation on i, we obtain successively ([10]):  

( )
( ) ( )
( ) ( )
( ) ( )

0

i i jk i i j k k j

j i i k k i i j

j i k i k i j i

j k i i k j i i

d d F d d d A d A

d d d A d d d A

d d d A d d d A

d d d A d d d A

= −

= −

= −

= −

=

 

It follows that each component of the field is a torsion element of the corres-
ponding differential module M, which is killed by the Dalembertian. According-
ly, M is not torsion-free and thus not pure because we have just proved that 

( ) 1Drk M = . In particular, each component of the potential is free by itself. Such a 
situation is similar to the one met in the study of Single Input/Single Output (SISO) 
ordinary differential control systems. For example, if we have 0xx xy u− = , then 

xz y u= −  is a torsion element with 0xz =  even though both the input u and the 
output y are free separately. Bringing the system to first order by choosing the new 
unknowns ( )1 2 3, ,xz y z y z u= = = , we obtain the Spencer form over K = :  

1 2 2 30, 0x x xz z z z− = − =  

Setting a new 1 1 2 2 3 3 3, ,z z z z z z z= = − = , we obtain the reduced Spencer form:  

( )1 2 3 20, 0 , 1 2x x Kz z z z z Az Bu rk B AB− − = = ⇔ = + ⇒ = <  

which is a Kalman form because no jet of the input 3 3z z u= =  is indeed ap-
pearing.  

Finally, the character 2
nα  is obtained by considering nn j jn nd A d A−  for the 

equation giving j . For n  we get 0nn n nn nd A d A− =  and thus  
( )2 1 1n n nα = − − =  a result showing that the corresponding differential module 

has rank 1 and there is thus only one CC, namely 0j
jd =  with implicit 

summation on j.  
Q.E.D.  

We now prove that we may add the Lorenz condition 0i
id A =  to bring the 

rank to zero. Indeed, we have now the inhomogeneous system i j j
id d A =  

and the differential constraint thus brought is compatible with the conservation 
of current. The corresponding homogeneous system obtained by adding the Lorenz 
constraint has second order symbol obtained by considering both 0i j

id d A =  
and 0i

ijd A =  or 0j
ijd A = . We obtain therefore 0, 0nn j nn nd A d A= =  showing 

that we have now 2 0nα =  and a torsion differential module. As a more impor-
tant and effective result that does not seem to be known, we have:  

PROPOSITION 4.B.2: When 4n = , the system:  

44 11
4 3 2 1 4 2 4 4

4 34 24 14 33 22 11
4 1

3 34 13
4 1

2 24 12
4 1

1 14 11
4 1

4 1

1 2 3 4
1 2 3
1 2 30
1 20
10

0

j j j jd A d A
d d A d A d A d A d A d A
d d A d A
d d A d A
d d A d A

d A d A

Ψ ≡ + + =
 •Φ − Ψ ≡ + + − − − = −
 •Φ ≡ + + =
 • •Φ ≡ + + =
 • • •Φ ≡ + + =


• • • •Φ ≡ + + =
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is involutive with four equations of class 4, two equations of class 3, one equa-
tion of class 2 and one equation of class 1. The 11 resulting CC only provide the 
conservation of current.  

Proof: Using the corresponding Janet tabular on the right, one can check at 
once that the 4 CC brought by the only first order equation 0Φ =  do not bring 
anything new, as they amount to crossed derivatives, and that we are only left 
with the 4 upper dots on the right side. However, for 1,2,3i = , we have 

( ) ( )4 4
4 4i i id d d d dΦ = Φ −Ψ + Ψ  and we are thus only left with a single CC, get-

ting successively:  

( )4 3 2 1 4 2 1
4 4 344 244 144 334 224 114

3 3 3 3 3
3 344 333 223 113

2 2 2 2 2
2 244 233 222 112

1 1 1 1 1
1 144 133 122 111

d d d A d A d A d A d A d A

d d A d A d A d A

d d A d A d A d A

d d A d A d A d A

Φ −Ψ ≡ + + − − −

− Ψ ≡ − − − −

− Ψ ≡ − − − −

− Ψ ≡ − − − −

 

( )
( )

4 3 2 1
3 3 334 333 233 133

4 3 2 1
2 2 224 223 222 122

4 3 2 1
1 1 114 113 112 111( )

d d d A d A d A d A

d d d A d A d A d A

d d d A d A d A d A

Φ ≡ + + +

Φ ≡ + + +

Φ ≡ + + +

 

Summing these 7 equations, we are left with the identity  
( )44 11 0j j

j jd d d d− Φ + + Φ + Ψ = =  . It is important to notice that no other 
procedure can prove that we have an involutive symbol in δ -regular coordi-
nates and this is the only way to compute effectively all the four characters 
( 0 6 11 15< < < ) with ( ) ( )6 11 15 32 4 10 4 4+ + = = × − +  for the dimension of 
the symbol of order 2, a result not evident at first sight. Accordingly, the 
so-called Lorenz gauge condition is only a pure “artifact” amounting to a relative 
minimum parametrization with no important physical meaning as it can be 
avoided by using only the EM field F ([6] [10] [45]).  

Q.E.D.  
REMARK 4.B.3: Using the exactness of the Euler-Poincaré characteristic for 

the Poincaré sequence and its adjoint sequence, we have:  

( ) ( ) ( ) ( )( )1 10 1 1 2 1 2 2D Dn n n rk d M rk d M n n= − + − − = ⇒ = = − −  

( ) ( ) ( )( ) ( )( )2 20 1 1 2 1 2 2D Dn n n rk d M rk ad d M n n= − + − − = ⇒ = = − −  

by counting the ranks from left to right in the upper row and then from right to 
left in lower row of the previous diagram. We obtain therefore: 

( ) ( )
( )( ) ( )( ) ( )

1

2 *
2 3 3 6

D D

D D

rk d rk d M

rk ad d M rk ad d dim T

+ =

= = + = + = ∧ =
 

when 4n =  by using successively the exactness of the upper and lower rows of 
the diagram. Hence, the image of the dotted arrow on the left is equal to the im-
age of ( ) 2ad d M= , a result explaining why both operators have the same CC, 
namely the conservation of current obtained by extending the previous diagram 
one step more to the left. As the linear Spencer sequence for a Lie group action 
(isometries, isometries plus dilatation, conformal isometries in Example 4.1) is 
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(locally) isomorphic to the tensor product of the Poincaré sequence by a finite 
dimensional Lie algebra (10 11 15< <  when 4n =  in Example 4.1), the same 
comment remains valid. This result justifies by itself the specific importance of 
the linear Spencer sequence for infinitesimal Lie equations.  

Such a new approach to a classical result is nevertheless bringing a totally un-
satisfactory consequence. Using the well known correspondence between elec-
tromagnetism (EM) and elasticity (EL) used for all engineering computations 
with finite elements:  

EM potential EL displacement, EM field EL strain,
EM induction EL stress

↔ ↔
↔

 

where EL means elasticity, and instead of the left upper square in the diagram, ... 
we have to consider the right upper square.  

We finally prove that the use of the linear and nonlinear Spencer operators 
drastically changes the previous standard procedure in a way that could not even 
be imagined with classical methods. For such a purpose, we make a few com-
ments on the implicit summation appearing in differential duality. For example, 
we have, up to a divergence:  

( ) ( ), , , ,
,

r k r k k r k r k
k r k r r r k k rX ξ ξ ξ ξ= ∂ − = −∂ − +     

In the conformal situation, we have 1 2
1 2

1n r
n rn

ξ ξ ξ ξ= = = =  and obtain there-

fore, as factor of the firs jets:  

( ) ( ),1 1 ,2 2 , , , 1
1 1 2 2 1

1n n r r r
n n r r rn

ξ ξ ξ ξ ξ+ + + = =      

Going to the next order, we get as in ([26]), up to a divergence:  

( )1, 1 1, 1
1 1 1 1

r r
r rξ ξ∂ = − ∂ +   

Collecting the results and changing the sign, we obtain for the first time the 
Cosserat equation for the dilatation, namely the so-called virial equation that we 
provided in 2016 ([34], p. 35):  

1, ,
1 0r r

r r∂ + =   

generalizing the well known Cosserat equations for the rotations provided in 
1909 ([46], p. 137):  

, , , 0ij r i j j i
r∂ + − =    

As for EM, substituting r r
i rj j riξ ξ∂ − ∂  in the dual sum 1

2
i j ij

i j ijF F<
< =   and 

integrating by parts, we get a part of the Cosserat equations for the elations, 
namely: 

,0 0 0ir i i r
r i r∂ − = ⇒ ∂ = ⇒ =     

saying that the trace of the EM impulsion-energy tensor must vanish ([45], p. 
37).  

REMARK 4.B.4: When 1 0qg + = , introducing the linear Spencer sequence 
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with Spencer bundles * ˆr
r qC T R= ∧ ⊗ , we obtain the following diagram de-

scribing the Cosserat procedure ([4] [40] [46]):  

( ) ( )

( ) ( )

1 2

1 2

1 2

0 1 2

* * * * * *
0 1 2

* 1 * 2 *

potential field

induction pseudopotential

D D

ad D ad D
n n n

ad D ad D
n n n

q q q

C C C

T C T C T C

T M T M T M− −

→ →

∧ ⊗ ← ∧ ⊗ ← ∧ ⊗

∧ ⊗ ← ∧ ⊗ ← ∧ ⊗

  

  

 

where we have used the isomorphism *
q qR M . It just remains to consider the 

various Spencer bundles ˆ
r r rC C C⊂ ⊂  that we have already considered with 

2q =  (see [17] for an explicit example).  
We sum up all these results in the following tabular only depending on the 

Spencer operator:  
 

FIELD INDUCTION 

NONLINEAR LINEAR DUAL 

*
1q q qDf T Rχ+ = ∈ ⊗  *

1q q qD X T Rξ + = ∈ ⊗  * *n
q qT T R∈∧ ⊗ ⊗  

,
k
rχ  

,
k
i rχ  

,
r
r iχ  

,
k
ij rχ  

, ,
r r

i r j j r i ijχ χ ϕ∂ − ∂ =  

,
k k k

r r rXξ ξ∂ − =  

, ,
k k k

r i i r i rXξ ξ∂ − =  

,
r r r

i r ri r i iX Xξ ξ∂ − = =  

,
k k k k

r ij ijr r ij ij rXξ ξ ξ∂ − = ∂ =  

, ,
r r

i r j j r i ijFξ ξ∂ − ∂ =  

( ), ,

1
2

r r
i r j j r i ijRξ ξ∂ + ∂ =  

,r
k  

,i r
k  

i  
,ij r

k  
ij  

? 

 
We notice that ( ) ( )2 * *

2,ij ijF F T R R S T= ∈∧ = ∈  and the part of the first 
Spencer bundle made by the 1-forms with value in the 4n =  elations provides 
the splitting:  

( ) 2 * * * *
2,F R T S T T T∈∧ ⊕ ⊗  

because of the well known exactness of the Spencer δ -sequence:  
* * * 2 *

20 0S T T T Tδ δ→ → ⊗ →∧ →  

As a byproduct, the surprising shift of exterior powers is simply obtained by 
applying the Spencer δ -map to * * *

2
ˆ ˆr r

r rC C T g T T= ∧ ⊗ ∧ ⊗

  because 

( ) ( )1* * *rrT T Tδ +∧ ⊗ ⊂ ∧ .  
C) General Relativity:  
Roughly speaking, we shall say that a parametrization of an operator is mi-

nimal if its corresponding operator defines a torsion module or, equivalently, if 
the kernel of the parametrizing operator has differential rank equal to 0. It is not 
so well known even today that, up to an isomorphism, the Cauchy stress opera-
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tor essentially admits only one parametrization in dimension 2n =  which is 
minimum but the situation is quite different in dimension 3n = . Indeed, the 
parametrization found by E. Beltrami in 1892 with 6 potentials ([9]) is not mi-
nimal as the kernel of the Beltrami operator has differential rank 3 while the two 
other parametrizations respectively found by J.C. Maxwell in 1870 and by G. 
Morera in 1892 are both minimal with only 3 potentials even though they are 
quite different because the first is cancelling 3 among the 6 potentials while the 
other is cancelling the 3 others. In particular, we point out the technical fact that 
it is quite difficult to prove that the Morera parametrization is providing an in-
volutive system. These three tricky examples are proving that the possibility to 
exhibit different parametrizations of the stress equations that we have presented 
has surely nothing to do with the proper mathematical background of elasticity 
theory as it provides an explicit application of double differential duality in dif-
ferential homological algebra. Also, the example presented in Section 3. A is 
proving that the existence of many different minimal parametrizations has sure-
ly nothing to do with the mathematical foundations of control theory. Similarly, 
we have just seen in the previous section that the so-called Lorenz condition has 
surely nothing to do with the mathematical foundations of EM. Such a comment 
will be now extended in a natural manner to GR.  

With standard notations, denoting by *
2S TΩ∈  a perturbation of the 

non-degenerate metric ω , it is well known (see [8] [10] and [47] for more de-
tails) that the linearization of the Ricci tensor ( ) *

2ijR R S T= ∈  over the Min-
kowski metric, considered as a second order operator RΩ→ , may be written 
with four terms as:  

( )2 2rs
ij ij rs rs ij ri sj sj ri jiR d d d d Rω= Ω + Ω − Ω − Ω =  

Multiplying by test functions ( ) 4 *
2

ij T S Tλ ∈∧ ⊗  and integrating by parts on 
space-time, we obtain the following four terms describing the so-called gravita-
tional waves equations:  

( )rs rs ij sj ri ri sj rs
ij ij ij rs rsd d dλ ω λ ω λ ω λ σ+ − − Ω = Ω  

where   is the standard Dalembertian. Accordingly, we have:  

0rs ij rs rs ij sj ri ri sj
r rij rij rij rijd d d d dσ ω λ ω λ ω λ ω λ= + − − =  

The basic idea used in GR has been to simplify these equations by adding the 
differential constraints 0rs

rd λ =  in order to find only rs rsλ σ= , exactly like 
in the Lorenz condition for EM. Before going ahead, it is important to notice 
that when 2n = , the only Lagrange multiplier λ  is just the Airy function φ  
and, using an integration by parts, we have the identity: 

( ) ( )11 22 22 11 12 12 22 11 12 12 11 222 2d d d d d d divφ φ φ φΩ + Ω − Ω = Ω − Ω + Ω +  

providing the Airy parametrization of the Cauchy stress equations:  
11 12 21 22

22 12 11, ,d d dσ φ σ σ φ σ φ= = = − =  

where the Airy function has, of course, nothing to do with any perturbation of 
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the metric.  
However, even if it is clear that the constraints are compatible with the 

Cauchy equations, we do believe that the following result is not known as it does  

not contain any reference to the usual Einstein tensor ( )1
2ij ij ijE R tr Rω= −   

where ( ) rs
rstr R Rω= , which is therefore useless because it contains 6 terms in-

stead of 4 terms only, even though the corresponding operator is self-adjoint.  
PROPOSITION 4.C.1: The system made by rs rsλ σ=  and 0rs

rd λ =  is a 
relative minimum involutive parametrization of the Cauchy equations describ-
ing the formal adjoint of the Killing operator, that is ( )Cauchy Killingad=  as 
operators.  

Proof: For each given 1,2,3,4s =  the system under study is exactly the sys-
tem used for studying the Lorenz condition in Proposition 4.B.1. Accordingly, 
nothing has to be changed in the proof of this proposition and we get an involu-
tive second order system with 0rs

rd σ =  as only CC in place of the conservation 
of current. Needless to say that this result has nothing to do with any concept of 
gauge theory as it is sometimes claimed ([8] [47]).  

Q.E.D.  

5. Conclusion 

In 1916, F.S. Macaulay used a new localization technique for studying unmixed 
polynomial ideals. In 2012, we have generalized this procedure in order to study 
pure differential modules, obtaining therefore a relative parametrization in place 
of the absolute parametrization already known for torsion-free modules and 
equivalent to controllability in the study of OD or PD control systems. Such a 
result is showing that controllability does not depend on the choice of the con-
trol variables, despite what engineers still believe. Meanwhile, we have pointed 
out the existence of minimum parametrizations obtained by adding, in a conve-
nient but generally not intrinsic way, certain compatible differential constraints 
on the potentials. We have proved that this is exactly the kind of situation met in 
control theory, in EM with the Lorenz condition and in GR with gravitational 
waves. However, the systematic use of adjoint operators and differential duality 
is proving that the physical meaning of the potentials involved has absolutely 
nothing to do with the one usually adopted in these domains. Therefore, these 
results bring the need to revisit the mathematical foundations of Electromagnet-
ism and Gravitation, thus of Gauge Theory and General Relativity, in particular 
Maxwell and Einstein equations, even if they seem apparently well established.  
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Main Notations 

K differential field containing   with n commuting derivations 1, , n∂ ∂ .  

1, , nd d  formal derivatives acting on the m differential indeterminates 1, , my y .  
[ ] [ ]1, , nD K d d K d= =  ring of differential operators ,P Q  with coefficients 

in K. 
, ,L M N  filtered differential modules over D.  
( )1, , nµ µ µ=   multi-index with length 1 nµ µ µ= + +  and  

( )11 , , 1, ,i i nµ µ µ µ+ = +  . 
X manifold with tangent, cotangent, symmetric and exterior bundles  

* * *, , , r
qT T S T T∧ .  

( ) ( ), , , ,0k k k k
q i ijy y y y y qµ µ= = ≤ ≤  jet coordinates up to order q.  
( )ad   formal adjoint defined by ( ) ( ), ,ad divλ ξ λ ξ= +   for any test 

row vector λ .  
,E F  vector bundles over X or free modules over D.  

V characteristic algebraic variety with dimension d and codimension 
cd n d= −  over K.  

( ) ( )00 nt M t M M= ⊆ ⊆ ⊆  purity filtration with  
( ) ( ){ }|rt M m M cd Dm r= ∈ > .  
( ) ( ) { }0 | 0 , 0t M t M m M P D Pm= = ∈ ∃ ≠ ∈ =  the torsion submodule of M.  

( ),KR hom M K=  differential module over D associated with M, also called in-
verse system.  

*: i
K id R T R f dx d f→ ⊗ = → ⊗  Spencer operator with ( ) 1i

k k k
i id f f fµ µµ += ∂ − .  

* * * 2 *
2XT T S T T⊗ ⊕∧  with ( ) *

2ijR R S T= ∈  Ricci tensor and  
( ) 2 *

ijF F T= ∈∧  EM field. 
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